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Lecturer: Prof. Moritz Münchmeyer 

• Computational and theoretical Cosmologist


• My research: http://munchmeyer.physics.wisc.edu/ 


• Office: 6205


• Email: muenchmeyer@wisc.edu   


• Teaching Weeks 1,2,3,9,13,14,15


Lecturer: Prof. Gary Shiu  

• High energy theorist with main focus on string theory 


• Teaching Weeks 4,5,6,8,11,12


• Week 7: Guest lecturer

Instructors



My area of physics: Cosmology 



Tell us about your experience
• We have a very mixed class in terms of preparation of students.


• We want to adjust the level of the course to make it appropriate 
for the majority of students.


• Let’s gauge your your experience with:


• Programming (python)


• Machine learning


• Physics  


• Math



Course logistics



The schedule and all lectures and exercises will be uploaded on the course canvas 
page https://canvas.wisc.edu/courses/397922 

Course Canvas Page

If you are comfortable with it please upload a profile picture of you to canvas to help us 
learn your names.



• Problem sets 

• There will be a few problem sets, approximately one every two 
weeks. Download and upload on Canvas. Late submission 
requires prior permission.


• Final project:  

• Apply some of the techniques we learn to a concrete project of 
your choice. Write a course paper. 


• Final grade will be made out of problem sets and final project. 
Weighting TBA. 

Grading



• We won’t follow a single textbook closely. However these references can be used to supplement the 
course notes:


• Classics on General ML 

• Bishop: Pattern Recognition and Machine Learning (classic)


• MacKay: Information Theory, Inference, and Learning Algorithms, CUP (free online version)


• Goodfellow, Bengio, Courville: Deep Learning, MIT Press: deeplearningbook.com 


• Recent popular textbooks on General ML:


•  https://udlbook.github.io/udlbook/ Understanding Deep Learning


•  https://d2l.ai/ Dive into Deep Learning (fully online and with code)


• ML in Physics 

• Mehta, Bukov, Wang, Day, Richardson, Fisher, Schwab: A high-bias, low-variance 
introduction to Machine Learning for physicists (1803.08823)


• Carleo, Cirac, Cranmer, Daudet, Schuld, Tishby, Vogt-Maranto, Zdeborova: Machine Learning 
and the Physical Sciences 1903.10563


• Kaplan: Notes on Contemporary Machine Learning for Physicists 


• Acquaviva: Machine Learning for Physics and Astronomy

Text books and Reviews 



• We will be using Piazza for questions and answers. 


• You are encouraged to ask your questions on Piazza, rather 
than e.g. by email to your instructors, so that everybody can 
discuss, answer, and learn from the answers. 


• You can post questions and answers anonymously if you prefer.


• Computational tools:


• We will use Jupiter or Google Colab. 

• The programming language will be Python.


• I will upload a basic tutorial for python which you can work 
through. But if you have not worked with python you will need 
to do some self study. This is well invested time. 

Learning tools 



• We will cover the following units, each with application to physics:


•  Basics of Machine Learning 

•  Probability theory and Information theory background 

• Optimization and Regularization 

• Feed-forward Neural Networks and CNNs for Regression and Classification 

• Learning on graphs and other data structures 

•  Simulation-based inference 

• Generative Models: VAE, GANs, Diffusion Models 

• Solving Inverse Problems and PDEs with NN 

• Transformers, LLMs and symbolic methods 

• These are a lot of topics so we will cover them somewhat briefly. 


• Since this is a new class, the list of topics may evolve over the semester. 

Planned schedule of topics 



• Website: ai.physics.wisc.edu 

• Main event: Irregular Machine Learning and Physics seminar

• Next one: Feb 21st on Diffusion models 


• Alternating between local speakers and remote seminars.

• Students very welcome!

AI meets Physics at UW Madison



• At the very least, Machine Learning is a tool, like Likelihoods and MCMC, of which 
every physicist needs to know the basics now. 


• However “Black box” applications of Machine Learning in Physics without insights 
from domain experts usually don’t work. We need to understand how to use 
domain knowledge.


• Physics provides a data domain that is described by mathematical laws, with 
know statistical and symmetry properties. This means that we can often combine 
analytic methods with machine learning. 


• There are many ingenious uses of machine learning in physics, that go far beyond 
training standard ML models on physics simulations.


• Sometimes it is possible to solve previously intractable real world problems.


• There are also theoretical connections between physics and machine learning.


• In the future, we may have “AI physicists” that can do science independently, but 
we still seem far away from that. This course: Understand the state of the art.

Why a class on Machine Learning in Physics?



Broad Overview of 
Machine Learning



Categories of Machine Learning
• Supervised Machine Learning 

• Labelled data


• Direct feedback


• Predict label (regression or classification)


• Unsupervised learning 

• No labels/targets


• Find hidden structure of the data


• Includes clustering and generative models


• Reinforcement learning 

• Decide on actions to take


• Rewards and environment change with time


• The lines between these can be blurred. For example there is semi-supervised learning. 



Plots: sebastianraschka.com

Find what class a data vector 
belongs to, e.g. classify pictures 

into cat, dog, car etc. 

Measure an (often real valued) 
parameter from the data. E.g. 

given a picture of a car estimate 
its value. 



Unsupervised learning — 
Generative modelling 



Generative vs discriminative models

https://developers.google.com/machine-learning/gan/generative

Informally:


• Generative models can generate new data instances.


• Discriminative models discriminate between different kinds of data 
instances.


• A generative model could generate new photos of animals that look like 
real animals, while a discriminative model could tell a dog from a cat.


More formally, given a set of data instances X and a set of labels Y:


• Generative models capture the joint probability p(X, Y), or just p(X) if there 
are no labels.


• Discriminative models capture the conditional probability p(Y | X).


There are many types of generative models, including GANs, VAE, diffusion 
models and normalizing flows. 



Examples of neural network architectures

We will meet all of these architectures later in the course.



Some Examples of ML 
in the Physical Sciences



• To get an overview, check out for example this yearly NeurIPS physics workshop:


• https://ml4physicalsciences.github.io/2023/ 


• At the end of the semester I hope you will be able to understand what many of these 
papers are about, at at superficial level. 


• Other workshops that are relevant:


• https://ai4sciencecommunity.github.io/neurips23.html AI for Science: from Theory to 
Practice


• A few others: https://neurips.cc/virtual/2023/events/workshop 


• I’ll mention other conferences and specific papers later on.

Where to see recent work?



• Examples: 


• LHC particle collisions. ML has a long history in particle physics, reaching back 
several decades. 


• Ice cube particle shower classification. E.g. 2209.03042


• Galaxy type classification. In the past, different galaxy types were classified by 
researchers by eye. Not possible with millions of galaxies.

Classifying Events and Objects

Arxiv: 1807.11916 
End-to-End Physics Event 

Classification with CMS Open 
Data 

(Here and below I select papers 
somewhat at random, there are 

MANY other good papers in each 
domain)



• It is often not clear how to measure a parameter from a collection of data. 


• If we have reliable simulations, we can train a neural network to perform the 
measurement, using supervised learning. 


• Example: Measuring cosmological parameters (age of the universe, amount of dark 
matter etc.) from a galaxy survey


• Main challenge:  Reliability of training data.

Measuring physical parameters

SimBig project 2211.00723

Galaxy data CNN Parameter 
Measurements



• When we measure parameters, we also need error bars (or better the full 
posterior).


• Simulation-based inference is the process of finding parameters of a 
simulator from observations, probabilistically.


• In “traditional” data analysis in physics we often make analytical assumptions of 
the statistics of an observable, most commonly that it is Gaussian distributed.


• With machine learning one can learn the probability distribution of observables 
from simulations. In a Bayesian analysis, the likelihood or the posterior can be 
learned from simulations. 


• This is usually done using a Neural Density Estimator, such as a Normalizing 
flow.


• See e.g. arxiv:1911.01429 The frontier of simulation-based inference

Simulation-based Inference



• Neural networks can be used as surrogate models to replace computationally 
expensive simulations. These are often called Emulators.


• Once trained on data or simulations, an emulator can make new “simulations” much 
faster. 


• Machine Learning is often used to speed up classical methods. 

Generating Simulations / Emulators

• Example from my own research:


• Generating 3d simulations of the matter 
distribution of the universe using a 
diffusion model. (Arxiv: 2311.05217)




• To train neural networks, computational techniques were developed that can train 
models with billions of free parameters. This is done with auto-differentiation 
libraries such as


• PyTorch  

• JAX 

• Tensorflow 

• This software is useful in physics even if you don’t use any machine learning.


• Physicists re-write their codes in auto differentiable language, which allows 
efficient optimization with respect to any parameters. Some examples from my 
field:


• CosmoJax, a differentiable cosmology library


• Differentiable cosmology simulations, e.g. pmwd

Auto-differentiation without ML



• How can we organize a large data set of events or objects into classes of similar 
objects? Clustering and dimensionality reduction algorithms.  

• Classic k-means is still very useful! E.g. stellar populations. 


• Clustering can also happen in the “latent space” of a generative model.


• Data visualization, e.g. t-SNE 


• How can we find something “new” without knowing what to look for? Anomaly 
detection! 

• Humans are pretty good at anomaly detection by eye, but data sets are too large to 
be inspected that way and the anomaly may only be visible in the right data 
representation. 


• Anomalies have been found in archival data, long after the data was taken (example: 
Fast Radio Bursts). Perhaps there is something exciting hidden in existing data.


• Unsupervised learning can be used to classify existing events or objects. If an object 
is not close to any known class, it is flagged as an anomaly.

Clustering and Anomaly detection



• Many problems in physics amount to solving a complicated set of partial 
differential equations (PDE). There are various ways to use NN for that. 


• Examples (from the PDEBench data set):


• In Inverse Problems, one wants to find the input data that produced a specific 
output. That can mean removing noise or undoing a non-linear evolution. Often 
they are ill-conditioned and need to be regularized. 


• Neural Networks are being trained to solve such problems approximately.

Solving PDEs and Inverse Problems



• Theoretical insight in physics come in the form of symbolic expressions. Naturally, 
combining machine learning and symbolic expressions is an exciting direction. 


• Machine learning can be used to improve symbolic regression, the process of 
finding mathematical expressions that describe data.


• Example: 2006.11287


• Machine learning can come up with novel proofs and novel solutions. A large-
language model can make “educated guesses” (proposed solutions) that are then 
verified with a systematic evaluator. e.g. https://www.nature.com/articles/
s41586-023-06924-6 

Symbolic methods



• Reading: 

• Familiarize yourself with the course canvas page. 

• Check out some of the textbooks and reviews on 

slide 7. 


• Problem set: No problem set in the first week

Course logistics


