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Outline for today

• Many ML models are designed to solve classification or regression 
problems. 

• Simple Classifiers:

• Decision Trees

• kNN: Finding neighbors 

• Reference: “Machine Learning for Physics and Astronomy” by Viviana 
Acquaviva, Princeton University Press, Chapter 2.
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• Work by splitting data on different values of features

• Simplest trees are binary trees

• If categorical features, the split would be on yes/no

• If numerical, the split would be on a certain value (e.g. x > 100 or x < 100)

DECISION TREES
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Decision Trees

• Depth of tree = maximum number of splitting conditions.

• Stop growing the tree when 1) all items on a branch have the same 
features (values) or 2) other stopping criterion is met.

• Usually have maximum criterion to avoid overfitting.

• At each splitting node, look for features which provide the best 
splitting condition. How do we quantify best?

• Maximize “information gain” or maximize decrease in impurity. 
(defined more precisely later)
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EXAMPLE: THIS 2-FEATURE DATA SET.

HOW SHOULD WE SPLIT?
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EXAMPLE: THIS 2-FEATURE DATA SET.

HOW SHOULD WE SPLIT?



Figure credit:
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SHOULD WE STOP?
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Important questions:

How do we decide which splits to make, among the many
possible ones?

How do we decide whether we should stop?

Figure credit:
Gilles Louppe
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In a terminal node (leaf),
the model is ready to output a classification

(and all objects in that leaf have the same class)

NODES (SPLITS AND LEAVES) 
DEFINE THE

DECISION TREE



Find measure of impurity (e.g. Gini impurity) that we 
want to minimize.

Find splits that maximize decrease of impurity

Select stopping criterion as impurity < ε (e.g. , 0) 

Gini (node L) = 1 - ∑ f(i)2

where f(i) is the frequency (=fractional abundance) of the i-th class

L = total # of objects in original split; LL and LR = # of objects in each of the new splits

LL/L * (1 - ∑ f(i)2)L + LR/L * (1 - ∑ f(i)2)R

BUILDING DECISION TREES



Which split should we do first?
Let’s calculate the Gini impurity in the original and each of the two.

LL/L * (1 - ∑ f(i)2)L + LR/L * (1 - ∑ f(i)2)R



LL/L * (1 - ∑ f(i)2)L + LR/L * (1 - ∑ f(i)2)R
= 7/15 * 0 + 8/15 * (1-(2/8)^2 – (6/8)^2) =

0.2

(1 - ∑ f(i)2) = 
1 – (6/15)^2 – (9/15)^2

=  0.48

LL/L * (1 - ∑ f(i)2)L + LR/L * (1 - ∑ f(i)2)R
= 4/15 * 0 + 11/15 * (1 – (6/11)^2 –

(5/11)^2) = 0.363



PSEUDO CODE FOR DECISION TREES

function BuildDecisionTree(L)
Create node t from the learning sample Lt = L; 
calculate (im)purity
if the stopping criterion is met for t then

ty^ = some constant value/class  (MAKE PREDICTION) 
else

Find the split on Lt that maximizes impurity  
decrease
s∗ = arg max ∆i (s, t)

s∈Q
Partition Lt into LtL ∪ LtR according to s∗

tL = BuildDecisionTree(LL)
tR = BuildDecisionTree(LR )

end if  

Code adapted from Gilles Louppe

stopping criterion
Gini (im)purity = 0

Gini (node L) =

1 - ∑ f(i)2

where f(i) is the frequency of 
the i-th class

Gini (splits LL and Lr) =

LL/L * (1 - ∑ f(i)2) +
LR/L * (1 - ∑ f(i)2)

where f(i) is the frequency of 
the i-th class

Note: 
splits

happen 
along (single) features!

return t      
end function



Decision Trees: Hiking ExampleDecision Trees
Example

14

Day Outlook Temp. Humidity Wind Go hiking? 
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

How do we decide 
whether to go hiking?



Maximizing Entropy Gain

Gain (S, 𝒜) = Entropy (S) − ∑
ν∈𝒜

|Sν |
|S |

Entropy (Sν);

Entropy (S) = − ∑
i

pi log2 pi

set attributes 
e.g. outlook

sizes of sets

In this example, we will decide how to split that maximizes the 
entropy gain (instead of maximizing the Gini impurity decreases).



Decision Trees: Hiking Example
Decision Trees
Example

14

Day Outlook Temp. Humidity Wind Go hiking? 
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

How do we decide 
whether to go hiking?

What conditions should we pick?
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= 0.246



Decision Trees: Hiking Example
Decision Trees
Example

14

Day Outlook Temp. Humidity Wind Go hiking? 
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

How do we decide 
whether to go hiking?

What conditions should we pick?

Gain (S, Outlook) = 0.246

Gain (S, Humidity) = 0.151

Gain (S, Wind) = 0.048

Gain (S, Temp.) = 0.029

⇒ Choose Outlook maximizes the information gain



Decision Trees: Hiking Example
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Gini vs Entropy

Entropy (S) = − ∑
i

pi log2 pi

Gini (S) = 1 − ∑
i

p2
i = 1 − p2 − (1 − p)2 = − 2p2 + 2p

two classes

options in sklearn
implementation


