
PHY 835: Machine Learning in Physics
Lecture 16: Decision Trees & kNN

March 14, 2024

Moritz Münchmeyer

Physics 361 - Machine Learning 
in Physics 

Lecture 1 – Introduction 

Jan. 23rd 2024 

Gary Shiu



Outline for today

• Many ML models are designed to solve classification or regression 
problems. 

• Simple Classifiers:

• Decision Trees

• kNN: Finding neighbors 

• Reference: “Machine Learning for Physics and Astronomy” by Viviana 
Acquaviva, Princeton University Press, Chapter 2.



We can now design a decision tree 
in a (astro)physics context.



Search for Habitable Planets

• The problem: search for intelligent life beyond Earth.

• More than 5000 exoplanets: https://exoplanets.nasa.gov/alien-worlds/
historic-timeline/#first-transiting-exoplanet-observed

• Finding habitable planets (density and temperature conditions etc that are 
compatible with the development of life).

• Planet Habitability Laboratory website: https://phl.upr.edu/projects/
habitable-exoplanets-catalog contains data for thousands of planets and 
collects a variety of features.

• We consider a learning set composed of 18 instances and their 3 
features.

https://exoplanets.nasa.gov/alien-worlds/historic-timeline/#first-transiting-exoplanet-observed
https://exoplanets.nasa.gov/alien-worlds/historic-timeline/#first-transiting-exoplanet-observed
https://exoplanets.nasa.gov/alien-worlds/historic-timeline/#first-transiting-exoplanet-observed
https://phl.upr.edu/projects/habitable-exoplanets-catalog
https://phl.upr.edu/projects/habitable-exoplanets-catalog


DATA FROM THE 
PLANET HABITABILITY LAB 

AT ARECIBO OBSERVATORY





outlier



outlier



outlier



Seems reasonable from Kepler’s laws

outlier



Comments on the dataset

• Well balanced: 10 examples in one category (not habitable) and 8 in the other 
(habitable).

• A factor that determines whether a planet is habitable is temperature, which likely 
depends on the energy it receives from its parent star.

• The planet’s temperature therefore depends on the star’s luminosity and its distance 
from the planet.

• Mass of a star is a decent tracer of its luminosity (as is the case for main sequence 
stars).

• Reality is more complicated: the energy budget of each planet also depends on other 
features, e.g., properties of its atmosphere, & whether it has an internal energy source. 

• Mass/luminosity relationship is monotonic only for main sequence stars, which make 
up only about 90% of the total.



Predicting planet habitability

• On canvas, under DT-kNN-Notebooks, you will find a Jupyter Notebook: 
Intro_DT_HabPlanets.ipynb and a dataset: HPLearningSet.csv.

• Split into a training and a test set:

• The file contains both features & labels, separate them into 4 arrays:

• Import the Decision Tree Classifier from sklearn and build the decision 
tree using the “fit” method.

LearningSet = pd.read_csv (`HPLearningSet.csv’)

TrainSet = LearningSet.iloc[;13,:]

TestSet = LearningSet.iloc[13:,:]


Xtrain = TrainSet.drop([`P_NAME’,`P_HABITABLE’], axis = 1)

XTest = TestSet.drop([`P_NAME’,`P_HABITABLE’], axis = 1)

ytrain = TrainSet.P_HABITABLE

ytest = TestSet.P_HABITABLE


model = DecisionTreeClassifier (random_state = 3)

model.fit(Xtrain, ytrain)




LET’S SEE WHAT SKLEARN SAYS



AND VISUALIZE THE CRITERIA THAT 
WE FOUND!

Can you figure out the accuracy on the test set?



NOTE (AND WE’LL SEE CODE FOR IT):
IF YOU USE THE LAST 13 ROWS FOR TRAINING AND THE FIRST 

5 FOR TESTING, YOU GET THIS TREE:

and 100% accuracy on test set

Morale: Different train/test split might give significantly different performances,
especially when data sets are small.



KNN ALGORITHM
(K NEAREST NEIGHBORS) 

Simple, yet powerful!

Only one parameter: k (a small integer) 

To make a prediction for a new object, find k closest 
examples in training set 

For classification problems, output the majority class 

For regression problems, output the mean of the target 
property 



LET’S USE OUR 
OLD EXAMPLE.

WHAT VALUE 
SHOULD WE USE 

FOR K?
k = 2

k = 5
odd is better!



TWEAKABLES!

1) Choose 
neighborhood radius 
instead of k 

2) Weigh different 
objects according to 
distance (inverse-
distance weighing) 

•Any insights on the 
effects of 1) and 2)? 



TWEAKABLES!

1) Choose neighborhood 
radius instead of k 

2) Weigh different objects 
according to distance (inverse-
distance weighing) 

•Any insights on the effects of 
1) and 2)? 

•If the data have non-uniform 
density, different choices will 
have different effects! Needs to 
be chosen via cross-validation 
(next unit). 

LET’S USE OUR 
OLD EXAMPLE.

WHAT VALUE 
SHOULD WE USE 

FOR K?
k = 2

k = 5
odd is better!



Ensemble Methods
Two heads are better than one, or「三個臭⽪匠，勝過⼀個諸葛亮」



Why Ensembles?
• Statistical: Multiple minima with same performance (training set too 

small). Choosing average reduces risk of wrong hypothesis choice. 

• Computational: get stuck in local minima; results (e.g. decision tree 
structure + classification) vary strongly depending on training set. 

• Representational: more expressive than single predictor, e.g.,
P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 41

Fig. 28. Why combining models? On the left we show that by combining simple linear hypotheses (gray lines) one can achieve better and more
flexible classifications (dark line), which is in stark contrast to the case in which one only uses a single perceptron hypothesis as shown on the
right.

This last formula is the key to understanding the power of random ensembles. Notice that by using large ensembles
(M ! 1), we can significantly reduce the variance, and for completely random ensembles where the models are
uncorrelated (⇢(x) = 0), maximally suppresses the variance! Thus, using the aggregate predictor beats down fluctuations
due to finite-sample effects. The key, as the formula indicates, is to decorrelate the models as much as possible while
still using a very large ensemble. One can be worried that this comes at the expense of a very large bias. This turns out
not to be the case. When models in the ensemble are completely random, the bias of the aggregate predictor is just the
expected bias of a single model

Bias2(x) = (f (x) � EL,✓ [ĝA
L(x, {✓})])2

= (f (x) �
1
M

MX

m=1

EL,✓ [ĝL(x, ✓m)])2 (96)

= (f (x) � µL,✓ )2. (97)

Thus, for a random ensemble one can always add more models without increasing the bias. This observation lies behind
the immense power of random forest methods discussed below. For other methods, such as bagging, we will see that the
bootstrapping procedure actually does increase the bias. But in many cases, this increase in bias is negligible compared
to the reduction in variance.

8.1.2. Summarizing the theory and intuitions behind ensembles
Before discussing specific methods, let us briefly summarize why ensembles have proven so successful in many ML

applications. Dietterich (Dietterich et al., 2000) identifies three distinct shortcomings that are fixed by ensemble methods:
statistical, computational, and representational. These are explained in the following discussion from Ref. (Louppe, 2014):

The first reason is statistical. When the learning set is too small, a learning algorithm can typically find several
models in the hypothesis space H that all give the same performance on the training data. Provided their predictions
are uncorrelated, averaging several models reduces the risk of choosing the wrong hypothesis. The second reason
is computational. Many learning algorithms rely on some greedy assumption or local search that may get stuck
in local optima. As such, an ensemble made of individual models built from many different starting points may
provide a better approximation of the true unknown function than any of the single models. Finally, the third
reason is representational. In most cases, for a learning set of finite size, the true function cannot be represented
by any of the candidate models in H. By combining several models in an ensemble, it may be possible to expand
the space of representable functions and to better model the true function.

The increase in representational power of ensembles can be simply visualized. For example, the classification task
shown in Fig. 28 reveals that it is more advantageous to combine a group of simple hypotheses (vertical or horizontal
lines) than to utilize a single arbitrary linear classifier. This of course comes with the price of introducing more parameters
to our learning procedure. But if the problem itself can never be learned through a simple hypothesis, then there is no
reason to avoid applying a more complex model. Since ensemble methods reduce the variance and are often easier to
train than a single complex model, they are a powerful way of increasing representational power (also called expressivity
in the ML literature).

Our analysis also gives several intuitions for how we should construct ensembles. First, we should try to randomize
ensemble construction as much as possible to reduce the correlations between predictors in the ensemble. This ensures
that our variance will be reduced while minimizing an increase in bias due to correlated errors. Second, the ensembles



Ensemble Methods

• Consider binary classification. Suppose we have N classifiers, each 
with accuracy . If the models are independent of each other, the 
probability that  classifiers are correct:

• Say the ensemble model classifies by a majority vote, i.e., 

•  if . For example, if  , 
you are encouraged to check that  .

• Ensemble methods include Bagging, Boosting, and Random Forest.

p
k

k ≥ N/2

p(combined model) > p p > 0.5 N = 11, p = 0.6
p(combined model) = 0.75

P(k, N, p) =
N!

k!(N − k)!
pk(1 − p)N−k

p(combined model) =
N

∑
i=N/2

N!
i!(N − i)!

pi(1 − p)N−i


