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Outline for today

• t-stochastic neighbor embedding (t-SNE)

• K-means clustering 

• Agglomerative clustering

• Density-based (DB) clustering

• Gaussian mixture models 

References: 1803.08823, Deep Learning Book

https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB15-CXII-clustering.html

https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB15-CXII-clustering.html


t-SNE
• t-stochastic neighbor embedding: non-parametric method that constructs non-

linear embeddings, optimized to preserve the local data structure. 

• Has been used to reduce the dimensionality and classify spin systems such as 
Ising Model and Fermi-Hubbard models; glass-like problems in quantum control.

• Idea: associate a probability distribution to the neighborhood of each data: 

•  are free bandwidth parameters determined by the local entropy:

• Setting = constant,  = perplexity determines . Points in regions 
of high density will have small .

σi

H(pi) Σ = 2H(pi) σi
σi
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and Saul, 2000) have been proposed and to address this class of problems. These techniques are generally good at
preserving local structures in the data but typically fail to capture structures at the larger scale such as the clusters in
which the data is organized (Maaten and Hinton, 2008).

Recently, t-stochastic neighbor embedding (t-SNE) has emerged as one of the go-to methods for visualizing high-
dimensional data. It has been shown to offer insightful visualization for many benchmark high-dimensional datasets
(Maaten and Hinton, 2008). t-SNE is a non-parametric15 method that constructs non-linear embeddings. Each high-
dimensional training point is mapped to low-dimensional embedding coordinates, which are optimized in a way to
preserve the local structure in the data.

When used appropriately, t-SNE is a powerful technique for unraveling the hidden structure of high-dimensional
datasets while at the same time preserving locality. In physics, t-SNE has recently been used to reduce the dimensionality
and classify spin configurations, generated with the help of Monte Carlo simulations, for the Ising (Carrasquilla and Melko,
2017) and Fermi–Hubbard models at finite temperatures (Ch’ng et al., 2017). It was also applied to study clustering
transitions in glass-like problems in the context of quantum control (Day et al., 2019).

The idea of stochastic neighbor embedding is to associate a probability distribution to the neighborhood of each data
(note x 2 Rp, p is the number of features):

pi|j =
exp(�||xi � xj||2/2� 2

i )P
k6=i exp(�||xi � xk||2/2� 2

i )
, (132)

where pi|j can be interpreted as the likelihood that xj is xi’s neighbor (thus we take pi|i = 0). �i are free bandwidth
parameters that are usually determined by fixing the local entropy H(pi) of each data point:

H(pi) ⌘ �

X

j

pj|i log2 pj|i. (133)

The local entropy is then set to equal a constant across all data points ⌃ = 2H(pi), where ⌃ is called the perplexity. The
perplexity constraint determines �i 8 i and implies that points in regions of high-density will have smaller �i.

Using Gaussian likelihoods in pi|j implies that only points that are nearby xi contribute to its probability distribution.
While this ensures that the similarity for nearby points is well represented, this can be a problem for points that are far
away from xi (i.e. outliers): they have exponentially vanishing contributions to the distribution, which in turn means that
their embedding coordinates are ambiguous (Maaten and Hinton, 2008). One way around this is to define a symmetrized
distribution pij ⌘ (pi|j + pj|i)/(2N). This guarantees that

P
j pij > 1/(2N) for all data points xi, resulting in each data point

xi making a significant contribution to the cost function to be defined below.
t-SNE constructs a similar probability distribution qij in a low dimensional latent space (with coordinates Y = {yi}, yi 2

Rp0 , where p0 < p is the dimension of the latent space):

qij =
(1 + ||yi � yj||2)�1

P
k6=i(1 + ||yi � yk||2)�1 . (134)

The crucial point to note is that qij is chosen to be a long tail distribution. This preserves short distance information
(relative neighborhoods) while strongly repelling two points that are far apart in the original space (see Fig. 52). In order
to find the latent space coordinates yi, t-SNE minimizes the Kullback–Leibler divergence between qij and pij:

C(Y ) = DKL(p k q) ⌘

X

ij

pij log
✓
pij
qij

◆
. (135)

This minimization is done via gradient descent (see Section 4). We can gain further insights on what the embedding
cost-function C is capturing by computing the gradient of (135) with respect to yi explicitly:

@yiC =

X

j6=i

4pijqijZi(yi � yj) �

X

j6=i

4q2ijZi(yi � yj),

= Fattractive,i � Frepulsive,i, (136)

where Zi = 1/(
P

k6=i(1+||yk�yi||2)�1). We have separated the gradient of point yi into an attractive Fattractive and repulsive
term Frepulsive. Notice that Fattractive,i induces a significant attractive force only between points that are nearby point i in
the original space since it involves the pij term. Finding the embedding coordinates yi is thus equivalent to finding the
equilibrium configuration of particles interacting through the forces in (136).

Below, we list some important properties that one should bear in mind when analyzing t-SNE plots.

• t-SNE can rotate data. The KL divergence is invariant under rotations in the latent space, since it only depends on the
distance between points. For this reason, t-SNE plots that are rotations of each other should be considered equivalent.

15 It does not explicitly parametrize feature extraction required to compute the embedding coordinates. Thus it cannot be applied to find the
coordinate of new data points.
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t-SNE
• Gaussian likelihoods: only nearby points contribute 

• Similarity of nearby points well represented

• Problem of outliers (exponentially vanishing contributions to the 
distribution): embedding coordinates are ambiguous.

• The outliner problem can be avoided by symmetrization:

• t-SNE constructs a similar probability distribution in a lower 
dimensional latent space:
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The local entropy is then set to equal a constant across all data points ⌃ = 2H(pi), where ⌃ is called the perplexity. The
perplexity constraint determines �i 8 i and implies that points in regions of high-density will have smaller �i.

Using Gaussian likelihoods in pi|j implies that only points that are nearby xi contribute to its probability distribution.
While this ensures that the similarity for nearby points is well represented, this can be a problem for points that are far
away from xi (i.e. outliers): they have exponentially vanishing contributions to the distribution, which in turn means that
their embedding coordinates are ambiguous (Maaten and Hinton, 2008). One way around this is to define a symmetrized
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The crucial point to note is that qij is chosen to be a long tail distribution. This preserves short distance information
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This minimization is done via gradient descent (see Section 4). We can gain further insights on what the embedding
cost-function C is capturing by computing the gradient of (135) with respect to yi explicitly:
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and Saul, 2000) have been proposed and to address this class of problems. These techniques are generally good at
preserving local structures in the data but typically fail to capture structures at the larger scale such as the clusters in
which the data is organized (Maaten and Hinton, 2008).

Recently, t-stochastic neighbor embedding (t-SNE) has emerged as one of the go-to methods for visualizing high-
dimensional data. It has been shown to offer insightful visualization for many benchmark high-dimensional datasets
(Maaten and Hinton, 2008). t-SNE is a non-parametric15 method that constructs non-linear embeddings. Each high-
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The local entropy is then set to equal a constant across all data points ⌃ = 2H(pi), where ⌃ is called the perplexity. The
perplexity constraint determines �i 8 i and implies that points in regions of high-density will have smaller �i.

Using Gaussian likelihoods in pi|j implies that only points that are nearby xi contribute to its probability distribution.
While this ensures that the similarity for nearby points is well represented, this can be a problem for points that are far
away from xi (i.e. outliers): they have exponentially vanishing contributions to the distribution, which in turn means that
their embedding coordinates are ambiguous (Maaten and Hinton, 2008). One way around this is to define a symmetrized
distribution pij ⌘ (pi|j + pj|i)/(2N). This guarantees that

P
j pij > 1/(2N) for all data points xi, resulting in each data point

xi making a significant contribution to the cost function to be defined below.
t-SNE constructs a similar probability distribution qij in a low dimensional latent space (with coordinates Y = {yi}, yi 2

Rp0 , where p0 < p is the dimension of the latent space):
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The crucial point to note is that qij is chosen to be a long tail distribution. This preserves short distance information
(relative neighborhoods) while strongly repelling two points that are far apart in the original space (see Fig. 52). In order
to find the latent space coordinates yi, t-SNE minimizes the Kullback–Leibler divergence between qij and pij:
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This minimization is done via gradient descent (see Section 4). We can gain further insights on what the embedding
cost-function C is capturing by computing the gradient of (135) with respect to yi explicitly:
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k6=i(1+||yk�yi||2)�1). We have separated the gradient of point yi into an attractive Fattractive and repulsive
term Frepulsive. Notice that Fattractive,i induces a significant attractive force only between points that are nearby point i in
the original space since it involves the pij term. Finding the embedding coordinates yi is thus equivalent to finding the
equilibrium configuration of particles interacting through the forces in (136).

Below, we list some important properties that one should bear in mind when analyzing t-SNE plots.

• t-SNE can rotate data. The KL divergence is invariant under rotations in the latent space, since it only depends on the
distance between points. For this reason, t-SNE plots that are rotations of each other should be considered equivalent.

15 It does not explicitly parametrize feature extraction required to compute the embedding coordinates. Thus it cannot be applied to find the
coordinate of new data points.
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Fig. 52. Illustration of the t-SNE embedding. xi points correspond to the original high-dimensional points while the yi points are the corresponding
low-dimensional map points produced by t-SNE. Here we consider two points, x1, x2, that are respectively ‘‘close’’ and ‘‘far’’ from x0. The high-
dimensional Gaussian (short-tail) distribution p(x) of x0’s neighbors is shown in blue. The low-dimensional Cauchy (fat-tail) distribution q(y) of x0’s
neighbors is shown in red. The map point yi , is obtained by minimizing the difference |q(y) � p(xi)| (similar to minimizing the KL divergence). We
see that point x1 is mapped to short distances |y1 � y0|. In contrast, far-away points such as x2 are mapped to relatively large distances |y2 � y0|.

• t-SNE results are stochastic. In applying gradient descent the solution will depend on the initial seed. Thus, the map
obtained may vary depending on the seed used and different t-SNE runs will give slightly different results.

• t-SNE generally preserves short distance information. As a rule of thumb, one should expect that nearby points on the
t-SNE map are also closeby in the original space, i.e. t-SNE tends to preserve ordination (but not actual distances).
For a pictorial explanation of this, we refer the reader to Fig. 52.

• Scales are deformed in t-SNE. Since a scale-free distribution is used in the latent space, one should not put too much
emphasis on the meaning of the size of any clusters observed in the latent space.

• t-SNE is computationally intensive. Finally, a direct implementation of t-SNE has an algorithmic complexity of O(N2)
which is only applicable to small to medium datasets. Improved scaling of the form O(N logN) can be achieved
at the cost of approximating Eq. (135) by using the Barnes–Hut method (Van Der Maaten, 2014) for N-body
simulations (Barnes and Hut, 1986). More recently extremely efficient t-SNE implementation making use of fast
Fourier transforms for kernel summations in (136) have been made available on https://github.com/KlugerLab/FIt-
SNE (Linderman et al., 2017).

As an illustration, in Fig. 53 we applied t-SNE to a Gaussian mixture model consisting of thirty Gaussians, whose means
are uniformly distributed in forty-dimensional space. We compared the results to a random two-dimensional projection
and PCA. It is clear that unlike more naïve dimensional reduction techniques, both PCA and t-SNE can identify the presence
of well-formed clusters. The t-SNE visualization cleanly separates all the clusters while certain clusters blend together in
the PCA plot. This is a direct consequence of the fact that t-SNE keeps nearby points close together while repelling points
that are far apart.

Fig. 54 shows t-SNE and PCA plots for the MNIST dataset of ten handwritten numerical digits (0–9). It is clear that the
non-linear nature of t-SNE makes it much better at capturing and visualizing the complicated correlations between digits,
compared to PCA.

13. Clustering

In this section, we continue our discussion of unsupervised learning methods. Unsupervised learning is concerned
with discovering structure in unlabeled data (for instance learning local structures for data visualization, see Section 12).
The lack of labels make unsupervised learning much more difficult and subtle than its supervised counterpart. What is
somewhat surprising is that even without labels it is still possible to uncover and exploit the hidden structure in the data.
Perhaps, the simplest example of unsupervised learning is clustering. The aim of clustering is to group unlabeled data into
clusters according to some similarity or distance measure. Informally, a cluster is thought of as a set of points sharing
some pattern or structure.

Clustering finds many applications throughout data mining (Larsen and Aone, 1999), data compression and signal
processing (Gersho and Gray, 2012; MacKay, 2003). Clustering can be used to identify coarse features or high level
structures in an unlabeled dataset. The technique also finds many applications in physical sciences, ranging from detecting
celestial emission sources in astronomical surveys (Sander et al., 1998) to inferring groups of genes and proteins with
similar functions in biology (Eisen et al., 1998), and building entanglement classifiers (Lu et al., 2017). Clustering is perhaps
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and Saul, 2000) have been proposed and to address this class of problems. These techniques are generally good at
preserving local structures in the data but typically fail to capture structures at the larger scale such as the clusters in
which the data is organized (Maaten and Hinton, 2008).

Recently, t-stochastic neighbor embedding (t-SNE) has emerged as one of the go-to methods for visualizing high-
dimensional data. It has been shown to offer insightful visualization for many benchmark high-dimensional datasets
(Maaten and Hinton, 2008). t-SNE is a non-parametric15 method that constructs non-linear embeddings. Each high-
dimensional training point is mapped to low-dimensional embedding coordinates, which are optimized in a way to
preserve the local structure in the data.

When used appropriately, t-SNE is a powerful technique for unraveling the hidden structure of high-dimensional
datasets while at the same time preserving locality. In physics, t-SNE has recently been used to reduce the dimensionality
and classify spin configurations, generated with the help of Monte Carlo simulations, for the Ising (Carrasquilla and Melko,
2017) and Fermi–Hubbard models at finite temperatures (Ch’ng et al., 2017). It was also applied to study clustering
transitions in glass-like problems in the context of quantum control (Day et al., 2019).

The idea of stochastic neighbor embedding is to associate a probability distribution to the neighborhood of each data
(note x 2 Rp, p is the number of features):

pi|j =
exp(�||xi � xj||2/2� 2

i )P
k6=i exp(�||xi � xk||2/2� 2

i )
, (132)

where pi|j can be interpreted as the likelihood that xj is xi’s neighbor (thus we take pi|i = 0). �i are free bandwidth
parameters that are usually determined by fixing the local entropy H(pi) of each data point:

H(pi) ⌘ �

X

j

pj|i log2 pj|i. (133)

The local entropy is then set to equal a constant across all data points ⌃ = 2H(pi), where ⌃ is called the perplexity. The
perplexity constraint determines �i 8 i and implies that points in regions of high-density will have smaller �i.

Using Gaussian likelihoods in pi|j implies that only points that are nearby xi contribute to its probability distribution.
While this ensures that the similarity for nearby points is well represented, this can be a problem for points that are far
away from xi (i.e. outliers): they have exponentially vanishing contributions to the distribution, which in turn means that
their embedding coordinates are ambiguous (Maaten and Hinton, 2008). One way around this is to define a symmetrized
distribution pij ⌘ (pi|j + pj|i)/(2N). This guarantees that

P
j pij > 1/(2N) for all data points xi, resulting in each data point

xi making a significant contribution to the cost function to be defined below.
t-SNE constructs a similar probability distribution qij in a low dimensional latent space (with coordinates Y = {yi}, yi 2

Rp0 , where p0 < p is the dimension of the latent space):

qij =
(1 + ||yi � yj||2)�1

P
k6=i(1 + ||yi � yk||2)�1 . (134)

The crucial point to note is that qij is chosen to be a long tail distribution. This preserves short distance information
(relative neighborhoods) while strongly repelling two points that are far apart in the original space (see Fig. 52). In order
to find the latent space coordinates yi, t-SNE minimizes the Kullback–Leibler divergence between qij and pij:

C(Y ) = DKL(p k q) ⌘

X

ij

pij log
✓
pij
qij

◆
. (135)

This minimization is done via gradient descent (see Section 4). We can gain further insights on what the embedding
cost-function C is capturing by computing the gradient of (135) with respect to yi explicitly:

@yiC =

X

j6=i

4pijqijZi(yi � yj) �

X

j6=i

4q2ijZi(yi � yj),

= Fattractive,i � Frepulsive,i, (136)

where Zi = 1/(
P

k6=i(1+||yk�yi||2)�1). We have separated the gradient of point yi into an attractive Fattractive and repulsive
term Frepulsive. Notice that Fattractive,i induces a significant attractive force only between points that are nearby point i in
the original space since it involves the pij term. Finding the embedding coordinates yi is thus equivalent to finding the
equilibrium configuration of particles interacting through the forces in (136).

Below, we list some important properties that one should bear in mind when analyzing t-SNE plots.

• t-SNE can rotate data. The KL divergence is invariant under rotations in the latent space, since it only depends on the
distance between points. For this reason, t-SNE plots that are rotations of each other should be considered equivalent.

15 It does not explicitly parametrize feature extraction required to compute the embedding coordinates. Thus it cannot be applied to find the
coordinate of new data points.
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This minimization is done via gradient descent (see Section 4). We can gain further insights on what the embedding
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Properties of t-SNE

• Can rotate data: KL divergence is invariant under rotations in 
latent space. 


• Results are stochastic: will depend on initial seed for gradient 
descent. 


• Generally preserves short-distance information (preserves 
ordination but not actual distance between points).


• Deforms scales (not too much emphasis on size of clusters). 


• Computationally expensive with a  scaling (can be 
improved to  using the Barnes-Hut method. 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Fig. 53. Different visualizations of a Gaussian mixture formed of K = 30 mixtures in a D = 40 dimensional space. The Gaussians have the same
covariance but have means drawn uniformly at random in the space [�10, 10]40. (a) Plot of the first two coordinates. The labels of the different
Gaussian are indicated by the different colors. Note that in a realistic setting, label information is of course not available, thus making it very hard to
distinguish the different clusters. (b) Random projection of the data onto a 2 dimensional space. (c) Projection onto the first 2 principal components.
Only a small fraction of the variance is explained by those components (the ratio is indicated along the axis). (d) t-SNE embedding (perplexity =
60, # iteration = 1000) in a 2 dimensional latent space. t-SNE captures correctly the local structure of the data.

Fig. 54. Visualization of the MNIST handwritten digits training dataset (here N = 60 000). (a) First two principal components. (b) t-SNE applied
with a perplexity of 30, a Barnes–Hut angle of 0.5 and 1000 gradient descent iterations. In order to reduce the noise and speed-up computation, PCA
was first applied to the dataset to project it down to 40 dimensions. We used an open-source implementation to produce the results (Linderman
et al., 2017), see https://github.com/KlugerLab/FIt-SNE.

the simplest way to look for hidden structure in a dataset and for this reason, is among the most widely used and employed
data analysis and machine learning techniques.

The field of clustering is vast and there exists a flurry of clustering methods suited for different purposes. Some
common considerations one has to take into account when choosing a particular method is the distribution of the
clusters (overlapping/noisy clusters vs. well-separated clusters), the geometry of the data (flat vs. non-flat), the cluster
size distribution (multiple sizes vs. uniform sizes), the dimensionality of the data (low vs. high dimensional) and the
computational efficiency of the desired method (small vs. large dataset).

We begin Section 13.1 with a focus on popular practical clustering methods such as K -means clustering, hierarchical
clustering and density clustering. Our goal is to highlight the strength, weaknesses and differences between these
techniques, while laying out some of the theoretical framework required for clustering analysis. There exist many more
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t-SNE on GPU

• t-SNE is a great tool but quickly becomes slow to operate with 
the sklearn implementation. 


• Making t-SNE fast by putting it on the GPU: 
https://medium.com/rapids-ai/tsne-with-gpus-hours-to- 
seconds-9d9c17c941db 




Applications

• How much power is in your dimensions? MNIST: decay of 
power in components of PCA. 


• Interpretability of first component(s): 2D Ising (magnetization) 


• Visualize which variables your neural network is using: apply 
PCA (or other visualization methods) to different layers. 
Remember, deeper layers use more abstract variables. 


• Disclaimer: this is a subset of visualizing techniques. If you face 
a visualization problem which cannot be dealt with with these 
methods, take a more detailed look on available algorithms. 




Clustering

• Think of it as a simple way to look for hidden structure in high 
dimensions (coarse features or high-level structures in unlabelled data). 

• Points to take into account when choosing a particular method: 

• Distribution of clusters (overlapping/noisy clusters vs. well-separated 
clusters)

• Geometry of the data (flat vs. non-flat)

• Cluster size distribution (multiple vs. uniform sizes) 

• Dimensionality of the data (low-dimensional vs. high-dimensional) 

• Computational efficiency of desired method 



K-means Clustering

• Divide training set into  different clusters of data points which are 
near each-other. 

• Consider a set of  unlabeled data points  where .

•  cluster centers called the cluster means:  with .

• Minimize the cost:

• One-hot encoding:  if cluster  and  otherwise;

• Find the best cluster means (center of mass) such that variance 
(moment of inertia) is minimized.

K

N {xn}N
n=1 xn ∈ ℝp

K {μk}K
k=1 μk ∈ ℝp

rnk = 1 xn ∈ k 0
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Fig. 55. K -means with K = 3 applied to an artificial two-dimensional dataset. The cluster means at each iteration are indicated by cyan star markers.
t indicates the iteration number and C the value of the objective function. (a) The algorithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)–(c) For well separated clusters, the algorithm converges rapidly to the true clusters. (d) The objective
function as a function of the iteration. C converges after t = 18 iterations for this choice of random seed (for center initialization).

clustering methods beyond those discussed in this section.16 The methods we discuss were chosen for their pedagogical
value and/or their applicability to problems in physics.

In Section 13.2 we discuss Gaussian mixture models and the formulation of clustering through latent variable models.
This section introduces many of the methods we will encounter when discussing other unsupervised learning methods
later in the review. Finally, in Section 13.3 we discuss the problem of clustering in high-dimensional data and possible
ways to tackle this difficult problem. The reader is also urged to experiment with various clustering methods using
Notebook 15.

13.1. Practical clustering methods

Throughout this section we focus on the Euclidean distance as a similarity measure. Other measures may be better
suited for specific problems. We refer the enthusiast reader to (Rokach and Maimon, 2005) for a more in-depth discussion
of the different possible similarity measures.

13.1.1. K-Means
We begin our discussion with K -means clustering since this method is simple to implement and understand, and

covers the core concepts of clustering. Consider a set of N unlabeled observations {xn}Nn=1 where xn 2 Rp and where p is
the number of features. Also consider a set of K cluster centers called the cluster means:

�
µk

 K
k=1, with µk 2 Rp, which

we will compute ‘‘empirically" in the clustering procedure. The cluster means can be thought of as the representatives
of each cluster, to which data points are assigned (see Fig. 55). K -means clustering can be formulated as follows: given a
fixed integer K , find the cluster means {µ} and the data point assignments in order to minimize the following objective
function:

C({x, µ}) =

KX

k=1

NX

n=1

rnk(xn � µk)
2, (137)

where rnk 2 {0, 1} is a binary variable called the assignment. The assignment rnk is 1 if xn is assigned to cluster k and
0 otherwise. Notice that

P
k rnk = 1 8 n and

P
n rnk ⌘ Nk, where Nk the number of points assigned to cluster k. The

minimization of this objective function can be understood as trying to find the best cluster means such that the variance

16 Our complementary Python notebook introduces some of these other methods.
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function as a function of the iteration. C converges after t = 18 iterations for this choice of random seed (for center initialization).

clustering methods beyond those discussed in this section.16 The methods we discuss were chosen for their pedagogical
value and/or their applicability to problems in physics.

In Section 13.2 we discuss Gaussian mixture models and the formulation of clustering through latent variable models.
This section introduces many of the methods we will encounter when discussing other unsupervised learning methods
later in the review. Finally, in Section 13.3 we discuss the problem of clustering in high-dimensional data and possible
ways to tackle this difficult problem. The reader is also urged to experiment with various clustering methods using
Notebook 15.

13.1. Practical clustering methods

Throughout this section we focus on the Euclidean distance as a similarity measure. Other measures may be better
suited for specific problems. We refer the enthusiast reader to (Rokach and Maimon, 2005) for a more in-depth discussion
of the different possible similarity measures.

13.1.1. K-Means
We begin our discussion with K -means clustering since this method is simple to implement and understand, and

covers the core concepts of clustering. Consider a set of N unlabeled observations {xn}Nn=1 where xn 2 Rp and where p is
the number of features. Also consider a set of K cluster centers called the cluster means:

�
µk

 K
k=1, with µk 2 Rp, which

we will compute ‘‘empirically" in the clustering procedure. The cluster means can be thought of as the representatives
of each cluster, to which data points are assigned (see Fig. 55). K -means clustering can be formulated as follows: given a
fixed integer K , find the cluster means {µ} and the data point assignments in order to minimize the following objective
function:

C({x, µ}) =

KX

k=1

NX

n=1

rnk(xn � µk)
2, (137)

where rnk 2 {0, 1} is a binary variable called the assignment. The assignment rnk is 1 if xn is assigned to cluster k and
0 otherwise. Notice that

P
k rnk = 1 8 n and

P
n rnk ⌘ Nk, where Nk the number of points assigned to cluster k. The

minimization of this objective function can be understood as trying to find the best cluster means such that the variance

16 Our complementary Python notebook introduces some of these other methods.
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within each cluster is minimized. In physical terms, C is equivalent to the sum of the moments of inertia of every cluster.
Indeed, as we will see below, the cluster means µk correspond to the centers of mass of their respective cluster.

K-Means algorithm. The K -means algorithm alternates between two steps:

1. Expectation: Given a set of assignments {rnk}, minimize C with respect to µk. Taking a simple derivative and setting
it to zero yields the following update rule:

µk =
1
Nk

X

n

rnkxn. (138)

2. Maximization: Given a set of cluster means
�
µk

 
, find the assignments {rnk} which minimizes C. Clearly, this is

achieved by assigning each data point to their nearest cluster-mean:

rnk =

⇢
1 if k = argmink0 (xn � µk0 )2

0 otherwise
(139)

K -means clustering consists in alternating between these two steps until some convergence criterion is met. Practically,
the algorithm should terminate when the change in the objective function from one iteration to another becomes smaller
than a pre-specified threshold. A simple example of K -means is presented in Fig. 55.

A nice property of the K -means algorithm is that it is guaranteed to converge. To see this, one can verify explicitly
(by taking second-order derivatives) that the expectation step always decreases C. This is also true for the assignment
step. Thus, since C is bounded from below, the two-step iteration of K -means always converges to a local minimum of
C. Since C is generally a non-convex function, in practice one usually needs to run the algorithm with different initial
random cluster center initializations and post-select the best local minimum. A simple implementation of K -means has
an average computational complexity which scales linearly in the size of the dataset (more specifically the complexity is
O(KN) per iteration) and is thus scalable to very large datasets.

As we will see in Section 13.2, K -means is a hard-assignment limit of the Gaussian mixture model where all cluster
variances are assumed to be the same. This highlights a common drawback of K -means: if the true clusters have very
different variances (spreads), K -means can lead to spurious results since the underlying assumption is that the latent
model has uniform variances.

13.1.2. Hierarchical clustering: Agglomerative methods
Agglomerative clustering is a bottom up approach that starts from small initial clusters which are then progressively

merged to form larger clusters. The merging process generates a hierarchy of clusters that can be visualized in the form of
a dendrogram (see Fig. 56). This hierarchy can be useful to analyze the relation between clusters and the subcomponents
of individual clusters. Agglomerative methods are usually specified by defining a distance measure between clusters.17 We
denote the distance between clusters X and Y by d(X, Y ) 2 R. Different choices of distance result in different clustering
algorithms. At each step, the two clusters that are the closest with respect to the distance measure are merged until a
single cluster is left.

Agglomerative clustering algorithm. Agglomerative clustering algorithms can thus be summarized as follows:

1. Initialize each point to its own cluster.
2. Given a set of K clusters X1, X2, . . . , XK , merge clusters until one cluster is left (K = 1):

(1) Find the closest pair of clusters (Xi, Xj): (i, j) = argmin(i0,j0) d(Xi0 , Xj0 )
(2) Merge the pair. Update: K  K � 1

Here we list a few of the most popular distances used in agglomerative methods, often called linkage methods in the
clustering literature.

1. Single-linkage: the distance between clusters i and j is defined as the minimum distance between two elements of
the different clusters

d(Xi, Xj) = min
xi2Xi,xj2Xj

||xi � xj||2. (140)

2. Complete linkage: the distance between clusters i and j is defined as the maximum distance between two elements
of the different clusters.

d(Xi, Xj) = max
xi2Xi,xj2Xj

||xi � xj||2 (141)

17 Note that this measure need not be a metric.
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within each cluster is minimized. In physical terms, C is equivalent to the sum of the moments of inertia of every cluster.
Indeed, as we will see below, the cluster means µk correspond to the centers of mass of their respective cluster.

K-Means algorithm. The K -means algorithm alternates between two steps:

1. Expectation: Given a set of assignments {rnk}, minimize C with respect to µk. Taking a simple derivative and setting
it to zero yields the following update rule:

µk =
1
Nk

X

n

rnkxn. (138)

2. Maximization: Given a set of cluster means
�
µk

 
, find the assignments {rnk} which minimizes C. Clearly, this is

achieved by assigning each data point to their nearest cluster-mean:

rnk =

⇢
1 if k = argmink0 (xn � µk0 )2

0 otherwise
(139)

K -means clustering consists in alternating between these two steps until some convergence criterion is met. Practically,
the algorithm should terminate when the change in the objective function from one iteration to another becomes smaller
than a pre-specified threshold. A simple example of K -means is presented in Fig. 55.

A nice property of the K -means algorithm is that it is guaranteed to converge. To see this, one can verify explicitly
(by taking second-order derivatives) that the expectation step always decreases C. This is also true for the assignment
step. Thus, since C is bounded from below, the two-step iteration of K -means always converges to a local minimum of
C. Since C is generally a non-convex function, in practice one usually needs to run the algorithm with different initial
random cluster center initializations and post-select the best local minimum. A simple implementation of K -means has
an average computational complexity which scales linearly in the size of the dataset (more specifically the complexity is
O(KN) per iteration) and is thus scalable to very large datasets.

As we will see in Section 13.2, K -means is a hard-assignment limit of the Gaussian mixture model where all cluster
variances are assumed to be the same. This highlights a common drawback of K -means: if the true clusters have very
different variances (spreads), K -means can lead to spurious results since the underlying assumption is that the latent
model has uniform variances.

13.1.2. Hierarchical clustering: Agglomerative methods
Agglomerative clustering is a bottom up approach that starts from small initial clusters which are then progressively

merged to form larger clusters. The merging process generates a hierarchy of clusters that can be visualized in the form of
a dendrogram (see Fig. 56). This hierarchy can be useful to analyze the relation between clusters and the subcomponents
of individual clusters. Agglomerative methods are usually specified by defining a distance measure between clusters.17 We
denote the distance between clusters X and Y by d(X, Y ) 2 R. Different choices of distance result in different clustering
algorithms. At each step, the two clusters that are the closest with respect to the distance measure are merged until a
single cluster is left.

Agglomerative clustering algorithm. Agglomerative clustering algorithms can thus be summarized as follows:

1. Initialize each point to its own cluster.
2. Given a set of K clusters X1, X2, . . . , XK , merge clusters until one cluster is left (K = 1):

(1) Find the closest pair of clusters (Xi, Xj): (i, j) = argmin(i0,j0) d(Xi0 , Xj0 )
(2) Merge the pair. Update: K  K � 1

Here we list a few of the most popular distances used in agglomerative methods, often called linkage methods in the
clustering literature.

1. Single-linkage: the distance between clusters i and j is defined as the minimum distance between two elements of
the different clusters

d(Xi, Xj) = min
xi2Xi,xj2Xj

||xi � xj||2. (140)

2. Complete linkage: the distance between clusters i and j is defined as the maximum distance between two elements
of the different clusters.

d(Xi, Xj) = max
xi2Xi,xj2Xj

||xi � xj||2 (141)

17 Note that this measure need not be a metric.
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Fig. 55. K -means with K = 3 applied to an artificial two-dimensional dataset. The cluster means at each iteration are indicated by cyan star markers.
t indicates the iteration number and C the value of the objective function. (a) The algorithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)–(c) For well separated clusters, the algorithm converges rapidly to the true clusters. (d) The objective
function as a function of the iteration. C converges after t = 18 iterations for this choice of random seed (for center initialization).

clustering methods beyond those discussed in this section.16 The methods we discuss were chosen for their pedagogical
value and/or their applicability to problems in physics.

In Section 13.2 we discuss Gaussian mixture models and the formulation of clustering through latent variable models.
This section introduces many of the methods we will encounter when discussing other unsupervised learning methods
later in the review. Finally, in Section 13.3 we discuss the problem of clustering in high-dimensional data and possible
ways to tackle this difficult problem. The reader is also urged to experiment with various clustering methods using
Notebook 15.

13.1. Practical clustering methods

Throughout this section we focus on the Euclidean distance as a similarity measure. Other measures may be better
suited for specific problems. We refer the enthusiast reader to (Rokach and Maimon, 2005) for a more in-depth discussion
of the different possible similarity measures.

13.1.1. K-Means
We begin our discussion with K -means clustering since this method is simple to implement and understand, and

covers the core concepts of clustering. Consider a set of N unlabeled observations {xn}Nn=1 where xn 2 Rp and where p is
the number of features. Also consider a set of K cluster centers called the cluster means:

�
µk

 K
k=1, with µk 2 Rp, which

we will compute ‘‘empirically" in the clustering procedure. The cluster means can be thought of as the representatives
of each cluster, to which data points are assigned (see Fig. 55). K -means clustering can be formulated as follows: given a
fixed integer K , find the cluster means {µ} and the data point assignments in order to minimize the following objective
function:

C({x, µ}) =

KX

k=1

NX

n=1

rnk(xn � µk)
2, (137)

where rnk 2 {0, 1} is a binary variable called the assignment. The assignment rnk is 1 if xn is assigned to cluster k and
0 otherwise. Notice that

P
k rnk = 1 8 n and

P
n rnk ⌘ Nk, where Nk the number of points assigned to cluster k. The

minimization of this objective function can be understood as trying to find the best cluster means such that the variance

16 Our complementary Python notebook introduces some of these other methods.
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Fig. 55. K -means with K = 3 applied to an artificial two-dimensional dataset. The cluster means at each iteration are indicated by cyan star markers.
t indicates the iteration number and C the value of the objective function. (a) The algorithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)–(c) For well separated clusters, the algorithm converges rapidly to the true clusters. (d) The objective
function as a function of the iteration. C converges after t = 18 iterations for this choice of random seed (for center initialization).

clustering methods beyond those discussed in this section.16 The methods we discuss were chosen for their pedagogical
value and/or their applicability to problems in physics.

In Section 13.2 we discuss Gaussian mixture models and the formulation of clustering through latent variable models.
This section introduces many of the methods we will encounter when discussing other unsupervised learning methods
later in the review. Finally, in Section 13.3 we discuss the problem of clustering in high-dimensional data and possible
ways to tackle this difficult problem. The reader is also urged to experiment with various clustering methods using
Notebook 15.

13.1. Practical clustering methods

Throughout this section we focus on the Euclidean distance as a similarity measure. Other measures may be better
suited for specific problems. We refer the enthusiast reader to (Rokach and Maimon, 2005) for a more in-depth discussion
of the different possible similarity measures.

13.1.1. K-Means
We begin our discussion with K -means clustering since this method is simple to implement and understand, and

covers the core concepts of clustering. Consider a set of N unlabeled observations {xn}Nn=1 where xn 2 Rp and where p is
the number of features. Also consider a set of K cluster centers called the cluster means:

�
µk

 K
k=1, with µk 2 Rp, which

we will compute ‘‘empirically" in the clustering procedure. The cluster means can be thought of as the representatives
of each cluster, to which data points are assigned (see Fig. 55). K -means clustering can be formulated as follows: given a
fixed integer K , find the cluster means {µ} and the data point assignments in order to minimize the following objective
function:

C({x, µ}) =

KX

k=1

NX

n=1

rnk(xn � µk)
2, (137)

where rnk 2 {0, 1} is a binary variable called the assignment. The assignment rnk is 1 if xn is assigned to cluster k and
0 otherwise. Notice that

P
k rnk = 1 8 n and

P
n rnk ⌘ Nk, where Nk the number of points assigned to cluster k. The

minimization of this objective function can be understood as trying to find the best cluster means such that the variance

16 Our complementary Python notebook introduces some of these other methods.
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Fig. 56. Hierarchical clustering example with single linkage. (a) The data points are successively grouped as denoted by the colored dotted lines.
(b) Dendrogram representation of the hierarchical decomposition. Each node of the tree represents a cluster. One has to specify a scale cut-off for
the distance measure d(X, Y ) (corresponding to a horizontal cut in the dendrogram) in order to obtain a set of clusters.

3. Average linkage: average distance between points of different clusters

d(Xi, Xj) =
1

|Xi| · |Xj|

X

xi2Xi,xj2Xj

||xi � xj||2 (142)

4. Ward’s linkage: This distance measure is analogous to the K -means method as it seeks to minimize the total inertia.
The distance measure is the ‘‘error squared’’ before and after merging which simplifies to:

d(Xi, Xj) =
|Xi||Xj|

|Xi [ Xj|
(µi � µj)

2, (143)

where µj is the center of cluster j.

A common drawback of hierarchical methods is that they do not scale well: at every step, a distance matrix
between all clusters must be updated/computed. Efficient implementations achieve a typical computational complexity
of O(N2) (Müllner, 2011), making the method suitable for small to medium-size datasets. A simple but major speed-up
for the method is to initialize the clusters with K -means using a large K (but still a small fraction of N) and then proceed
with hierarchical clustering. This has the advantage of preserving the large-scale structure of the hierarchy while making
use of the linear scaling of K -means. In this way, hierarchical clustering may be applied to very large datasets.

13.1.3. Density-based (DB) clustering
Density clustering makes the intuitive assumption that clusters are defined by regions of space with higher density

of data points. Data points that constitute noise or that are outliers are expected to form regions of low density. Density
clustering has the advantage of being able to consider clusters of multiple shapes and sizes while identifying outliers. The
method is also suitable for large-scale applications.

The core assumption of DB clustering is that a relative local density estimation of the data is possible. In other words,
it is possible to order points according to their densities. Density estimates are usually accurate for low-dimensional data
but become unreliable for high-dimensional data due to large sampling noise. Here, for brevity, we confine our discussion
to one of the most widely used density clustering algorithms, DBSCAN. We have also had great success with another
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Fig. 56. Hierarchical clustering example with single linkage. (a) The data points are successively grouped as denoted by the colored dotted lines.
(b) Dendrogram representation of the hierarchical decomposition. Each node of the tree represents a cluster. One has to specify a scale cut-off for
the distance measure d(X, Y ) (corresponding to a horizontal cut in the dendrogram) in order to obtain a set of clusters.

3. Average linkage: average distance between points of different clusters

d(Xi, Xj) =
1

|Xi| · |Xj|

X

xi2Xi,xj2Xj

||xi � xj||2 (142)

4. Ward’s linkage: This distance measure is analogous to the K -means method as it seeks to minimize the total inertia.
The distance measure is the ‘‘error squared’’ before and after merging which simplifies to:

d(Xi, Xj) =
|Xi||Xj|

|Xi [ Xj|
(µi � µj)

2, (143)

where µj is the center of cluster j.

A common drawback of hierarchical methods is that they do not scale well: at every step, a distance matrix
between all clusters must be updated/computed. Efficient implementations achieve a typical computational complexity
of O(N2) (Müllner, 2011), making the method suitable for small to medium-size datasets. A simple but major speed-up
for the method is to initialize the clusters with K -means using a large K (but still a small fraction of N) and then proceed
with hierarchical clustering. This has the advantage of preserving the large-scale structure of the hierarchy while making
use of the linear scaling of K -means. In this way, hierarchical clustering may be applied to very large datasets.

13.1.3. Density-based (DB) clustering
Density clustering makes the intuitive assumption that clusters are defined by regions of space with higher density

of data points. Data points that constitute noise or that are outliers are expected to form regions of low density. Density
clustering has the advantage of being able to consider clusters of multiple shapes and sizes while identifying outliers. The
method is also suitable for large-scale applications.

The core assumption of DB clustering is that a relative local density estimation of the data is possible. In other words,
it is possible to order points according to their densities. Density estimates are usually accurate for low-dimensional data
but become unreliable for high-dimensional data due to large sampling noise. Here, for brevity, we confine our discussion
to one of the most widely used density clustering algorithms, DBSCAN. We have also had great success with another
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within each cluster is minimized. In physical terms, C is equivalent to the sum of the moments of inertia of every cluster.
Indeed, as we will see below, the cluster means µk correspond to the centers of mass of their respective cluster.

K-Means algorithm. The K -means algorithm alternates between two steps:

1. Expectation: Given a set of assignments {rnk}, minimize C with respect to µk. Taking a simple derivative and setting
it to zero yields the following update rule:

µk =
1
Nk

X

n

rnkxn. (138)

2. Maximization: Given a set of cluster means
�
µk

 
, find the assignments {rnk} which minimizes C. Clearly, this is

achieved by assigning each data point to their nearest cluster-mean:

rnk =

⇢
1 if k = argmink0 (xn � µk0 )2

0 otherwise
(139)

K -means clustering consists in alternating between these two steps until some convergence criterion is met. Practically,
the algorithm should terminate when the change in the objective function from one iteration to another becomes smaller
than a pre-specified threshold. A simple example of K -means is presented in Fig. 55.

A nice property of the K -means algorithm is that it is guaranteed to converge. To see this, one can verify explicitly
(by taking second-order derivatives) that the expectation step always decreases C. This is also true for the assignment
step. Thus, since C is bounded from below, the two-step iteration of K -means always converges to a local minimum of
C. Since C is generally a non-convex function, in practice one usually needs to run the algorithm with different initial
random cluster center initializations and post-select the best local minimum. A simple implementation of K -means has
an average computational complexity which scales linearly in the size of the dataset (more specifically the complexity is
O(KN) per iteration) and is thus scalable to very large datasets.

As we will see in Section 13.2, K -means is a hard-assignment limit of the Gaussian mixture model where all cluster
variances are assumed to be the same. This highlights a common drawback of K -means: if the true clusters have very
different variances (spreads), K -means can lead to spurious results since the underlying assumption is that the latent
model has uniform variances.

13.1.2. Hierarchical clustering: Agglomerative methods
Agglomerative clustering is a bottom up approach that starts from small initial clusters which are then progressively

merged to form larger clusters. The merging process generates a hierarchy of clusters that can be visualized in the form of
a dendrogram (see Fig. 56). This hierarchy can be useful to analyze the relation between clusters and the subcomponents
of individual clusters. Agglomerative methods are usually specified by defining a distance measure between clusters.17 We
denote the distance between clusters X and Y by d(X, Y ) 2 R. Different choices of distance result in different clustering
algorithms. At each step, the two clusters that are the closest with respect to the distance measure are merged until a
single cluster is left.

Agglomerative clustering algorithm. Agglomerative clustering algorithms can thus be summarized as follows:

1. Initialize each point to its own cluster.
2. Given a set of K clusters X1, X2, . . . , XK , merge clusters until one cluster is left (K = 1):

(1) Find the closest pair of clusters (Xi, Xj): (i, j) = argmin(i0,j0) d(Xi0 , Xj0 )
(2) Merge the pair. Update: K  K � 1

Here we list a few of the most popular distances used in agglomerative methods, often called linkage methods in the
clustering literature.

1. Single-linkage: the distance between clusters i and j is defined as the minimum distance between two elements of
the different clusters

d(Xi, Xj) = min
xi2Xi,xj2Xj

||xi � xj||2. (140)

2. Complete linkage: the distance between clusters i and j is defined as the maximum distance between two elements
of the different clusters.

d(Xi, Xj) = max
xi2Xi,xj2Xj

||xi � xj||2 (141)

17 Note that this measure need not be a metric.
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Fig. 56. Hierarchical clustering example with single linkage. (a) The data points are successively grouped as denoted by the colored dotted lines.
(b) Dendrogram representation of the hierarchical decomposition. Each node of the tree represents a cluster. One has to specify a scale cut-off for
the distance measure d(X, Y ) (corresponding to a horizontal cut in the dendrogram) in order to obtain a set of clusters.

3. Average linkage: average distance between points of different clusters

d(Xi, Xj) =
1

|Xi| · |Xj|

X

xi2Xi,xj2Xj

||xi � xj||2 (142)

4. Ward’s linkage: This distance measure is analogous to the K -means method as it seeks to minimize the total inertia.
The distance measure is the ‘‘error squared’’ before and after merging which simplifies to:

d(Xi, Xj) =
|Xi||Xj|

|Xi [ Xj|
(µi � µj)

2, (143)

where µj is the center of cluster j.

A common drawback of hierarchical methods is that they do not scale well: at every step, a distance matrix
between all clusters must be updated/computed. Efficient implementations achieve a typical computational complexity
of O(N2) (Müllner, 2011), making the method suitable for small to medium-size datasets. A simple but major speed-up
for the method is to initialize the clusters with K -means using a large K (but still a small fraction of N) and then proceed
with hierarchical clustering. This has the advantage of preserving the large-scale structure of the hierarchy while making
use of the linear scaling of K -means. In this way, hierarchical clustering may be applied to very large datasets.

13.1.3. Density-based (DB) clustering
Density clustering makes the intuitive assumption that clusters are defined by regions of space with higher density

of data points. Data points that constitute noise or that are outliers are expected to form regions of low density. Density
clustering has the advantage of being able to consider clusters of multiple shapes and sizes while identifying outliers. The
method is also suitable for large-scale applications.

The core assumption of DB clustering is that a relative local density estimation of the data is possible. In other words,
it is possible to order points according to their densities. Density estimates are usually accurate for low-dimensional data
but become unreliable for high-dimensional data due to large sampling noise. Here, for brevity, we confine our discussion
to one of the most widely used density clustering algorithms, DBSCAN. We have also had great success with another
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within each cluster is minimized. In physical terms, C is equivalent to the sum of the moments of inertia of every cluster.
Indeed, as we will see below, the cluster means µk correspond to the centers of mass of their respective cluster.

K-Means algorithm. The K -means algorithm alternates between two steps:

1. Expectation: Given a set of assignments {rnk}, minimize C with respect to µk. Taking a simple derivative and setting
it to zero yields the following update rule:

µk =
1
Nk

X

n

rnkxn. (138)

2. Maximization: Given a set of cluster means
�
µk

 
, find the assignments {rnk} which minimizes C. Clearly, this is

achieved by assigning each data point to their nearest cluster-mean:

rnk =

⇢
1 if k = argmink0 (xn � µk0 )2

0 otherwise
(139)

K -means clustering consists in alternating between these two steps until some convergence criterion is met. Practically,
the algorithm should terminate when the change in the objective function from one iteration to another becomes smaller
than a pre-specified threshold. A simple example of K -means is presented in Fig. 55.

A nice property of the K -means algorithm is that it is guaranteed to converge. To see this, one can verify explicitly
(by taking second-order derivatives) that the expectation step always decreases C. This is also true for the assignment
step. Thus, since C is bounded from below, the two-step iteration of K -means always converges to a local minimum of
C. Since C is generally a non-convex function, in practice one usually needs to run the algorithm with different initial
random cluster center initializations and post-select the best local minimum. A simple implementation of K -means has
an average computational complexity which scales linearly in the size of the dataset (more specifically the complexity is
O(KN) per iteration) and is thus scalable to very large datasets.

As we will see in Section 13.2, K -means is a hard-assignment limit of the Gaussian mixture model where all cluster
variances are assumed to be the same. This highlights a common drawback of K -means: if the true clusters have very
different variances (spreads), K -means can lead to spurious results since the underlying assumption is that the latent
model has uniform variances.

13.1.2. Hierarchical clustering: Agglomerative methods
Agglomerative clustering is a bottom up approach that starts from small initial clusters which are then progressively

merged to form larger clusters. The merging process generates a hierarchy of clusters that can be visualized in the form of
a dendrogram (see Fig. 56). This hierarchy can be useful to analyze the relation between clusters and the subcomponents
of individual clusters. Agglomerative methods are usually specified by defining a distance measure between clusters.17 We
denote the distance between clusters X and Y by d(X, Y ) 2 R. Different choices of distance result in different clustering
algorithms. At each step, the two clusters that are the closest with respect to the distance measure are merged until a
single cluster is left.

Agglomerative clustering algorithm. Agglomerative clustering algorithms can thus be summarized as follows:

1. Initialize each point to its own cluster.
2. Given a set of K clusters X1, X2, . . . , XK , merge clusters until one cluster is left (K = 1):

(1) Find the closest pair of clusters (Xi, Xj): (i, j) = argmin(i0,j0) d(Xi0 , Xj0 )
(2) Merge the pair. Update: K  K � 1

Here we list a few of the most popular distances used in agglomerative methods, often called linkage methods in the
clustering literature.

1. Single-linkage: the distance between clusters i and j is defined as the minimum distance between two elements of
the different clusters

d(Xi, Xj) = min
xi2Xi,xj2Xj

||xi � xj||2. (140)

2. Complete linkage: the distance between clusters i and j is defined as the maximum distance between two elements
of the different clusters.

d(Xi, Xj) = max
xi2Xi,xj2Xj

||xi � xj||2 (141)

17 Note that this measure need not be a metric.
Ward

linkage
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Fig. 56. Hierarchical clustering example with single linkage. (a) The data points are successively grouped as denoted by the colored dotted lines.
(b) Dendrogram representation of the hierarchical decomposition. Each node of the tree represents a cluster. One has to specify a scale cut-off for
the distance measure d(X, Y ) (corresponding to a horizontal cut in the dendrogram) in order to obtain a set of clusters.

3. Average linkage: average distance between points of different clusters

d(Xi, Xj) =
1

|Xi| · |Xj|

X

xi2Xi,xj2Xj

||xi � xj||2 (142)

4. Ward’s linkage: This distance measure is analogous to the K -means method as it seeks to minimize the total inertia.
The distance measure is the ‘‘error squared’’ before and after merging which simplifies to:

d(Xi, Xj) =
|Xi||Xj|

|Xi [ Xj|
(µi � µj)

2, (143)

where µj is the center of cluster j.

A common drawback of hierarchical methods is that they do not scale well: at every step, a distance matrix
between all clusters must be updated/computed. Efficient implementations achieve a typical computational complexity
of O(N2) (Müllner, 2011), making the method suitable for small to medium-size datasets. A simple but major speed-up
for the method is to initialize the clusters with K -means using a large K (but still a small fraction of N) and then proceed
with hierarchical clustering. This has the advantage of preserving the large-scale structure of the hierarchy while making
use of the linear scaling of K -means. In this way, hierarchical clustering may be applied to very large datasets.

13.1.3. Density-based (DB) clustering
Density clustering makes the intuitive assumption that clusters are defined by regions of space with higher density

of data points. Data points that constitute noise or that are outliers are expected to form regions of low density. Density
clustering has the advantage of being able to consider clusters of multiple shapes and sizes while identifying outliers. The
method is also suitable for large-scale applications.

The core assumption of DB clustering is that a relative local density estimation of the data is possible. In other words,
it is possible to order points according to their densities. Density estimates are usually accurate for low-dimensional data
but become unreliable for high-dimensional data due to large sampling noise. Here, for brevity, we confine our discussion
to one of the most widely used density clustering algorithms, DBSCAN. We have also had great success with another



Density-based (DB) Clustering

• Clusters are defined by regions with high density of data points.

• Noise or outliers are expected to form regions of low density.

• Unlike a distance-based approach, DB clustering considers 
clusters of multiple shapes and sizes while identifying outliers.

• Assumption: relative local density estimation is possible 
(normally inaccessible for high-dimensional data due to large 
sampling noise). 

• Widely used algorithms: DBSCAN, DB Clustering, etc. See: 
https://pypi.org/project/fdc/



DBScan Algorithm

• Density-based spatial clustering of application with noise (Ester et 
al, 1996).

• Crude estimate of local density is the -neighborhood of point :

•  is a core-point if at least minPts are in its -neighborhood. A 
point  is density-reachable if it’s in a core-point’s -neighborhood. 

•

ϵ xn

xn ϵ
xi ϵ
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Fig. 57. (a) Illustration of DBSCAN algorithm with minPts= 4. Two "-neighborhoods are represented as dashed circles of radius ". Red points are the
core points and blue points are density-reachable point that are not core points. Outliers are gray colored. (b) Application of DBSCAN (minPts=40)
to a noisy dataset with two non-convex clusters. Density profile is shown for clarity. Outliers are indicated by black crosses.

recently introduced variant of DB clustering (Rodriguez and Laio, 2014) that is similar in spirit which the reader is urged
to consult. One of the authors (A. D.) has also created a Python package, https://pypi.org/project/fdc/, which makes use
of accurate density estimates via kernel methods combined with agglomerative clustering to produce fast and accurate
density clustering (see also GitHub repository).

DBSCAN algorithm. Here we describe the most prominent DB clustering algorithm: DBSCAN, or density-based spatial
clustering of applications with noise (Ester et al., 1996). Consider once again a set of N data points X ⌘ {xn}Nn=1.

We start by defining the "-neighborhood of point xn as follows:

N"(xn) = {x 2 X |d(x, xn) < "} . (144)

N"(xn) are the data points that are at a distance smaller than " from xn. As before, we consider d(·, ·) to be the Euclidean
metric (which yields spherical neighborhoods, see Fig. 57) but other metrics may be better suited depending on the specific
data. N"(xn) can be seen as a crude estimate of local density. xn is considered to be a core-point if at least minPts are in
its "-neighborhood. minPts is a free parameter of the algorithm that sets the scale of the size of the smallest cluster one
should expect. Finally, a point xi is said to be density-reachable if it is in the "-neighborhood of a core-point. From these
definitions, the algorithm can be simply formulated (see also Fig. 57):

! Until all points in X have been visited; do

� Pick a point xi that has not been visited
� Mark xi as a visited point
� If xi is a core point; then

· Find the set C of all points that are density reachable from xi.
· C now forms a cluster. Mark all points within that cluster as being visited.
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Fig. 58. (a) Application of Gaussian mixture modeling to the Ising dataset. The normalized histogram corresponds to the first principal component
distribution of the dataset (or equivalently the magnetization in this case). The 1D data is fitted with a K = 3-component Gaussian mixture. The
likehood of the fitted Gaussian mixture is represented in red and is obtained via the expectation–maximization algorithm (b) The Gaussian mixture
model can be used to compute posterior probability (responsibilities), i.e. the probability of being in one of the phases. Note that the point where
� (1) = � (2) = � (3) can be interpreted as the critical point. Indeed the crossing occurs at T ⇡ 2.26.

! Return the cluster assignments C1, . . . , Ck, with k the number of clusters. Points that have not been assigned to a
cluster are considered noise or outliers.

Note that DBSCAN does not require the user to specify the number of clusters but only " and minPts. While, it is common
to heuristically fix these parameters, methods such as cross-validation can be used for their determination. Finally, we
note that DBSCAN is very efficient since efficient implementations have a computational cost of O(N logN).

13.2. Clustering and latent variables via the Gaussian mixture models

In the previous section, we introduced several practical methods for clustering. In this section, we will approach
clustering from a more abstract vantage point, and in the process, introduce many of the core ideas underlying
unsupervised learning. A central concept in many unsupervised learning techniques is the idea of a latent or hidden
variable. Even though latent variables are not directly observable, they still influence the visible structure of the data.
For example, in the context of clustering we can think of the cluster identity of each datapoint (i.e. which cluster does a
datapoint belong to) as a latent variable. And even though we cannot see the cluster label explicitly, we know that points
in the same cluster tend to be closer together. The latent variables in our data (cluster identity) are a way of representing
and abstracting the correlations between datapoints.

In this language, we can think of clustering as an algorithm to learn the most probable value of a latent variable
(cluster identity) associated with each datapoint. Calculating this latent variable requires additional assumptions about the
structure of our dataset. Like all unsupervised learning algorithms, in clustering we must make an assumption about the
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Fig. 57. (a) Illustration of DBSCAN algorithm with minPts= 4. Two "-neighborhoods are represented as dashed circles of radius ". Red points are the
core points and blue points are density-reachable point that are not core points. Outliers are gray colored. (b) Application of DBSCAN (minPts=40)
to a noisy dataset with two non-convex clusters. Density profile is shown for clarity. Outliers are indicated by black crosses.

recently introduced variant of DB clustering (Rodriguez and Laio, 2014) that is similar in spirit which the reader is urged
to consult. One of the authors (A. D.) has also created a Python package, https://pypi.org/project/fdc/, which makes use
of accurate density estimates via kernel methods combined with agglomerative clustering to produce fast and accurate
density clustering (see also GitHub repository).

DBSCAN algorithm. Here we describe the most prominent DB clustering algorithm: DBSCAN, or density-based spatial
clustering of applications with noise (Ester et al., 1996). Consider once again a set of N data points X ⌘ {xn}Nn=1.

We start by defining the "-neighborhood of point xn as follows:

N"(xn) = {x 2 X |d(x, xn) < "} . (144)

N"(xn) are the data points that are at a distance smaller than " from xn. As before, we consider d(·, ·) to be the Euclidean
metric (which yields spherical neighborhoods, see Fig. 57) but other metrics may be better suited depending on the specific
data. N"(xn) can be seen as a crude estimate of local density. xn is considered to be a core-point if at least minPts are in
its "-neighborhood. minPts is a free parameter of the algorithm that sets the scale of the size of the smallest cluster one
should expect. Finally, a point xi is said to be density-reachable if it is in the "-neighborhood of a core-point. From these
definitions, the algorithm can be simply formulated (see also Fig. 57):

! Until all points in X have been visited; do

� Pick a point xi that has not been visited
� Mark xi as a visited point
� If xi is a core point; then

· Find the set C of all points that are density reachable from xi.
· C now forms a cluster. Mark all points within that cluster as being visited.



DBScan Algorithm

• Do not need to specify # clusters 
but only the hyperparameters  and 
minPts.

• Scalable to large datasets as 
computational cost .

• Note cluster with different shapes 
and sizes.

• Crosses are outliers.

ϵ

∼ 𝒪(N log N)
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recently introduced variant of DB clustering (Rodriguez and Laio, 2014) that is similar in spirit which the reader is urged
to consult. One of the authors (A. D.) has also created a Python package, https://pypi.org/project/fdc/, which makes use
of accurate density estimates via kernel methods combined with agglomerative clustering to produce fast and accurate
density clustering (see also GitHub repository).

DBSCAN algorithm. Here we describe the most prominent DB clustering algorithm: DBSCAN, or density-based spatial
clustering of applications with noise (Ester et al., 1996). Consider once again a set of N data points X ⌘ {xn}Nn=1.

We start by defining the "-neighborhood of point xn as follows:

N"(xn) = {x 2 X |d(x, xn) < "} . (144)

N"(xn) are the data points that are at a distance smaller than " from xn. As before, we consider d(·, ·) to be the Euclidean
metric (which yields spherical neighborhoods, see Fig. 57) but other metrics may be better suited depending on the specific
data. N"(xn) can be seen as a crude estimate of local density. xn is considered to be a core-point if at least minPts are in
its "-neighborhood. minPts is a free parameter of the algorithm that sets the scale of the size of the smallest cluster one
should expect. Finally, a point xi is said to be density-reachable if it is in the "-neighborhood of a core-point. From these
definitions, the algorithm can be simply formulated (see also Fig. 57):

! Until all points in X have been visited; do

� Pick a point xi that has not been visited
� Mark xi as a visited point
� If xi is a core point; then

· Find the set C of all points that are density reachable from xi.
· C now forms a cluster. Mark all points within that cluster as being visited.



Latent Variables
• Central to unsupervised learning is the idea of a latent or hidden 

variable (not directly observable; yet influence visible structure).

• The cluster identify of each datapoint is a latent variable. We cannot 
observe the label directly, but points in the same cluster are “close”.

• In this abstract language, clustering is an algorithm to learn the most 
probably value of a latent variable associated with each datapoint.

• Need to make assumption about the structure of data (common to 
unsupervised learning), e.g., underlying probability distribution from 
which the data was generated — generative model.

• E.g., in clustering, each cluster is characterized by some probability 
distribution (e.g. Gaussian distribution with some mean & variance). 
The latent variable is chosen to minimize some cost function.


