PHY 835: Machine Learning in Physics
Lecture 19: Transformers Part 1
April 2, 2024

Al
N
Universe

Gary Shiu

Introduction

Transformer is one of the most talked about ML architecture (e.g. ChatGPT).

Initially targeted at natural language processing (NLP) problems, transformers
are now being used quite generally on unstructured data representations
(texts, images, audio, video, and their combo).

These ML models are known as transformers because they transform a set of
vectors in some representation space into a corresponding set of vectors,
having the same dimensionality, in some new space.

The new space has a richer internal representation that is better suited to
solving downstream tasks.

Reference: “Deep learning: Foundations and Concepts” by Chris Bishop with
Hugh Bishop, Chapter 12: https://www.bishopbook.com/

Why should you care?

Math and Physics problems are language problems, expressed in terms of formulae. Your
tasks are to translate questions to answers.

Numerous applications of transformers in math and theoretical physics. Applications of ML
are not limited to experimental areas.

Some success in solving college level physics and math problems (see talks by Guy Gur-Ari
and Francois Charton at http://www.physicsmeetsml.org/)

Al Does Math as Well as Math Olympians: https://www.scientificamerican.com/article/ai-
matches-the-abilities-of-the-best-math-olympians/

Examples of research level problems:

e https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-
mathematical-sciences-using-large-language-models/

e https://nips.cc/virtual/2023/76132

http://www.physicsmeetsml.org/
https://www.scientificamerican.com/article/ai-matches-the-abilities-of-the-best-math-olympians/
https://www.scientificamerican.com/article/ai-matches-the-abilities-of-the-best-math-olympians/
https://www.scientificamerican.com/article/ai-matches-the-abilities-of-the-best-math-olympians/
https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-mathematical-sciences-using-large-language-models/
https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-mathematical-sciences-using-large-language-models/
https://nips.cc/virtual/2023/76132

Foundational Model

A large-scale model that can be adapted to solve multiple different tasks is known
as a foundation model, e.g., https://polymathic-ai.org/

Transformers can be trained in a self-supervised way using unlabeled data, which
IS especially effective with language models since there are vast quantities of text
available from the internet.

The scaling hypothesis asserts that simply by increasing the number of learnable
parameters and training on a commensurately large data set, significant
Improvements in performance can be achieved.

Transformers are quite suited for massively parallel processing hardware, e.g.,
GPU. Models with 10'? parameters can be trained in reasonable time.

The pre-trained models can then be fine-tuned for specific tasks, achieving artificial
general intelligence (AGI).

Natural Language Processing

e [anguage datasets share some similarities with image data:
 The number of input variables can be very large.

* The statistics are similar at every position; not sensible to re-learn
the meaning of dog at every possible position in a body of text.

 These are the reasons for introducing CNN: instead of fully
connected NN, a CNN employs parameter sharing.

* However, language datasets have varying lengths in text sequences.
There is no easy way to resize them.

An lllustrative Example

e Consider the following restaurant review

The restaurant refused to serve me a ham sandwich because it only cooks vegetarian
food. In the end, they just gave me two slices of bread. Their ambiance was just as good
as the food and service.

e How to process texts like this into a representation suitable for downstream tasks
(positive/negative review? is steak served?)

e Three problems to overcome:

e Inputs are large: 37 words represented by an embedding vector of length
1024 has a 37x1024 = 37888 dimensional input.

e Inputs have different lengths: not obvious how to apply fully connected NNs;
how to share parameters across words at different positions?

e Language is ambiguous: it refers to the restaurant and not to ham sandwich. A
successful ML model should pay attention to the word restaurant. There are
connections between words and the strength of these connections depends
on the words themselves. The word their also refers to the restaurant.

Attention is all you need

https://arxiv.org/abs/1706.03762

Originally developed as an enhancement to RNNs for machine
translation: https://arxiv.org/abs/1409.0473

https://arxiv.org/abs/1706.03762) showed that the RNN structure can be
eliminated; instead focus exclusively on the attention mechanism.

Consider the following two sentences:

| swam across the river to get to the other bank.
| walked across the road to get cash from the bank.

The word “bank” has different meanings which can be detected by looking
at other words in the sentence.

In the first sentence, the words “swam” and “river” most strongly indicate
that “bank” refers to the side of a river, while in the second sentence, the
word “cash” is a strong indicator that “bank” refers to a financial institution.

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Attention is all you need

A NN processing a sentence should attend to specific words from the rest
of the sequence:

[I)(swam) (across)(the J[river)[to J[get J[to J{ the J[other) [bank)

[I J(SwamJ (across)(the J[river)[to J[get }[to J{ the J[other) [bank)

The specific locations that should receive more attention depends on the
iInput sequence itself.

In a standard NN, once a network is trained, the weights are independent
on the input data.

By contrast, attention uses weighting factors whose values depend on the
specific input data.

Word Embedding

Words are mapped into vectors in an embedding space.

Words with similar meanings are mapped to nearby locations in the embedding
space.

A transformer is a richer form of embedding in which a given vector is mapped to a
location that depends on other vectors in the sequence.

The vector representing “bank” is mapped to a location close to “water” in the
embedding space in the first sentence, and close to “money” in the second
sentence.

Not only for words: a protein is a 1d sequence of amino acids (22 possibilities). A
protein can comprise hundreds or thousands of such amino acids. Amino acids that
are widely separated in the 1d sequence can be physically close in 3d space if the
proton folds. A transformer model allows distant amino acids to attend to each other
for modeling 3d structure.

For similar reasons, transformers have been used for modeling molecular dynamics.

Transformer Processing

Input data is a set of vectors {X,} of dimensionality D, n = 1,..., N.

These data vectors are known as tokens (e.g., a word within a
sentence, a patch within an image, or an amino acid within a protein).

The elements x, ; of the tokens are called features.

Transformers can handle a mix of different data types by combining
the data variables into a joint set of tokens.

Combining the data vectors into a matrix X of dimensions N X D.

X = TransformerLayer [X]

|

same dimensionality as X

SH

N (tokens)
<

Apply multiple transformer layer
to learn rich internal representations.

D (features)

Attention Coefficients

A set of input tokens {X, ..., Xy} is mapped to a set of output tokens
Y- Y-

With attention, this dependence should be stronger for those inputs
X, that are particularly important for determining y,..

Consider the map:

N
Yn = § AnmXm
m=1

where a, , are called attention weights. a,,, ~ 0 for input tokens X,
that have little influence on the output y, and large otherwise.

The attention weights satisfy two constraints:

>0 avoid cancellation from large
anm = . . .
coefficients of opposite signs.
N
Z Qnp = 1. normalize the total attention.

m=1

Self-attention

Consider the problem of choosing which movie to watch on Netflix.

Associate each movie with a list of attributes: genre, names of
leading actors, length of movie, etc.

Search thru a catalogue to find a movie that matches preferences.
Encode the attributes of each movie in a vector called the key.
The corresponding movie file is called a value.

The user’s personal vector of attributes is called the query.

Netflix compares the query vector with all the key vectors to find the
best match, and send the user the corresponding movie (value) file.

Hard attention: a single value vector is returned.

Dot-Product Self-attention

For transformer, we generalize this info retrieval to soft attention.

Use continuous variables to measure the degree of match between
gueries and keys, then use these variables to weight the influence.

Transformer function is differentiable, trainable by gradient descent.
To satisfy the two constraints on the attention weights, we define:

exp (X X,)

S exp(XT %)

Anm —
In matrix notation:

Y = Softmax [XX"| X

where Softmax[L] is an operator that takes the exponential of every
element of a matrix L then normalizes each row independently to sum to 1.

e Dot-product self-attention (using the same sequence to determine the

queries, keys, and values; measure of similarity is given by dot product).

Network Parameters

Transformation from {X,} to {y, } is fixed, with no capacity to learn
from data because it has no adjustable parameters.

Each feature within a token vector (X, } plays an equal role in
determining a,,,. Want flexibility to focus on some features vs others.

We can address both issues if we define modified feature vectors:

~

X =XU

U is a D X D matrix of learnable weight parameters, analogous to a
layer in a standard NN. This gives a modified transformation:

Y = Softmax | XUU'X"| XU

This has more flexibility, but still the matrix XUUTXT is symmetric.

Network Parameters

The attention mechanism should support significant asymmetry, e.g.,
“chisel” is strongly associated with “tool”, but not the other way round.

Although the softmax function means the attention weights matrix is not
symmetric (NB normalization), we can create more flexibility by allowing
gueries & keys to have independent parameters.

Define query, key, & value matrices each w/ different transformations:

Q=XW
K =XW®
V=XwWW

the weight matrices W@, W%, W) represent parameters that will be
learned during the training of the transformer architecture.

W@, W, W are matrices of dim. D x D,, D X D_, D X D,. Setting
D, = D, allows for dot-products between query and key while D, = D
allows multiple transformer layers to be stacked. We set D, =D, =D, = D.

Network Parameters

* The transformation is now generalized to:

O
Y — SOftma;X [QKT] V Y = Softmax < QK > X Vv
\ /
N x D, N x N N x Dy

whereas the dot-product can be computed by:

X W (@ = Q
/ D x D \

N x D

NXD\X wo | = | K / N x N

D x D

bias parameters are implicit
N x D

Scaled self-attention

Gradient of Softmax becomes exponentially
small for inputs of high magnitude, c.f. tanh or
sigmoid activation; trouble with grad descent.

Rescale the product of the query and key
vectors before Softmax.

If the elements of the query and key vectors
were all independent random numbers with
zero mean and unit variance, then the variance
of the dot product would be D,

Normalizing the argument to the softmax using
the standard deviation given by 4 /D, :

Y = Attention(Q, K, V) = Softma [QKT] \%
= ntion(Q, K, V) = max .
v Dy

This is the scaled dot-product self-attention.

Y

*

(mat mul J

1

softmax

*

scale

*

mat mul

Multi-head attention

There might be multiple patterns of attention relevant at the same time,
e.g., some associated with tenses, some with vocabulary.

Single “attention head” averages out these effects. Instead use multiple
attention heads in parallel; analogous to channels in CNN.

Suppose we have H heads indexedby h = 1,..., H:
H; = Attention(Qp, Ky, V)

The heads are concatenated into a single matrix, and the result is then
linearly transformed to give a combined output:

Y/(X) = Concat [Hy,... Hy W [sfe =t - Jwo] - |5

N x HD, N x D
HD, x D

The matrix W is learned along with the weight matrices W@, W®_ WM

