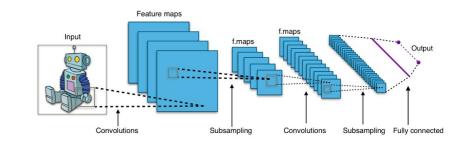
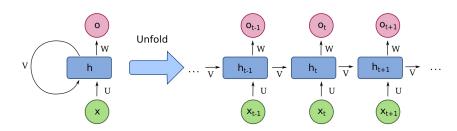

GNNs in Physics 03/05/2024

AI ∩ Universe

A lot of data live on grids.



"I love DL"



- Image: (HxWxC)
- Video: (TxHxWxC)

Time Series (also grids)

- Text: (N)-dim sequence
- Speech: (N)-dim sequence

Images: Wikipedia

How about these:

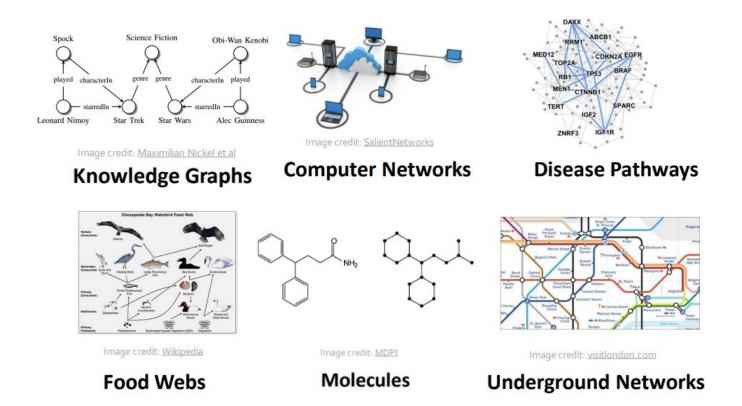


Image credit: Medium

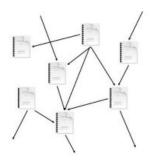

Boundary Desired Section Services Section Services Section Sec

Image credit: Science

Image credit: Lumen Learning

Social Networks

Citation Networks

Economic Networks Communication Networks

Image credit: Missoula Current News

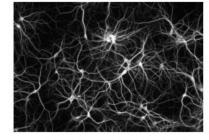
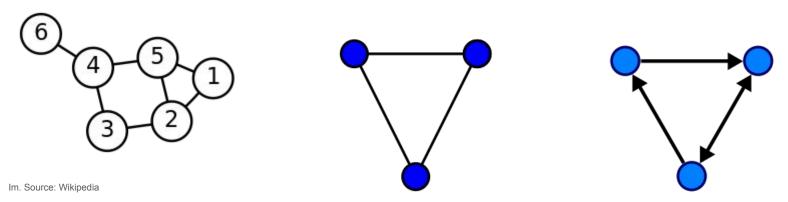


Image credit: The Conversation

Internet


Networks of Neurons

those examples can be represented as graphs!

Data doesn't always have a fixed structure. However, all

What is a Graph?

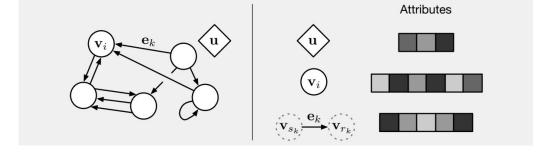
Graph - is a pair (V,E), where V - is a set whose elements are called *vertices* and E is a set of (un)ordered pairs of vertices {v1, v2}, whose elements are called *edges*. (Occasionally, this definition is being modified to include a *general feature* of the graph. In that case, graph is defined as a three-tuple (V,E,u).)

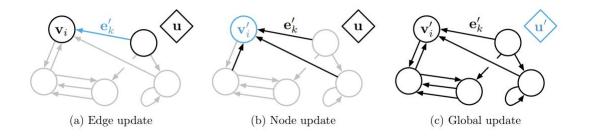
Directed and undirected fully-connected graphs

ML with Graphs

The key objective is to provide a framework to learn (and predict) from graph-represented data.

Examples include:


- node-level prediction (eg: predict a property of a given node (vertex))
- edge-level prediction (predict the connection bw. two given nodes)
- graph classification (predict a general property of a graph)
- graph generation


Message Passing Framework

(Relational inductive biases, deep learning, and graph networks, https://arxiv.org/abs/1806.01261)

Message Passing Graph Neural Nets is a general class of architectures for learning from

graph-represented data.

Algorithm 1 Steps of computation in a full GN block. function GraphNetwork (E, V, \mathbf{u})

for $k \in \{1...N^e\}$ do

 $\mathbf{e}_{k}' \leftarrow \phi^{e}\left(\mathbf{e}_{k}, \mathbf{v}_{r_{k}}, \mathbf{v}_{s_{k}}, \mathbf{u}\right)$ end for

for $i \in \{1 \dots N^n\}$ do

let $E'_i = \{(\mathbf{e}'_k, r_k, s_k)\}_{r_k = i, k = 1:N^e}$

 $\mathbf{\bar{e}}_{i}' \leftarrow \rho^{e \rightarrow v} \left(E_{i}' \right)$

 $\mathbf{v}_i' \leftarrow \phi^v \left(\mathbf{\bar{e}}_i', \mathbf{v}_i, \mathbf{u} \right)$

end for let $V' = \{ \mathbf{v}' \}_{i=1:N^v}$

let $E' = \{(\mathbf{e}'_k, r_k, s_k)\}_{k=1 \cdot N^e}$ $\mathbf{\bar{e}}' \leftarrow \rho^{e \to u} \left(E' \right)$ $\bar{\mathbf{v}}' \leftarrow \rho^{v \to u} (V')$

 $\mathbf{u}' \leftarrow \phi^u \left(\mathbf{\bar{e}}', \mathbf{\bar{v}}', \mathbf{u} \right)$

return (E', V', \mathbf{u}')

end function

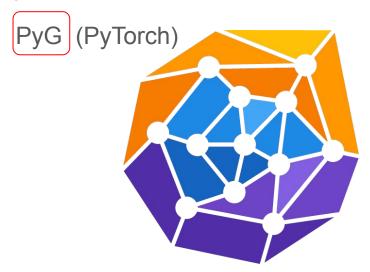
- Functions $\{\phi_a, \phi_a, \phi_a\}$ parametrize messages.
- Permutation-invariant aggregation functions ρ aggregate computed messages to get updated feature embeddings

▷ 6. Compute updated global attribute

▶ 1. Compute updated edge attributes

≥ 2. Aggregate edge attributes per node

▶ 3. Compute updated node attributes


▶ 4. Aggregate edge attributes globally

▷ 5. Aggregate node attributes globally

Practical implementation

tfgnn (TensorFlow)

jraph (Jax)

tensorflow/gnn

1

TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

Drive link