PHY 835: Machine Learning in Physics Lecture 15: Decision Trees & kNN March 12, 2024

Gary Shiu

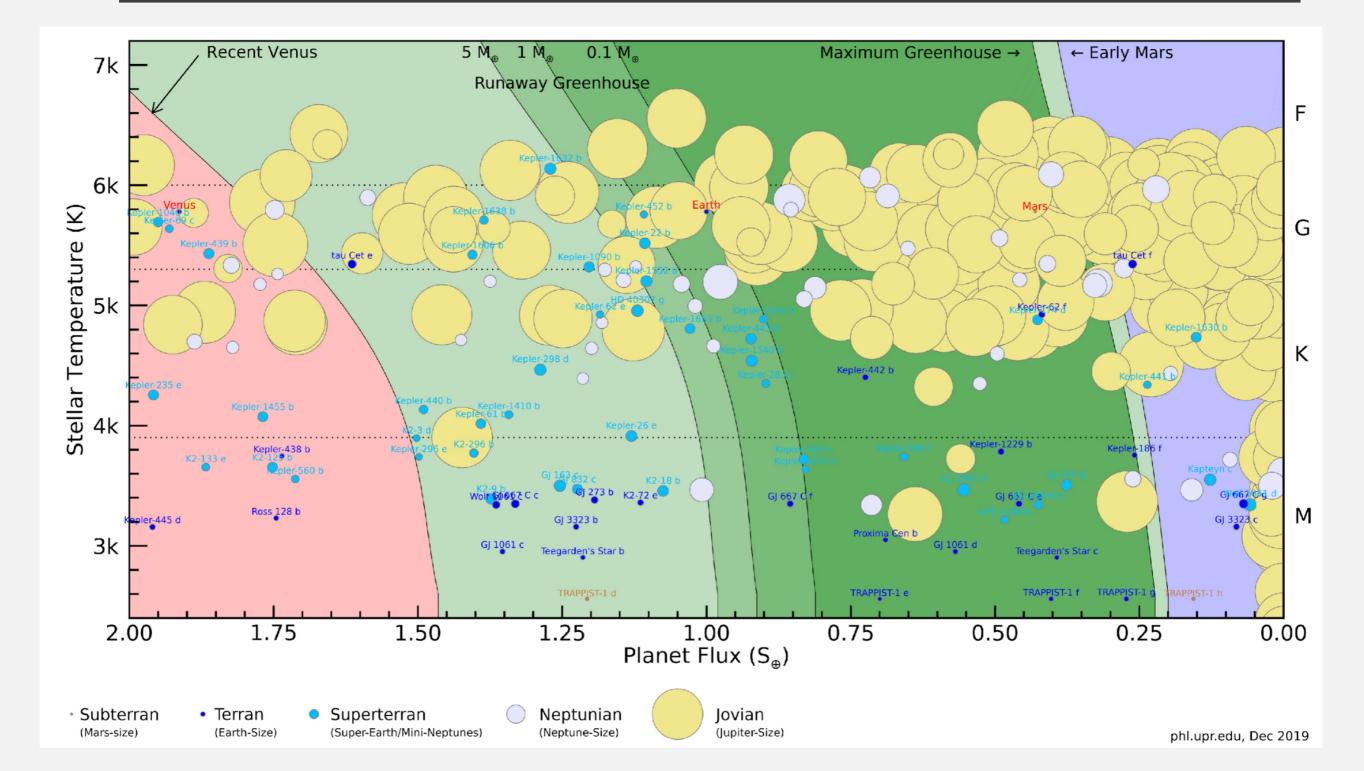
Outline for today

- Many ML models are designed to solve classification or regression problems.
- Simple Classifiers:
 - Decision Trees
 - kNN: Finding neighbors

• Reference: "Machine Learning for Physics and Astronomy" by Viviana Acquaviva, Princeton University Press, Chapter 2.

Hotdog Classifier

DATA FROM THE PLANET HABITABILITY LAB AT ARECIBO OBSERVATORY



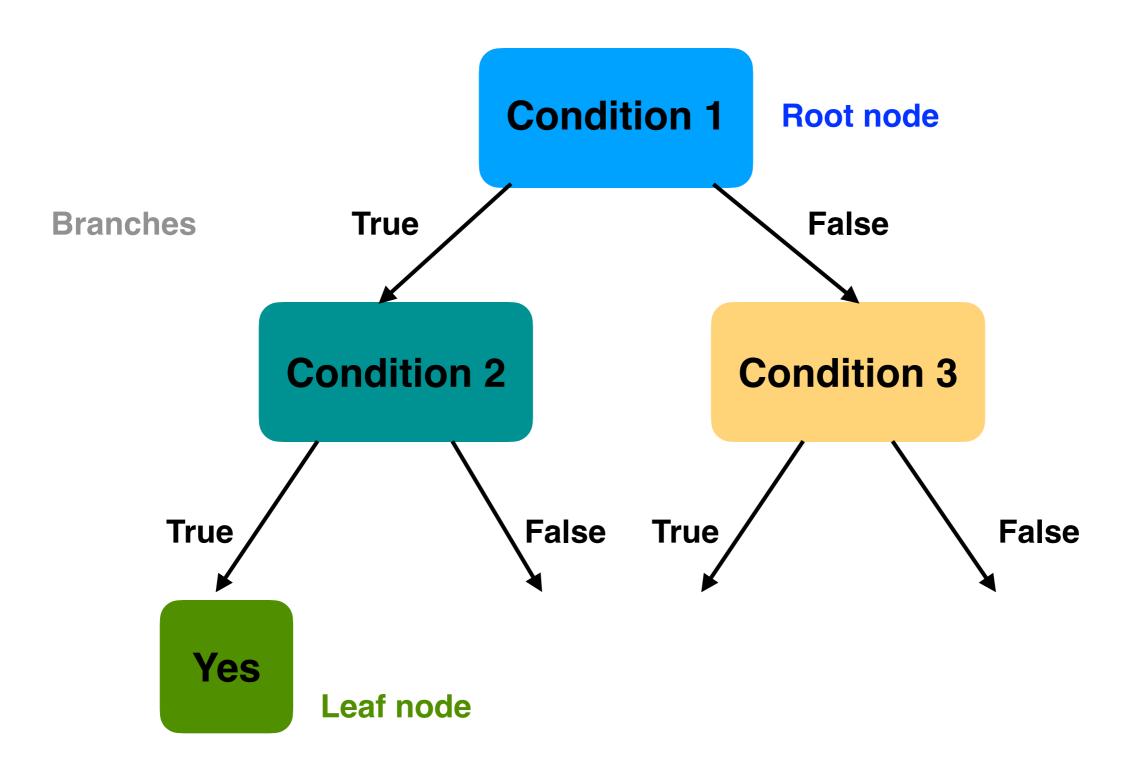
NAME	Stellar Mass (M _☉)	Orbital Period (days)	Distance (AU)	Habitable?
Kepler-736 b	0.86	3.60	0.0437	0
Kepler-636 b	0.85	16.08	0.1180	0
Kepler-887 c	1.19	7.64	0.0804	0
Kepler-442 b	0.61	112.30	0.4093	1
Kepler-772 b	0.98	12.99	0.1074	0
Teegarden's Star b	0.09	4.91	0.0252	1
K2-116 b	0.69	4.66	0.0481	0
GJ 1061 c	0.12	6.69	0.035	1
HD 68402 b	1.12	1103	2.1810	0
Kepler-1544 b	0.81	168.81	0.5571	1
Kepler-296 e	0.5	34.14	0.1782	1
Kepler-705 b	0.53	56.06	0.2319	1
Kepler-445 c	0.18	4.87	0.0317	0
HD 104067 b	0.62	55.81	0.26	
GJ 4276 b	0.41	13.35	0.0876	
Kepler-296 f	0.5	63.34	0.2689	
Kepler-63 b	0.98	9.43	0.0881	
GJ 3293 d	0.42	48.13	0.1953	

Table 2.1: Learning set for the habitable planets problem.

DECISION TREES

- Work by splitting data on different values of features
- Simplest trees are binary trees
- If categorical features, the split would be on yes/no
- If numerical, the split would be on a certain value (e.g. x > 100 or x < 100)

Decision Trees



Decision Trees

- Depth of tree = maximum number of splitting conditions.
- Stop growing the tree when 1) all items on a branch have the same features (values) or 2) other stopping criterion is met.
- Usually have maximum criterion to avoid overfitting.
- At each splitting node, look for features which provide the best splitting condition. How do we quantify best?
- Maximize "information gain" or maximize decrease in impurity. (defined more precisely later)

EXAMPLE: THIS 2-FEATURE DATA SET.

HOW SHOULD WE SPLIT?

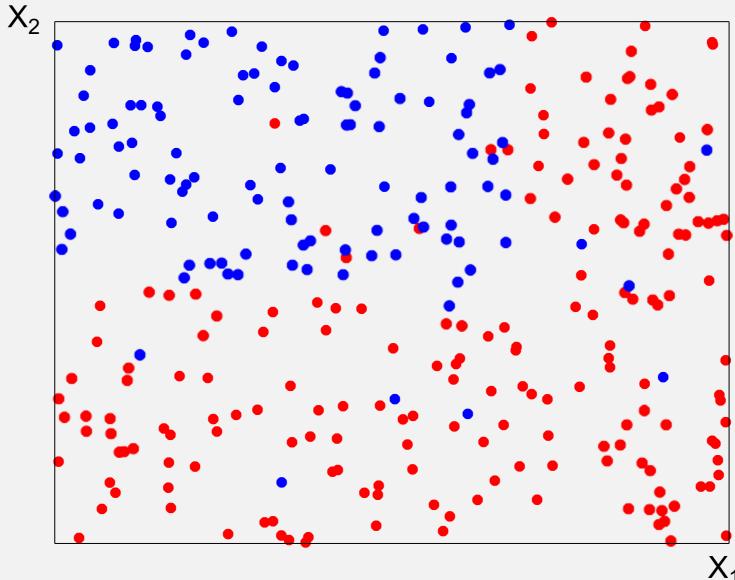


Figure credit: Gilles Louppe

 X_1

EXAMPLE: THIS 2-FEATURE DATA SET.

HOW SHOULD WE SPLIT?

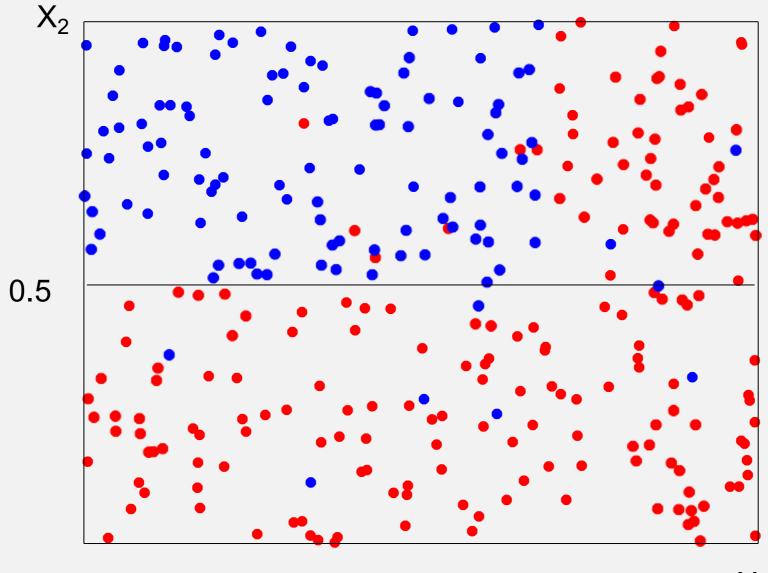


Figure credit: Gilles Louppe

 X_1

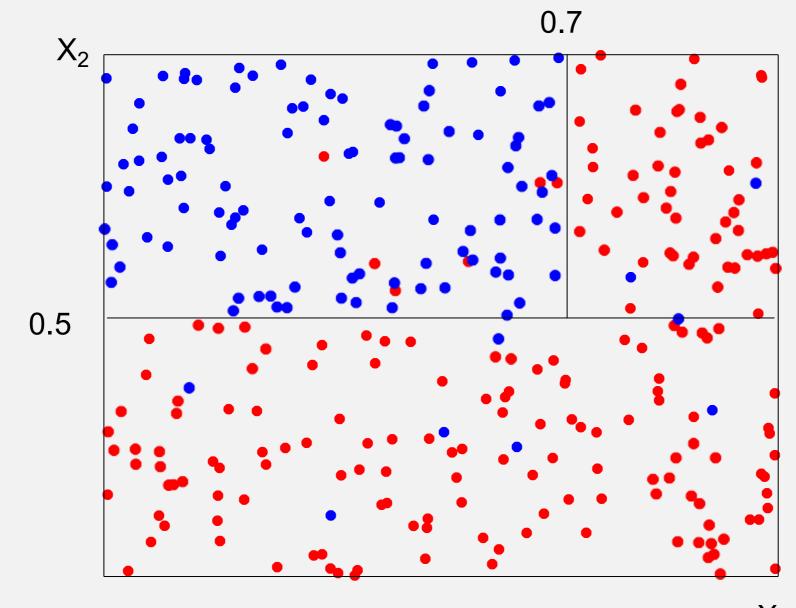
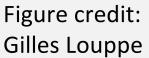


Figure credit: Gilles Louppe

 X_1

NODES (SPLITS AND LEAVES) DEFINE THE DECISION TREE





Important questions:

How do we decide which splits to make, among the many possible ones?

How do we decide whether we should stop?

BUILDING DECISION TREES

Find measure of impurity (e.g. Gini impurity) that we want to minimize.

Find splits that maximize decrease of impurity

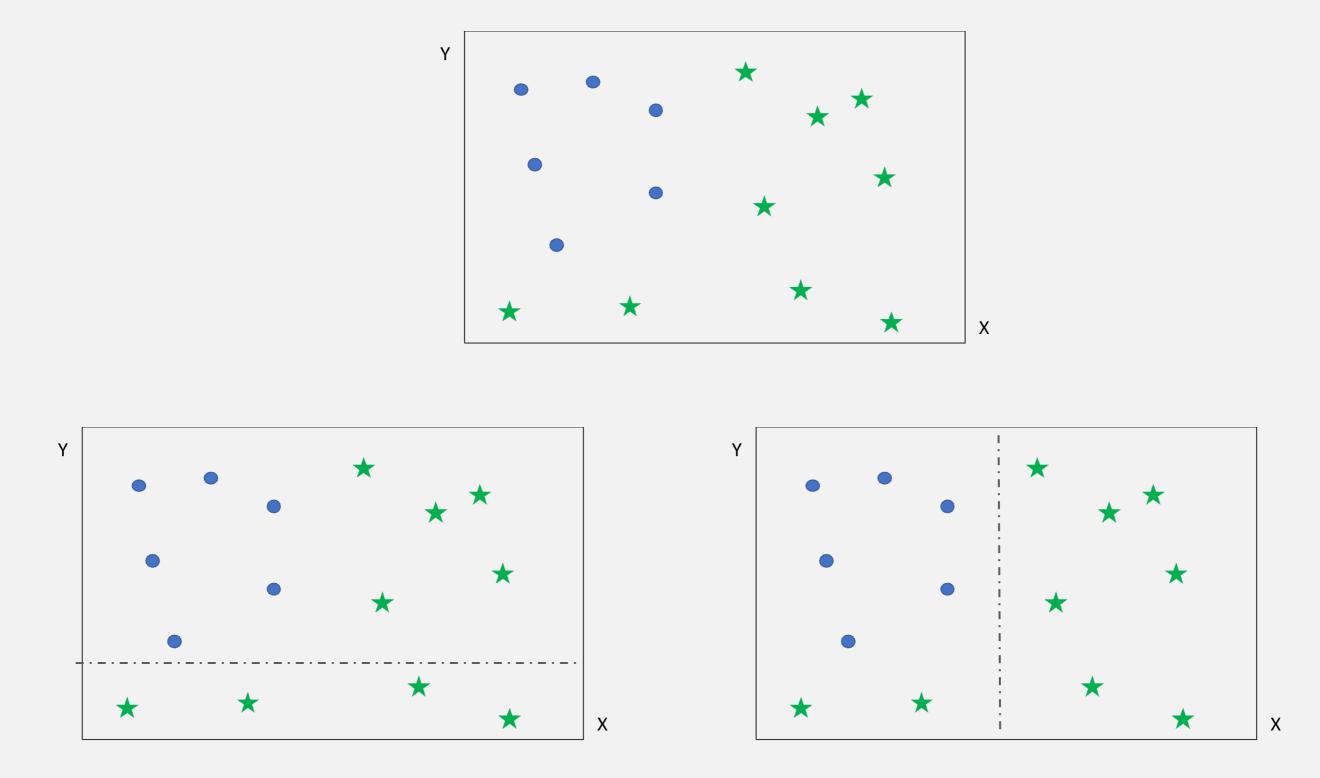
Select stopping criterion as impurity $< \epsilon$ (e.g., 0)

Gini (node L) = $I - \sum f(i)^2$

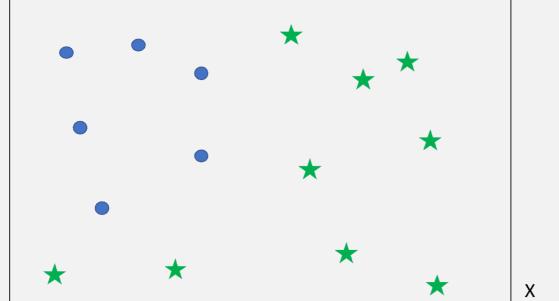
where f(i) is the frequency (=fractional abundance) of the i-th class

 $L_L/L * (1 - \sum f(i)^2)_L + L_R/L * (1 - \sum f(i)^2)_R$

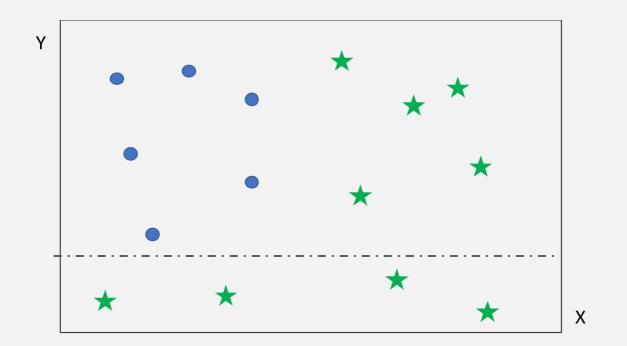
L = total # of objects in original split; L_L and L_R = # of objects in each of the new splits



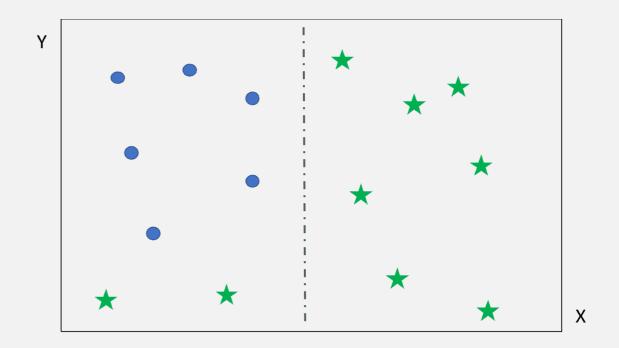
Which split should we do first? Let's calculate the Gini impurity in the original and each of the two. $L_{L}/L * (1 - \sum f(i)^{2})_{L} + L_{R}/L * (1 - \sum f(i)^{2})_{R}$



Υ



 $L_L/L * (1 - \sum f(i)^2)_L + L_R/L * (1 - \sum f(i)^2)_R$ = 4/15 * 0 + 11/15 * (1 - (6/11)^2 - (5/11)^2) = 0.363



 $L_L/L * (1 - \sum f(i)^2)_L + L_R/L * (1 - \sum f(i)^2)_R$ = 7/15 * 0 + 8/15 * (1-(2/8)^2 - (6/8)^2) = 0.2

PSEUDO CODE FOR DECISION TREES

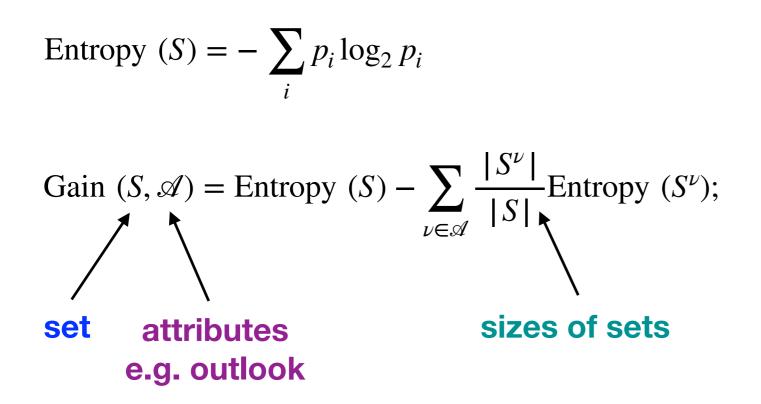
```
function BuildDecisionTree(L)
                                                                                    stopping criterion
    Create node t from the learning sample L_t = L;
                                                                                    Gini (im)purity = 0
    calculate (im)purity
    if the stopping criterion is met for t then
                                                                                     Gini (node L) =
      y^ = some constant value/class (MAKE PREDICTION)
    else
                                                                                        1 - \sum f(i)^2
        Find the split on L<sub>t</sub> that maximizes impurity
                                                                               where f(i) is the frequency of
        decrease
         s^* = \arg \max \Delta i (s, t)
                                                                                      the i-th class
                                 s∈0
         Partition L_t into L_{tL} \cup L_{tR} according to s^*
                                                                                  Gini (splits L_1 and Lr) =
                 t_L = BuildDecisionTree(L<sub>L</sub>)
                 t_{R} = BuildDecisionTree(L_{R})
                                                                                    L_1/L * (1 - \sum f(i)^2) +
                                                                                    L_{R}/L * (1 - \sum f(i)^{2})
   end if
end function
                                                                               where f(i) is the frequency of
                                                                                      the i-th class
```

Code adapted from Gilles Louppe

Note: splits happen along (single) features!

Day	Outlook	Temp.	Humidity	Wind	Go hiking?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	Νο

Maximizing Entropy Gain



In this example, we will decide how to split that maximizes the entropy gain (instead of maximizing the Gini impurity decreases).

What conditions should we pick? Gain (S, outlook) Go hiking? Day Outlook **Humidity** Wind Temp. Sunny Hot High Weak No 1 = Entropy (S) 2 Sunny Hot High Strong No **Overcast** High Weak Yes 3 Hot $-\frac{5}{14}$ Entropy (*S*, outlook = sunny) High Mild Weak Yes 4 Rain 5 Rain Cool Normal Weak Yes 6 Rain Cool Normal No Strong 7 Cool Normal Yes **Overcast** Strong $-\frac{1}{14}$ Entropy (*S*, outlook = outcast) 8 Mild Weak No Sunny High 9 Cool Normal Weak Yes Sunny Rain Mild Normal 10 Weak Yes $-\frac{3}{14}$ Entropy (S, outlook = rain) 11 Mild Sunny Normal Strong Yes 12 **Overcast** Mild High Strong Yes Normal 13 **Overcast** Hot Weak Yes = 0.24614 Rain Mild No High Strong

Entropy (S) =
$$-\frac{5}{14}\log\frac{5}{14} - \frac{9}{14}\log\frac{9}{14} = 1.245$$

Entropy (S, outlook = sunny) =
$$-\frac{2}{5}\log\frac{2}{5} - \frac{3}{5}\log\frac{3}{5} = 0.971$$

Entropy (S, outlook = overcast) = 0

Entropy (S, outlook = rain) =
$$-\frac{3}{5}\log\frac{3}{5} - \frac{2}{5}\log\frac{2}{5} = 0.971$$

2 yes and 3 no

all yes

3 yes and 2 no

What conditions should we pick?

Day	Outlook	Temp.	Humidity	Wind	Go hiking?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	Νο
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	Νο
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	Νο
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	Νο

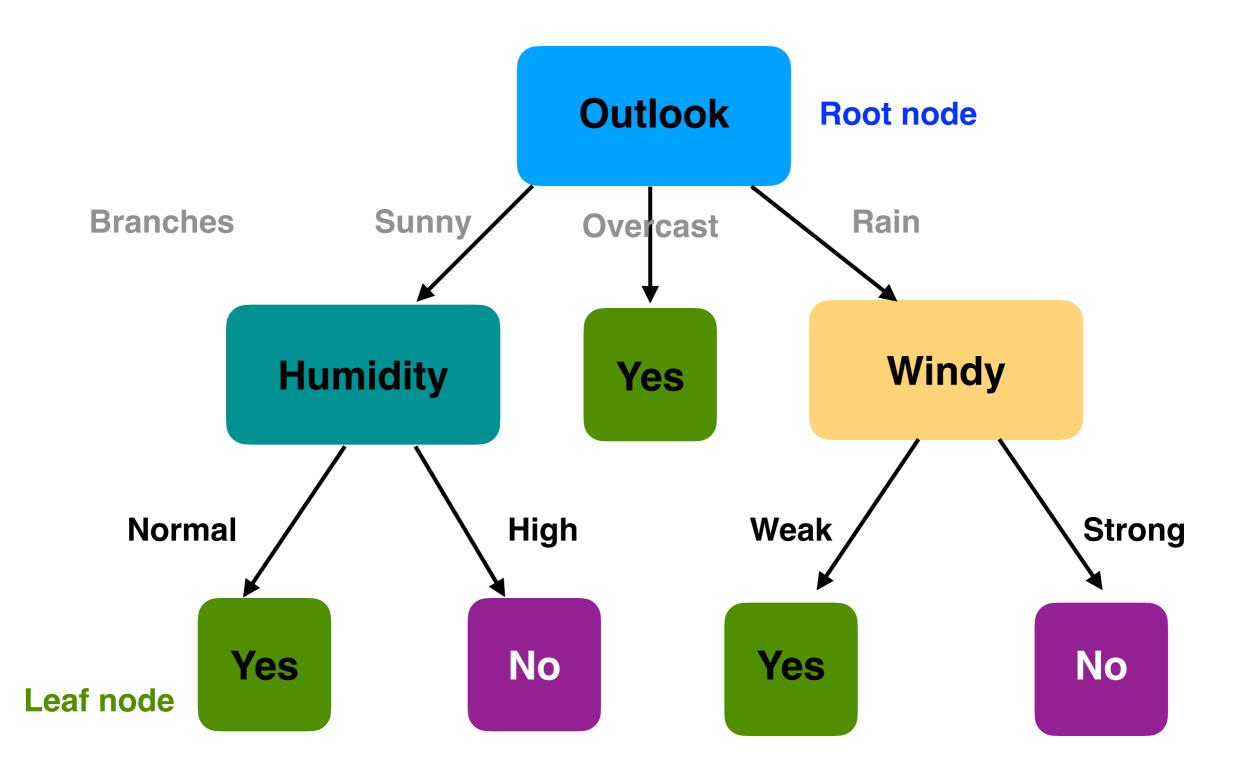
Gain (S, Outlook) = 0.246

Gain (S, Humidity) = 0.151

Gain (S, Wind) = 0.048

Gain (S, Temp.) = 0.029

⇒ Choose Outlook maximizes the information gain



Gini vs Entropy

