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Outline for today

* Unsupervised learning
e Challenges of High-dimensional data
e Principal component analysis (PCA)

e Multi-dimensional scaling (MDS)

References: 1803.08823, Deep Learning Book



Unsupervised Learning

Discovering structure in unlabelled data.

Two ways: 1) some appropriate numerical measure (e.g. distance
IN some representation space). 2) with visualizations.

Need to dimensionally reduce data as it is impractical for datasets
involving large number of measured features (e.g. images)

We call the dimensionally reduced space latent space.

By dimensional reduction we often loose information. This is not
necessarily bad. By loosing only irrelevant information, we can find
good representations.



Challenges of High-dimensional Data

High-dimensional data lives near the edge of sample space.
Consider data distributed uniformly at random in a D-dimensional

hypercube C = [—e/2,e/2]P. Probably of a data point inside a D-
dimensional hypersphere S of radius e/2 centered at the origin:

p(lIxll, < e/2) ~ (1/2)D — 0 exponentially as D — o

Most of the data will concentrate outside the hypersphere, in the
corners of the hypercube.

Recall this property underlies properties of statistical systems such
as the Maxwell distribution.



Challenges of High-dimensional Data

Real-world data is usually not random or uniformly distributed
(data lives in a lower-dim. space compared with original space).

“Blessing of non-uniformity”: Data will typically be locally smooth
(local variation will not incur a change in the target variable).

Examples: thermodynamics variables (temperature, pressure, etc)
are not sensitive to variations of the dynamical variables (position
and momentum of individual particles); small number of order
parameters in statistical systems with large number of dofs.

Obijective: preserve relative pairwise distances between data
points when going to latent space.



Challenges of High-dimensional Data

* Intrinsic dimensionality and the crowding problem:
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gzi“«.. P A Intrinsic dim = min. # parameters
to parametrize the data.

Attempts to represent data in a space
with dim < intrinsic dimensionality
lead to a “crowding” problem.




Principal Component Analysis (PCA)

 Perform an orthogonal transformation of the data to find the
high variance directions & minimizing the error in projection.
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PCA — Minimizing Decoding Error

Suppose we have a collection of N points {x'1, ..., x™ in R".
Compress them into code vectors {cV, ..., e¢™M 1} in Riwith [ < n
Encoding function: f(X) = ¢; Decoding function: X = g(c¢)
Encoding + decoding: X = g(f(X))

A measure of goodness for your compression is how accurate is
this encoding+decoding:

l|x —X|| <1 (good commpression)



PCA — Minimizing Decoding Error

Let g(¢) = Dec where D € R™!is a matrix defining the decoding.
Columns of D are orthogonal to each other and have unit norm.

Minimizing the loss: ¢* = argmin ||z — g(c)||

C

or equivalently (and more conveniently): ¢* = argmin|jz — g(c)||5

C

The function to be minimized: (z — g(¢)) (= — g(c))

T T

—az'z—x'g(c)—glc) +g(c)'

gle) =x'z—2z"g(c) + g(c) ' g(c)

Omit the first term which does not depend on c:

c* = argmin —2z ' g(c) + g(c) ' g(c)

C



PCA — Minimizing Decoding Error

e Using the definition of the decoding function:

c* = argmin —2x' Dc+¢' D' De
C

— argmin —2x' Dc + ¢' I;c
C

because the columns of D are orthogonal and have unit norm.

* The optimization problem has the solution:

Ve(—2x'Dc+c¢'e) =0
—2D'z+2c=0
c=D'"zx.
e The encoding function: f(z) =D 'x

e PCA reconstruction operation: r(z) =g (f (z)) = DD 'z



PCA — Minimizing Decoding Error

e Since we use the same matrix D to decode all the points, we
minimize the Frobenius norm of the matrix of errors computed over
all dimensions and all points:

2
D* = arg min Z ( @) _ r(x() ) subject to D' D = I;.
« Consider [ = 1 (exercise: generalization to other [), then D = d
d” = arg minz |2 — dd 2|2 subject to ||d||2 = 1.
d .

e Some cosmetic changes (noting d’x"is a scalar, and so its
transpose is equal to itself) give:

d" = argminz |2 — 2T dd]||2 subject to [|d||2 = 1.
d .



PCA — Minimizing Decoding Error
 Introduce compact notation by defining the matrix X:

X € RmXn X,;. = CB(z‘)T

9

 The decoding error is minimized when:
d* = argmin || X — Xdd'||% subject tod'd = 1.
d

* The Frobenius norm part:
.
argmin || X — Xdd'||% = arg min Tr ((X — deT) (X — deT>>
d d
—argminTr(X'X - X'Xdd" —dd' X" X +dd"X"Xdd")
d

— arw) ~Tr(X'Xdd') - Tr(dd' X' X) + Tr(dd' X' Xdd")

does not depend on d



PCA — Minimizing Decoding Error
e Cycle the order of the matrices inside a trace, the Frobenius norm:
— argmin —2Tr(X ' Xdd') + Tr(dd' X' Xdd")
d

— argmin —2Tr(X ' Xdd') + Tr(X ' Xdd'dd")
d

o The constraintd’d = 1 gives:
— argmin —2Tr(X ' Xdd'") + Tr(X ' Xdd') subject tod'd =1
d

 Thus minimizing decoding error is the same as maximizing variance:

— argmin — Tr(X ' Xdd') subject tod'd =1
d

= argmax Tr(X ' Xdd') subject tod'd =1
d

= argmax Tr(d' X' Xd) subject tod'd = 1.
d



PCA — Maximizing Variance

The covariance matrix of data matrix X is defined as:

1 T

2(X);; corresponds to the variance of the j-th feature while 2(X);;
measures the covariance (correlation) between feature 1 & feature J.

Find a new basis that emphasizes highly variable directions while
reducing redundancy between basis vectors. Perform SVD:

1
Y(X) = ﬁvsuTusvT

X = USV', ( % )VT

— "\NZ1
= vAVT.

The eigenvalues 4; of A are given by 4, = Sl-z/(N —1).



PCA — Maximizing Variance

To reduce the dimensionality of data from n to /, construct the n X [
projection matrix V, by selecting the singular components with the [
largest singular values. The projection is then

The singular vector with the largest singular value (largest variance)
IS the first principal component; the singular vector with the second
largest variance is the second principal component, etc.

Common in data visualization is to project on the first few principal
components (as long as a large part of the variance is explained in
those components, e.g., Ising Model).

Low explained variance may imply that the intrinsic dimensionality of
the data is high, or it cannot be captured by a linear representation.



Multidimensional Scaling (MDS)

Non-linear dimensional reduction technigue which preserves the
pairwise distance (or dissimilarity) dij between data points.

Metric MDS: the latent coordinates are obtained by minimizing:

Y = arg myinZ wij|dii(X) — di(Y)],

i<j
w;; specifies the level of confidence (precision) in the value of dl-j(X).
If Euclidean metric is used, MDS=PCA; known as classical scaling.

https://stats.stackexchange.com/questions/14002/whats-the-difference-between-principal-component-analysis-and-multidimensional

MDS (metric or non-metric) is a generalization of PCA.

Non-metric MDS: dlj can be any distance matrix that preserves the
ordination, i.e., if d;,(X) < d;3(X) then d|,(Y) < d3(Y).



Multidimensional Scaling (MDS)

Both MDS and PCA can be implemented using standard Python
packages such as Scikit.

MDS algorithms have a scaling of O(N>) where N = # data points.

Sample-based methods can reduce this scaling to O(N log N).

PCA has a scaling of O(Np? + p?) for a complete decomposition.

A ™

computation of eigenvalue decomposition
covariance matrix where p = # features

Can be improved to give a O(Np? + p) scaling for PCA if only a few
principal components are desired.



