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Outline for today

e t-stochastic neighbor embedding (-SNE)
e K-means clustering

e Agglomerative clustering

e Density-based (DB) clustering

e (Gaussian mixture models

References: 1803.08823, Deep Learning Book

https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB15-CXll-clustering.html



https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB15-CXII-clustering.html

t-SNE

t-stochastic neighbor embedding: non-parametric method that constructs non-
iInear embeddings, optimized to preserve the local data structure.

-Has been used to reduce the dimensionality and classify spin systems such as
sing Model and Fermi-Hubbard models; glass-like problems in quantum control.

Idea: associate a probability distribution to the neighborhood of each data:
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o; are free bandwidth parameters determined by the local entropy:

H(p;)) = — ) _pjilog, pjj.
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Setting H(p,)= constant, 2 = 2HP) — herplexity determines o;. Points in regions

of high density will have small o;.



t-SNE

e Gaussian likelihoods: only nearby points contribute
e Similarity of nearby points well represented

* Problem of outliers (exponentially vanishing contributions to the
distribution): embedding coordinates are ambiguous.

* The outliner problem can be avoided by symmetrization:

pl] (pzu + p]|1)/(2N)- = Z pl] 1/ ZN)

e t-SNE constructs a similar probability distribution in a lower
dimensional latent space:
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t-SNE

* Long tail distribution: preserves
short distance information while
strongly repelling two points that are  short-tail

far apart in the original space.

y; = arg myin Ip(xi) — q(y))

long-tail

e |atent space coordinates are found
by minimizing the KL divergence:

p..
C(Y)=Dx(p |l q) = Zpij log <—U)
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e Equivalent to finding equilibrium
configuration of particles:

0C =) ApaiZilyi — ) — )_AGZyi— ),  whereZ = 1/(, (1+lye=yill>) ™).
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Properties of t-SNE

Can rotate data: KL divergence is invariant under rotations in
latent space.

Results are stochastic: will depend on initial seed for gradient
descent.

Generally preserves short-distance information (preserves
ordination but not actual distance between points).

Deforms scales (not too much emphasis on size of clusters).

Computationally expensive with a O(N?) scaling (can be
improved to O(N log N) using the Barnes-Hut method.
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Fig. 53. Different visualizations of a Gaussian mixture formed of K = 30 mixtures in a D = 40 dimensional space. The Gaussians have the same
covariance but have means drawn uniformly at random in the space [—10, 10]%°. (a) Plot of the first two coordinates. The labels of the different
Gaussian are indicated by the different colors. Note that in a realistic setting, label information is of course not available, thus making it very hard to
distinguish the different clusters. (b) Random projection of the data onto a 2 dimensional space. (c) Projection onto the first 2 principal components.
Only a small fraction of the variance is explained by those components (the ratio is indicated along the axis). (d) t-SNE embedding (perplexity =
60, # iteration = 1000) in a 2 dimensional latent space. t-SNE captures correctly the local structure of the data.



Performance
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Fig. 54. Visualization of the MNIST handwritten digits training dataset (here N = 60 000). (a) First two principal components. (b) t-SNE applied
with a perplexity of 30, a Barnes—Hut angle of 0.5 and 1000 gradient descent iterations. In order to reduce the noise and speed-up computation, PCA
was first applied to the dataset to project it down to 40 dimensions. We used an open-source implementation to produce the results (Linderman
et al.,, 2017), see https://github.com/KlugerLab/FIt-SNE.



t-SNE on GPU

 t-SNE is a great tool but quickly becomes slow to operate with
the sklearn implementation.

* Making t-SNE fast by putting it on the GPU:

https://medium.com/rapids-ai/tsne-with-gpus-hours-to-
seconds-9d9c17c941db



Applications

How much power is in your dimensions? MNIST: decay of
power in components of PCA.

Interpretability of first component(s): 2D Ising (magnetization)

Visualize which variables your neural network is using: apply
PCA (or other visualization methods) to different layers.
Remember, deeper layers use more abstract variables.

Disclaimer: this is a subset of visualizing techniques. If you face
a visualization problem which cannot be dealt with with these
methods, take a more detailed look on available algorithms.



Clustering

e Think of it as a simple way to look for hidden structure in high
dimensions (coarse features or high-level structures in unlabelled data).

e Points to take into account when choosing a particular method:

e Distribution of clusters (overlapping/noisy clusters vs. well-separated
clusters)

e Geometry of the data (flat vs. non-flat)
e Cluster size distribution (multiple vs. uniform sizes)
e Dimensionality of the data (low-dimensional vs. high-dimensional)

e Computational efficiency of desired method



K-means Clustering

Divide training set into K different clusters of data points which are
near each-other.

Consider a set of NV unlabeled data points {Xn}f;'=1 where X, € R?.
K cluster centers called the cluster means: {; }5_, with y1, € R?.

M|n|m|ze the COSt {X IL}) — ernk Il’k )

=1 n=1

One-hot encoding: r,;, = 1 if X, € cluster k and 0 otherwise;

Zk rnk — 1 V n and Zn rle — Nkv

Find the best cluster means (center of mass) such that variance
(moment of inertia) is minimized.



K-means Algorithm

Expectation: Given {r,;}, minimize C with respect to y;:
KLy = le ; 'nkXn.

Maximization: Given {y, }, find {r,, } which minimizes C:

|1 if k = argming (X, — py)?
"~ lo otherwise

Alternative between the above two steps until some convergence
criterion is met (e.g., change in C is smaller than a threshold).

Guaranteed to converge to local minimum (different initial random
cluster center initializations and post-select). Complexity O(kN).

Hard-assignment limit of the Gaussian mixture model (introduce
later), where all cluster variances are assumed to be the same.



K-means Algorithm
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Fig. 55. K-means with K = 3 applied to an artificial two-dimensional dataset. The cluster means at each iteration are indicated by cyan star markers.
t indicates the iteration number and C the value of the objective function. (a) The algorithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)-(c) For well separated clusters, the algorithm converges rapidly to the true clusters. (d) The objective
function as a function of the iteration. ¢ converges after t = 18 iterations for this choice of random seed (for center initialization).



Agglomerative Method

Start from small initial clusters, then
progressively merged to form larger
clusters.

Hierarchy of cluster can be visualized
in the form of a dendrogram.

Define a distance measure d(X, Y)
between clusters X and Y.

Two distances that are closest with
respect to d(X, Y) are merged until a
single cluster is left.
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Agglomerative Clustering Algorithm

Initialize each point to its own cluster.

Given a set of K clusters X, X,, ..., Xg, merge clusters until one
cluster is left (K = 1):

o Find the closest pair of clusters (X, Xj) :(1,)) = argmin(i,,j,)d(Xi,, X:)

0.9
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Agglomerative Clustering Algorithm

e Different linkage methods (distances):

Single gx;, X) = min _[1x; — x;ll Complete  gix, X)= max [|x — x|l
Ilnkage X €Xi, X €X; ||nkage X; €X;,X;€X;

Average  d(x;, X;) X — Xi]| Warad Xl Xl v
. %) |X| X1 2 Ixi—xl; ik A% %) = 7 UXl(ILl 1),
linkage X; X}, X €X; iInkage

« The Wald linkage is analogous to k-means in that it minimizes the
moment of inertia.

. Problem: Calculation complexity O(N?) (suitable for small datasets)

« Practical solution: start with k-means and then proceed with
hierarchical (agglomerative) clustering.



Density-based (DB) Clustering

Clusters are defined by regions with high density of data points.
Noise or outliers are expected to form regions of low density.

Unlike a distance-based approach, DB clustering considers
clusters of multiple shapes and sizes while identifying outliers.

Assumption: relative local density estimation is possible
(normally inaccessible for high-dimensional data due to large
sampling noise).

Widely used algorithms: DBSCAN, DB Clustering, etc. See:
https://pypi.org/project/tdc/



DBScan Algorithm

Density-based spatial clustering of application with noise (Ester et
al, 1996).

Crude estimate of local density is the e-neighborhood of point X, :
Ne(Xn) = {X € X|d(X, Xp) < &}

X, is a core-point if at least minPts are in its ¢-neighborhood. A
point X; is density-reachable if it's in a core-point’s ¢-neighborhood.

— Until all points in X have been visited; do

— Pick a point X; that has not been visited
— Mark Xx; as a visited point
— If X; is a core point; then

- Find the set C of all points that are density reachable from X;.
- C now forms a cluster. Mark all points within that cluster as being visited.

— Return the cluster assignments Cq, ..., C, with k the number of clusters. Points that have not been assigned to a
cluster are considered noise or outliers.



DBScan Algorithm

Do not need to specify # clusters
but only the hyperparameters € and
minPts.

Scalable to large datasets as
computational cost ~ O(N log N).

Note cluster with different shapes
and sizes.

Crosses are outliers.
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Latent Variables

Central to unsupervised learning is the idea of a latent or hidden
variable (not directly observable; yet influence visible structure).

The cluster identify of each datapoint is a latent variable. We cannot
observe the label directly, but points in the same cluster are “close”.

In this abstract language, clustering is an algorithm to learn the most
probably value of a latent variable associated with each datapoint.

Need to make assumption about the structure of data (common to
unsupervised learning), e.g., underlying probability distribution from
which the data was generated — generative model.

E.g., In clustering, each cluster is characterized by some probability
distribution (e.g. Gaussian distribution with some mean & variance).
The latent variable is chosen to minimize some cost function.



