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Decision tree ensembles

1. Motivation 



• At each step we consider all possible splits 
on all possible features and chose the one 
that leads to the highest reduction in impurity 
of there resulting branches.  

• Classification: common metric is Gini impurity 
• Regression: common metric is the MSE 

• Typical Hyperparameters: 
• Minimum reduction of impurity to do a split 
• Minimum number of samples required in 

leaf node 
• Maximum depth of the tree 

Recall decision trees

Recall example from Gary’s lecture:



• Decision trees methods are still the state-of-the-art for many tabular data 
applications.  

• Gradient boosted decision trees (GBDTs) are the current state of the art on 
tabular data. 

• They are used in many Kaggle competitions and are the go-to model for many 
data scientists, as they tend to get better performance than neural networks while 
being easier and faster to train. 

• Neural networks, on the other hand, are the state of the art in many other tasks, 
such as image classification, natural language processing, and speech 
recognition. 

• https://arxiv.org/abs/2207.08815 Why do tree-based models still outperform deep 
learning on tabular data? 

While deep learning has enabled tremendous progress on text and image datasets, its superiority on 
tabular data is not clear. We contribute extensive benchmarks of standard and novel deep learning 
methods as well as tree-based models such as XGBoost and Random Forests, across a large 
number of datasets and hyperparameter combinations.… Results show that tree-based models 
remain state-of-the-art on medium-sized data (∼ 10K samples) even without accounting for their 
superior speed. To understand this gap, we conduct an empirical investigation into the differing 
inductive biases of tree-based models and Neural Networks (NNs).  

Power of decision tree methods 

https://arxiv.org/abs/2207.08815


Reasons for their success
• Structure of Tabular Data: Tabular data often contain a mix of categorical and numerical 

features. Tree-based models can inherently handle these different types of data and their 
interactions effectively.  

• Non-Linearity: Tree ensembles are particularly good at capturing non-linear relationships 
and interactions between variables without needing to explicitly engineer these features. 
Deep learning models can also capture non-linearities but often require large amounts of 
data and complex architectures to do so effectively. 

• Efficiency with Small to Medium-Sized Datasets: Deep learning models excel in domains 
with abundant data (like images, text, and audio) where they can learn complex patterns 
and representations. However, many tabular datasets are relatively small or medium-sized, 
where deep learning models might overfit or may not have enough data to adequately learn. 

• Other advantages: 
• Interpretability 
• Speed 
• Feature Importance is easy to evaluate 
• Robust to outliers and missing data 
• Simplicity



Decision tree ensembles

2. Random Forrests 
(“Bagging”) 



• One way to boost the performance (both for classification and regression) is to 
aggregate the response of several models. 

• For example in classification we could take the majority vote, perhaps weighted by 
some factor if different models have different precision. 

• This combined model often gives better combined accuracy than the single 
constituents. 

• Reasons: 
• Aggregating several base learners generally reduces the variance.  
• Single models may get stuck in different local minima.  
• The combined model has a higher capacity than the constituents and may fit the 

data better.  
• Single models may be biased in opposite directions so the biases may cancel out in 

some situations. 

• A popular set of models for ensemble training are decision trees. A set of decision trees 
is called a forest :)

Ensemble methods



“Decision trees” are also useful for regression problems. They are then often 
called “Regression trees”.  

Regression trees assign a continuous value to each leaf.  

They thus approximate the function as piecewise constant. 

Trees for regression problems

https://scikit-learn.org/stable/auto_examples/
tree/plot_tree_regression.html



• Random Forests are a collection of randomized decision trees.  

• Randomization (“Bootstrapping”) occurs in two ways: 
• Take many different random subset of the training data (where elements can 

repeat). 
• Take random subsets of the features. 

• We train many random trees based on these randomized data sets. 

• The final outcome is the “mean” of the many trees.  

• The approach we just described is called “bagging”. The name comes from 
Bootstrap AGGregating.  

• Typical hyper parameters: number of trees and the number of features in the 
bootstrap subset. 

• Implementation: https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html 

Random Forests

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html


• The final prediction (class, or number) is typically the  
• average of all predictions (for a regression problem),  
• or the majority vote (for a classification problem)

How to combine trees



Example:  predicting the median house value (target) 
given some information about the neighborhoods, as 
the average number of rooms, the latitude, the 
longitude or the median income of people in the 
neighborhoods (block). 
https://inria.github.io/scikit-learn-mooc/python_scripts/
dev_features_importance.html 

Feature Importance
A nice feature of random forests and other ensembles of decision trees is that one can 
evaluate which features of the data are more important than others.  

The result of this analysis is somewhat algorithm dependent but is still informative.  

More important features appear earlier in the tree, since they lead to a large decrease in 
impurity. 

To quantify the importance we can sum up the impurity improvements of all the splits 
associated with a given variable. One can then rank the features. Correlation can 
complicate the interpretation.  

https://inria.github.io/scikit-learn-mooc/python_scripts/dev_features_importance.html
https://inria.github.io/scikit-learn-mooc/python_scripts/dev_features_importance.html


Decision tree ensembles

2. Gradient Boosted 
Decision Trees (“Boosting”) 



Boosting vs Bagging
• Bagging means that we average over many weaker models, which are 

trained independently.


• Boosting works sequentially: A weak (simple) learner is created to make 
prediction. Then the progressively iterated to get the problematic examples 
right (“boosting the success rate”). 


• Two popular algorithms are Adaptive Boosting (AdaBoost) and Gradient 
Boosting. 


• I will focus on Gradient Boosting, which seems to be the dominant method. 
The leading software implementations of Gradient Boosting are currently 
XGBoost and LightGBM.



XGBoost
XGBoost stands for “Extreme Gradient Boosting”, where the term “Gradient Boosting” originates from 
the paper Greedy Function Approximation: A Gradient Boosting Machine, by Friedman.

My introduction is based on https://xgboost.readthedocs.io/en/stable/tutorials/model.html (which 
contains mathematical details we have to skip over for time reasons)


Example: function fitting 
with a tree, finding the 
optimal tree complexity

https://xgboost.readthedocs.io/en/stable/tutorials/model.html


CART in XGBoost
The tree ensemble model of XGBoost consists of a set of classification and regression trees (CART). 
A CART is a bit different from decision trees, in which the leaf only contains decision values. In CART, a 
real score is associated with each of the leaves, which gives us richer interpretations that go beyond 
classification. 




Usually, a single tree is not strong enough to be used in practice. What is actually used is the ensemble 
model, which sums the prediction of multiple trees together.



Tree Boosting
• We want to optimize the loss function by adjusting the parameters of the trees. 


• What are the parameters of trees? the structure of the tree and the leaf scores. 


• Learning tree structure is much harder than traditional optimization problem where you can simply 
take the gradient. It is intractable to learn all the trees at once. Instead, we use an additive strategy: 
fix what we have learned, and add one new tree at a time.


• It remains to ask: which tree do we want at each step? A natural thing is to add the one that 
optimizes our objective, i.e. the sum of the loss function and the regularization.





• The regularization is given by the complexity of the tree. One way to measure this is




Where T is the number of leaves and w are the scores of the leaves.



Tree Boosting: Greedy algorithm
The iteratively added tree is found with a greedy algorithm:  

Step 1: Initialization 
• The algorithm starts with all training instances in the root node. 
• At each node, it evaluates all possible splits across all features. 

Step 2: Evaluating Splits 
• For each feature, the potential splits are considered. The algorithm sorts the values of the feature and then 

iteratively evaluates the possible split positions between these sorted values. The "gain" from making a split is 
calculated based on how much it would reduce the loss function.  

Step 3: Choosing the Best Split 
• The algorithm selects the split with the highest gain. If no split results in a gain that meets the regularization criteria, 

the node is not split and becomes a leaf. 

Step 4: Recursion 
• This process is recursively applied to each resulting subset of the data (corresponding to each branch of the split) 

until one of the stopping criteria is met (max depth of the tree OR does not improve the loss by a significant amount 
OR having too few samples in a node) 

Step 5: Outputting the Leaf Values 
• Once the tree is fully grown and no more splits are made, the algorithm calculates the optimal output value for each 

leaf.  

XGBoost improves upon this basic greedy algorithm by introducing several optimizations.



Decision tree ensembles

3. Application: Red Shift 
estimation

Slides and python notebook from: Viviana Acquaviva - Machine Learning for physics and 
Astronomy chapter 6



Astronomers measure the distance of a 
galaxy using its redshift. Because the 
universe is expanding, galaxies that are 
farther away have a higher redshift.  

A spectrum is a high-resolution chart of  
brightness vs wavelength. 

For galaxies that are further away,  the 
spectrum is stretched 
(all the wavelengths are longer). 

Spectra contains spikes and dips, which 
corresponds to known transition in  basic 
atoms (e.g., H, O). 

If I can identify the emission lines I see  (from 
the structure – one is not  enough!), I can 
calculate the amount of  stretch, which is 1 + 
z (a Doppler effect, essentially!). z is called 
the “redshift parameter”.  

Redshift of a galaxy

Example spectrum 
from the SDSS 

survey 



In this case, we only have the 
average  brightness over wide 
range of  wavelengths, called 
filters or bands (1000s of 
Angstroms). 

Much more challenging/less 
accurate,  but a lot cheaper to 
obtain! 

Photo-z can be derived for billions 
of galaxies. 

Spectroscopic redshifts (derived 
from line  identification) can be 
used as a learning set for  
photometric redshifts. 

Photometric redshifts



Input data: 
Collection of photometric 
intensity in 6 bands (i.e. 6 
numbers per galaxy) 

Target data: 
True redshift of the galaxy 
obtained from more expensive 
spectroscopy. 1 number called z.  

Learning task



Colab notebook
The rest of this lecture will be on Colab. We will use notebooks from the book Viviana Acquaviva 
“Machine learning for Physics and Astronomy”. The notebooks can be downloaded on the course 
website, and on the book website https://press.princeton.edu/books/paperback/9780691206417/
machine-learning-for-physics-and-astronomy. 

https://press.princeton.edu/books/paperback/9780691206417/machine-learning-for-physics-and-astronomy
https://press.princeton.edu/books/paperback/9780691206417/machine-learning-for-physics-and-astronomy
https://press.princeton.edu/books/paperback/9780691206417/machine-learning-for-physics-and-astronomy


• Reading for this lecture:  
• This lecture was based mostly on Viviana Acquaviva “Machine 

learning for Physics and Astronomy” chapter 6.

Course logistics


