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• NNs benefit greatly from depth, so we 
can stack self-attention layers (like the 
right) on top of each other.

• To improve efficiency, transformer 
layers are followed by layer 
normalization: https://arxiv.org/abs/
1607.06450

• Output of an attention layer are 
constrained to be linear combinations of 
the inputs, though non-linearities enter 
through the attention weights.

• Enhance flexibility by post-processing 
the output of each layer using non-linear 
network denoted by MLP (e.g., fully 
connected NN with ReLu activation.
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Figure 12.8 Information flow in a multi-head attention layer. The associated computation, given by
Algorithm 12.2, is illustrated in Figure 12.7.

efficiency, we can introduce residual connections that bypass the multi-head struc-Section 9.5
ture. To do this we require that the output dimensionality is the same as the input
dimensionality, namely N × D. This is then followed by layer normalization (Ba,Section 7.4.3
Kiros, and Hinton, 2016), which improves training efficiency. The resulting trans-
formation can be written as

Z = LayerNorm [Y(X) +X] (12.20)

where Y is defined by (12.19). Sometimes the layer normalization is replaced by
pre-norm in which the normalization layer is applied before the multi-head self-
attention instead of after, as this can result in more effective optimization, in which
case we have

Z = Y(X′) +X, where X′ = LayerNorm [X] . (12.21)

In each case, Z again has the same dimensionality N ×D as the input matrixX.
We have seen that the attention mechanism creates linear combinations of the

value vectors, which are then linearly combined to produce the output vectors. Also,
the values are linear functions of the input vectors, and so we see that the outputs
of an attention layer are constrained to be linear combinations of the inputs. Non-
linearity does enter through the attention weights, and so the outputs will depend
nonlinearly on the inputs via the softmax function, but the output vectors are still
constrained to lie in the subspace spanned by the input vectors and this limits the
expressive capabilities of the attention layer. We can enhance the flexibility of the
transformer by post-processing the output of each layer using a standard nonlinear
neural network with D inputs and D outputs, denoted MLP[·] for ‘multilayer per-
ceptron’. For example, this might consist of a two-layer fully connected network
with ReLU hidden units. This needs to be done in a way that preserves the ability
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Figure 12.9 One layer of the transformer architecture that
implements the transformation (12.1). Here
‘MLP’ stands for multilayer perceptron, while
‘add and norm’ denotes a residual connection
followed by layer normalization.
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of the transformer to process sequences of variable length. To achieve this, the same
shared network is applied to each of the output vectors, corresponding to the rows of
Z. Again, this neural network layer can be improved by using a residual connection.
It also includes layer normalization so that the final output from the transformer layer
has the form

X̃ = LayerNorm [MLP [Z] + Z] . (12.22)

This leads to an overall architecture for a transformer layer shown in Figure 12.9 and
summarized in Algorithm 12.3. Again, we can use a pre-norm instead, in which case
the final output is given by

X̃ = MLP(Z′) + Z, where Z′ = LayerNorm [Z] . (12.23)

In a typical transformer there are multiple such layers stacked on top of each other.
The layers generally have identical structures, although there is no sharing of weights
and biases between different layers.

12.1.8 Computational complexity
The attention layer discussed so far takes a set of N vectors each of length

D and maps them into another set of N vectors having the same dimensionality.
Thus, the inputs and outputs each have overall dimensionalityND. If we had used a
standard fully connected neural network to map the input values to the output values,
it would have O(N2D2) independent parameters. Likewise the computational cost
of evaluating one forward pass through such a network would also be O(N2D2).

In the attention layer, the matrices W(q), W(k), and W(v) are shared across in-
put tokens, and therefore the number of independent parameters isO(D2), assuming
Dk ! Dv ! D. Since there are N input tokens, the number of computational steps

Transformer Layers

https://arxiv.org/abs/1607.06450
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Position Encoding

• The weight matrices  are shared among the input 
tokens, so transformer is equivariant w.r.t. input permutations.

• Token ordering is important in sequential processing: “The professor 
failed the students” is different from “The students failed the professor”.

• Construct a position encoding vector  and combine with the input 
token embedding . Concatenation would increase the dim of input 
space and significantly increase computational cost. Instead:

• The position & input vectors have the same dim. Two randomly 
chosen uncorrelated vectors tend to be nearly orthogonal in high dim.

• Associate an integer  to each position has the problem of 
corrupting the input vector because the length is unbounded, and vary 
among training sets. May not recognize new longer input sequence.

W(q), W(k), W(v)

rn
xn

1,2,3,…
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stead of having to be represented in the network architecture. We will therefore
construct a position encoding vector rn associated with each input position n and
then combine this with the associated input token embedding xn. One obvious way
to combine these vectors would be to concatenate them, but this would increase the
dimensionality of the input space and hence of all subsequent attention spaces, cre-
ating a significant increase in computational cost. Instead, we can simply add the
position vectors onto the token vectors to give

x̃n = xn + rn. (12.24)

This requires that the positional encoding vectors have the same dimensionality as
the token-embedding vectors.

At first it might seem that adding position information onto the token vector
would corrupt the input vectors and make the task of the network much more diffi-
cult. However, some intuition as to why this can work well comes from noting that
two randomly chosen uncorrelated vectors tend to be nearly orthogonal in spaces of
high dimensionality, indicating that the network is able to process the token identityExercise 12.8
information and the position information relatively separately. Note also that, be-
cause of the residual connections across every layer, the position information does
not get lost in going from one transformer layer to the next. Moreover, due to the
linear processing layers in the transformer, a concatenated representation has similar
properties to an additive one.Exercise 12.9

The next task is to construct the embedding vectors {rn}. A simple approach
would be to associate an integer 1, 2, 3, . . . with each position. However, this has the
problem that the magnitude of the value increases without bound and therefore may
start to corrupt the embedding vector significantly. Also it may not generalize well
to new input sequences that are longer than those used in training, since these will
involve coding values that lie outside the range of those used in training. Alterna-
tively we could assign a number in the range (0, 1) to each token in the sequence,
which keeps the representation bounded. However, this representation is not unique
for a given position as it depends on the overall sequence length.

An ideal positional encoding should provide a unique representation for each
position, it should be bounded, it should generalize to longer sequences, and it should
have a consistent way to express the number of steps between any two input vectors
irrespective of their absolute position because the relative position of tokens is often
more important than the absolute position.

There are many approaches to positional encoding (Dufter, Schmitt, and Schütze,
2021). Here we describe a technique based on sinusoidal functions introduced by
Vaswani et al. (2017). For a given position n the associated position-encoding vec-
tor has components rni given by

rni =






sin
( n

Li/D

)
, if i is even,

cos
( n

L(i−1)/D

)
, if i is odd.

(12.25)

We see that the elements of the embedding vector rn are given by a series of sine and
cosine functions of steadily increasing wavelength, as illustrated in Figure 12.10(a).



Position Encoding

• Assigning a # between  to each token 
in the sequence does not work as the rep. 
is not unique for a given position (depends 
on sequence length).

• Is there an encoding that provides a 
unique rep. for each position, is bounded, 
generalizable to longer sequences, & 
capture relative positions?

• Use sinusoidal functions (Vaswani et al):

• Because of the properties of sine and 
cosine, the encoding allows the network to 
attend to relative positions.

(0,1)
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Figure 12.10 Illustrations of the functions defined by (12.25) and used to construct position-encoding vectors.
(a) A plot in which the horizontal axis shows the different components of the embedding vector r whereas the
vertical axis shows the position in the sequence. The values of the vector elements for two positions n andm are
shown by the intersections of the sine and cosine curves with the horizontal grey lines. (b) A heat map illustration
of the position-encoding vectors defined by (12.25) for dimension D = 100 with L = 30 for the first N = 200
positions.

Similar to binary reps of integers, 
except that  is continuous:rni
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This encoding has the property that the elements of the vector rn all lie in the
range (−1, 1). It is reminiscent of the way binary numbers are represented, with the
lowest order bit alternating with high frequency, and subsequent bits alternating with
steadily decreasing frequencies:

1 : 0 0 0 1
2 : 0 0 1 0
3 : 0 0 1 1
4 : 0 1 0 0
5 : 0 1 0 1
6 : 0 1 1 0
7 : 0 1 1 1
8 : 1 0 0 0
9 : 1 0 0 1

For the encoding given by (12.25), however, the vector elements are continuous
variables rather than binary. A plot of the position-encoding vectors is shown in
Figure 12.10(b).

One nice property of the sinusoidal representation given by (12.25) is that, for
any fixed offset k, the encoding at position n + k can be represented as a linear
combination of the encoding at position n, in which the coefficients do not dependExercise 12.10
on the absolute position but only on the value of k. The network should therefore be
able to learn to attend to relative positions. Note that this property requires that the
encoding makes use of both sine and cosine functions.

Another popular approach to positional representation is to use learned position
encodings. This is done by having a vector of weights at each token position that
can be learned jointly with the rest of the model parameters during training, and
avoids using hand-crafted representations. Because the parameters are not shared
between the token positions, the tokens are no longer invariant under a permutation,
which is the purpose of a positional encoding. However, this approach does not
meet the criteria we mentioned earlier of generalizing to longer input sequences,
as the encoding will be untrained for positional encodings not seen during training.
Therefore, this approach is generally most suitable when the input length is relatively
constant during both training and inference.

12.2. Natural Language

Now that we have studied the architecture of the transformer, we will explore how
this can be used to process language data consisting of words, sentences, and para-
graphs. Although this is the modality that transformers were originally developed to
operate on, they have proved to be a very general class of models and have become
the state-of-the-art for most input data types. Later in this chapter we will look at
their use in other domains.Section 12.4

Many languages, including English, comprise a series of words separated by
white space, along with punctuation symbols, and therefore represent an example of



Transformer for NLP

• A typical NLP pipeline starts with a tokenizer that splits the text into 
words or word fragments. Using words as tokens may not be ideal:

• Some words (e.g. names, technical terms) aren’t in the vocabulary.

• How about punctuation? A question mark contains info to encode.

• The vocabulary would need different tokens for different versions 
of the same word with different suffices (e.g., walk, walks, walked, 
walking), and there is no way to clarify these variations are related.

• Then each of the tokens is mapped to a learned embedding. 

• The whole vocabulary is stored in a matrix  where 
 is the vocabulary size; this vocabulary matrix is learned.

• These embeddings are passed thru a series of transformer layers.

Ωe ∈ ℝD×|𝒱|

|𝒱 |



Tokenization

• One approach is to use letters and punctuations as the vocabulary. 
But this requires the subsequent network to re-learn the relations 
between the very small pieces.

• A compromise is sub-word tokenizer such as byte pair encoding 
that greedily merges sub-strings based on their frequencies.

• Consider the following nursery rhyme:

• The tokens are initially just the characters & whitespace (represented 
by an underscore), and their frequencies given in the table. 

12.5 Transformers for natural language processing 217

Figure 12.8 Sub-word tokenization. a) A passage of text from a nursery rhyme.
The tokens are initially just the characters and whitespace (represented by an
underscore), and their frequencies are displayed in the table. b) At each iteration,
the sub-word tokenizer looks for the most commonly occurring adjacent pair of
tokens (in this case, se) and merges them. This creates a new token and decreases
the counts for the original tokens s and e. c) At the second iteration, the algorithm
merges e and the whitespace character_. Note that the last character of the first
token to be merged cannot be whitespace, which prevents merging across words.
d) After 22 iterations, the tokens consist of a mix of letters, word fragments, and
commonly occurring words. e) If we continue this process indefinitely, the tokens
eventually represent the full words. f) Over time, the number of tokens increases
as we add word fragments to the letters and then decreases again as we merge
these fragments. In a real situation, there would be a very large number of words,
and the algorithm would terminate when the vocabulary size (number of tokens)
reached a predetermined value. Punctuation and capital letters would also be
treated as separate input characters.

Draft: please send errata to udlbookmail@gmail.com.



Byte pair encoding
• At each iteration, the sub-word tokenizer looks for the most commonly 

occurring adjacent pair of tokens and merges them. This creates a new 
token & decreases the counts for the original tokens. 

• At the second iteration, the algorithm merges e and the whitespace 
character_. The last character of the first token to be merged cannot be 
whitespace, which prevents merging across words. 
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Byte pair encoding (continued)

• After 22 iterations, the tokens consist of a mix of letters, word 
fragments, and commonly occurring words:

• If we continue this process indefinitely, the tokens eventually 
represent the full words:
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Figure 12.8 Sub-word tokenization. a) A passage of text from a nursery rhyme.
The tokens are initially just the characters and whitespace (represented by an
underscore), and their frequencies are displayed in the table. b) At each iteration,
the sub-word tokenizer looks for the most commonly occurring adjacent pair of
tokens (in this case, se) and merges them. This creates a new token and decreases
the counts for the original tokens s and e. c) At the second iteration, the algorithm
merges e and the whitespace character_. Note that the last character of the first
token to be merged cannot be whitespace, which prevents merging across words.
d) After 22 iterations, the tokens consist of a mix of letters, word fragments, and
commonly occurring words. e) If we continue this process indefinitely, the tokens
eventually represent the full words. f) Over time, the number of tokens increases
as we add word fragments to the letters and then decreases again as we merge
these fragments. In a real situation, there would be a very large number of words,
and the algorithm would terminate when the vocabulary size (number of tokens)
reached a predetermined value. Punctuation and capital letters would also be
treated as separate input characters.

Draft: please send errata to udlbookmail@gmail.com.
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The number of tokens increases as we add 
word fragments to the letters and then 

decreases again as we merge these fragments. 



Embeddings
• Each token is mapped to a unique word embedding; the embeddings 

for the whole vocabulary are storied in a matrix 

• The matrix  is learned like any other network parameter.

• A typical embedding size  is  and a typical total vocabulary size 
 is . Many parameters in  to learn.

Ωe ∈ ℝD×|𝒱|

Ωe

D 1024
|𝒱 | 30,000 Ωe
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Figure 12.9 The input embedding matrix X ∈ RD×N contains N embeddings of
length D and is created by multiplying a matrix Ωe containing the embeddings
for the entire vocabulary with a matrix containing one-hot vectors in its columns
that correspond to the word or sub-word indices. The vocabulary matrix Ωe is
considered a parameter of the model and is learned along with the other param-
eters. Note that the two embeddings for the word an in X are the same.

text. Encoder-decoders are used in sequence-to-sequence tasks, where one text string is
converted into another (e.g., machine translation). These variations are described in
sections 12.6–12.8, respectively.

12.6 Encoder model example: BERT

BERT is an encoder model that uses a vocabulary of 30,000 tokens. Input tokens are
converted to 1024-dimensional word embeddings and passed through 24 transformer
layers. Each contains a self-attention mechanism with 16 heads. The queries, keys, and
values for each head are of dimension 64 (i.e., the matrices Ωvh,Ωqh,Ωkh are 1024×64).
The dimension of the single hidden layer in the fully connected networks is 4096. The
total number of parameters is ∼ 340 million. When BERT was introduced, this was
considered large, but it is now much smaller than state-of-the-art models.

Encoder models like BERT exploit transfer learning (section 9.3.6). During pre-
training, the parameters of the transformer architecture are learned using self-supervision
from a large corpus of text. The goal here is for the model to learn general information
about the statistics of language. In the fine-tuning stage, the resulting network is adapted
to solve a particular task using a smaller body of supervised training data.

Draft: please send errata to udlbookmail@gmail.com.
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is mapped to a learned embedding. These embeddings are passed through a series of
transformer layers. We now consider each of these stages in turn.

12.5.1 Tokenization

A text processing pipeline begins with a tokenizer. This splits the text into smaller
constituent units (tokens) from a vocabulary of possible tokens. In the discussion above,
we have implied that these tokens represent words, but there are several difficulties.

• Inevitably, some words (e.g., names) will not be in the vocabulary.
• It’s unclear how to handle punctuation, but this is important. If a sentence ends

in a question mark, we must encode this information.
• The vocabulary would need different tokens for versions of the same word with

different suffixes (e.g., walk, walks, walked, walking), and there is no way to clarify
that these variations are related.

One approach would be to use letters and punctuation marks as the vocabulary, but this
would mean splitting text into very small parts and requiring the subsequent network to
re-learn the relations between them.

In practice, a compromise between letters and full words is used, and the final vo-Notebook 12.3
Tokenization cabulary includes both common words and word fragments from which larger and less

frequent words can be composed. The vocabulary is computed using a sub-word tok-
enizer such as byte pair encoding (figure 12.8) that greedily merges commonly occurring
sub-strings based on their frequency.

12.5.2 Embeddings

Each token in the vocabulary V is mapped to a unique word embedding, and the embed-
dings for the whole vocabulary are stored in a matrix Ωe ∈ RD×|V|. To accomplish this,
the N input tokens are first encoded in the matrix T ∈ R|V|×N , where the nth column
corresponds to the nth token and is a |V| × 1 one-hot vector (i.e., a vector where every
entry is zero except for the entry corresponding to the token, which is set to one). The
input embeddings are computed as X = ΩeT, and Ωe is learned like any other network
parameter (figure 12.9). A typical embedding size D is 1024, and a typical total vocab-
ulary size |V| is 30,000, so even before the main network, there are many parameters
in Ωe to learn.

12.5.3 Transformer model

Finally, the embedding matrix X representing the text is passed through a series of K
transformer layers, called a transformer model. There are three types of transformer
models. An encoder transforms the text embeddings into a representation that can
support a variety of tasks. A decoder predicts the next token to continue the input

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.



Transformer model

• The embedding matrix  representing the text is passed through a 
series of  transformer layers, called a transformer model.

• Three types of transformer models: 

• An encoder transforms the text embeddings into a representation 
that can support a variety of tasks (e.g., sentiment analysis).

• A decoder predicts the next token to continue the input text.

• Encoder-decoder used in sequence-to-sequence tasks, where 
one text string is converted into another, e.g., machine translation.

• A hands-on tutorial on transformers in pytorch can be found here: 
https://peterbloem.nl/blog/transformers

X
K

https://peterbloem.nl/blog/transformers


Encoder model example: BERT

• BERT is an encoder model that uses a vocabulary of 30,000 tokens.

• Input tokens are converted to 1024 dimensional word embeddings 
and passed through 24 transformer layers.

• Each contains a self-attention mechanism with 16 heads.

• The weight matrices  for each head are .

• The total number of parameters is  million, but it is now much 
smaller than state-of-the-art models.

• Encoder models like BERT exploit transfer learning: parameters of 
the ML model are learned during pre-training using self-supervision 
from a large corpus of data, followed by a fine-tuning stage to adapt 
for specific task using a smaller body of supervised training data.

Qh, Kh, Vh 1024 × 64

∼ 340

https://arxiv.org/abs/1810.04805v2

https://arxiv.org/abs/1810.04805v2


Pre-training

• For BERT, the self-supervision task consists of predicting missing 
words from sentences from a large internet corpus. 

• Predicting missing words forces the transformer model to understand 
some syntax. For example, red is often found before car or dress 
than swim. In the above example, train is more likely than lasagna.
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Figure 12.10 Pre-training for BERT-like encoder. The input tokens (and a spe-
cial <cls> token denoting the start of the sequence) are converted to word em-
beddings. Here, these are represented as rows rather than columns, so the box
labeled “word embeddings” is XT . These embeddings are passed through a series
of transformer layers (orange connections indicate that every token attends to
every other token in these layers) to create a set of output embeddings. A small
fraction of the input tokens is randomly replaced with a generic <mask> token.
In pre-training, the goal is to predict the missing word from the associated output
embedding. As such, the output embeddings are passed through a softmax func-
tion, and the multiclass classification loss (section 5.24) is used. This task has
the advantage that it uses both the left and right context to predict the missing
word but has the disadvantage that it does not make efficient use of data; here,
seven tokens need to be processed to add two terms to the loss function.

12.6.1 Pre-training

In the pre-training stage, the network is trained using self-supervision. This allows the
use of enormous amounts of data without the need for manual labels. For BERT, the self-
supervision task consists of predicting missing words from sentences from a large internetProblem 12.6 corpus (figure 12.10).1 During training, the maximum input length is 512 tokens, and
the batch size is 256. The system is trained for a million steps, corresponding to roughly
50 epochs of the 3.3-billion word corpus.

Predicting missing words forces the transformer network to understand some syntax.
For example, it might learn that the adjective red is often found before nouns like house
or car but never before a verb like shout. It also allows the model to learn superficial
common sense about the world. For example, after training, the model will assign a
higher probability to the missing word train in the sentence The <mask> pulled into
the station than it would to the word peanut. However, the degree of “understanding”
this type of model can ever have is limited.

1BERT also uses a secondary task that predicts whether two sentences were originally adjacent in
the text or not, but this only marginally improves performance.
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Fine-tuning

• In the fine-tuning stage, the model parameters are adjusted to 
specialize the network to a particular task. 

• An extra layer is appended onto the transformer network to convert 
the output vectors to the desired output format.

• Specific tasks include:

• Text classification: <cls> token is added to the start of each string 
during pre-training. sentiment analysis, the vector associated with 
<cls> is mapped to a number & passed through a logistic sigmoid.

• Word classification: e.g., to classify a word into entity types 
(person, place, organization, or no-entry). Input is mapped to a 

 vector where entry types, then Softmax for probabilities.

• Text span predictions: A question & a passage from Wikipedia 
containing the answer are inputs, predicts the text span of answer.

E × 1 E =
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Figure 12.11 After pre-training, the encoder is fine-tuned using manually labeled
data to solve a particular task. Usually, a linear transformation or a multi-layer
perceptron (MLP) is appended to the encoder to produce whatever output is
required. a) Example text classification task. In this sentiment classification
task, the <cls> token embedding is used to predict the probability that the
review is positive. b) Example word classification task. In this named entity
recognition problem, the embedding for each word is used to predict whether the
word corresponds to a person, place, or organization, or is not an entity.

12.6.2 Fine-tuning

In the fine-tuning stage, the model parameters are adjusted to specialize the network to
a particular task. An extra layer is appended onto the transformer network to convert
the output vectors to the desired output format. Examples include:

Text classification: In BERT, a special token known as the classification or <cls>
token is placed at the start of each string during pre-training. For text classification
tasks like sentiment analysis (in which the passage is labeled as having a positive or
negative emotional tone), the vector associated with the <cls> token is mapped to a
single number and passed through a logistic sigmoid (figure 12.11a). This contributes to
a standard binary cross-entropy loss (section 5.4).
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Decoder model example: GPT3
• The basic architecture is similar to the encoder model & comprises a 

series of transformer layers that operate on learned word embeddings.

• Different goal: to generate the next token in a sequence (and generate 
a coherent text passage by feeding the sequence back into the model).

• Autoregressive langauge model: factors the joint probability of a 
sequence of observed tokens into an autoregressive sequence.

• Consider e.g.: “It takes great courage to let yourself appear weak.”
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Word classification: The goal of named entity recognition is to classify each word as
an entity type (e.g., person, place, organization, or no-entity). To this end, each input
embedding xn is mapped to an E × 1 vector where the E entries correspond to the E
entity types. This is passed through a softmax function to create probabilities for each
class, which contribute to a multiclass cross-entropy loss (figure 12.11b).

Text span prediction: In the SQuAD 1.1 question answering task, the question and a
passage from Wikipedia containing the answer are concatenated and tokenized. BERT
is then used to predict the text span in the passage that contains the answer. Each
token maps to two numbers indicating how likely it is that the text span begins and
ends at this location. The resulting two sets of numbers are put through two softmax
functions. The likelihood of any text span being the answer can be derived by combining
the probability of starting and ending at the appropriate places.

12.7 Decoder model example: GPT3

This section presents a high-level description of GPT3, an example of a decoder model.
The basic architecture is extremely similar to the encoder model and comprises a series
of transformer layers that operate on learned word embeddings. However, the goal is
different. The encoder aimed to build a representation of the text that could be fine-
tuned to solve a variety of more specific NLP tasks. Conversely, the decoder has one
purpose: to generate the next token in a sequence. It can generate a coherent text
passage by feeding the extended sequence back into the model.

12.7.1 Language modeling

GPT3 constructs an autoregressive language model. This is easiest to understand with
a concrete example. Consider the sentence It takes great courage to let yourself appear
weak. For simplicity, let’s assume that the tokens are the full words. The probability of
the full sentence is:

Pr(It takes great courage to let yourself appear weak) =

Pr(It)× Pr(takes|It)× Pr(great|It takes)× Pr(courage|It takes great)×
Pr(to|It takes great courage)× Pr(let|It takes great courage to)×
Pr(yourself|It takes great courage to let)×
Pr(appear|It takes great courage to let yourself)×
Pr(weak|It takes great courage to let yourself appear). (12.14)

More formally, an autoregressive model factors the joint probability Pr(t1, t2, . . . , tN ) of
the N observed tokens into an autoregressive sequence:
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Pr(t1, t2, . . . , tN ) = Pr(t1)
N∏

n=2

Pr(tn|t1, . . . , tn−1). (12.15)

The autoregressive formulation demonstrates the connection between maximizing the log
probability of the tokens in the loss function and the next token prediction task.

12.7.2 Masked self-attention

To train a decoder, we maximize the log probability of the input text under the autore-
gressive model. Ideally, we would pass in the whole sentence and compute all the log
probabilities and gradients simultaneously. However, this poses a problem; if we pass in
the full sentence, the term computing log [Pr(great|It takes)] has access to both the an-
swer great and the right context courage to let yourself appear weak. Hence, the system
can cheat rather than learn to predict the following words and will not train properly.

Fortunately, the tokens only interact in the self-attention layers in a transformer
network. Hence, the problem can be resolved by ensuring that the attention to the
answer and the right context is zero. This can be achieved by setting the corresponding
dot products in the self-attention computation (equation 12.5) to negative infinity before
they are passed through the softmax[•] function. This is known as masked self-attention.
The effect is to make the weight of all the upward-angled arrows in figure 12.1 zero.

The entire decoder network operates as follows. The input text is tokenized, and the
tokens are converted to embeddings. The embeddings are passed into the transformer
network, but now the transformer layers use masked self-attention so that they can
only attend to the current and previous tokens. Each of the output embeddings can be
thought of as representing a partial sentence, and for each, the goal is to predict the next
token in the sequence. Consequently, after the transformer layers, a linear layer maps
each word embedding to the size of the vocabulary, followed by a softmax[•] function
that converts these values to probabilities. During training, we aim to maximize the sum
of the log probabilities of the next token in the ground truth sequence at every position
using a standard multiclass cross-entropy loss (figure 12.12).

12.7.3 Generating text from a decoder

The autoregressive language model is the first example of a generative model discussed
in this book. Since it defines a probability model over text sequences, it can be used
to sample new examples of plausible text. To generate from the model, we start with
an input sequence of text (which might be just a special <start> token indicating the
beginning of the sequence) and feed this into the network, which then outputs the proba-
bilities over possible subsequent tokens. We can then either pick the most likely token or
sample from this probability distribution. The new extended sequence can be fed back
into the decoder network that outputs the probability distribution over the next token.
By repeating this process, we can generate large bodies of text. The computation can
be made quite efficient as prior embeddings do not depend on subsequent ones due to
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Decoder model example: GPT3
• To train a decoder, we maximize the log probability of the input text under 

the autoregressive model defined above.

• This poses a problem: if we pass the full sentence, the term computing
 has access to the rest of the sentence.

• The system can cheat rather than learn to predict, and thus will not train 
properly.

• Masked self-attention: setting the dot products with future tokens in the 
self-attention computation to  before passing through softmax.

• The transformer layers use masked self-attention so that only attention to 
the current and previous tokens are allowed. 

• During training, we aim to maximize the sum of the log probabilities of the 
next token using a standard multclass cross-entropy loss.

log |Pr(great | It takes)

−∞
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Figure 12.12 Training GPT3-type decoder network. The tokens are mapped to
word embeddings with a special <start> token at the beginning of the sequence.
The embeddings are passed through a series of transformer layers that use masked
self-attention. Here, each position in the sentence can only attend to its own
embedding and those of tokens earlier in the sequence (orange connections). The
goal at each position is to maximize the probability of the following ground truth
token in the sequence. In other words, at position one, we want to maximize the
probability of the token It; at position two, we want to maximize the probability
of the token takes; and so on. Masked self-attention ensures the system cannot
cheat by looking at subsequent inputs. The autoregressive task has the advantage
of making efficient use of the data since every word contributes a term to the loss
function. However, it only exploits the left context of each word.

the masked self-attention. Hence, much of the earlier computation can be recycled as weProblem 12.7 generate subsequent tokens.
In practice, many strategies can make the output text more coherent. For example,Notebook 12.4

Decoding
strategies

beam search keeps track of multiple possible sentence completions to find the overall most
likely (which is not necessarily found by greedily choosing the most likely next word at
each step). Top-k sampling randomly draws the next word from only the top-K most
likely possibilities to prevent the system from accidentally choosing from the long tail of
low-probability tokens and leading to an unnecessary linguistic dead end.

12.7.4 GPT3 and few-shot learning

Large language models like GPT3 apply these ideas on a massive scale. In GPT3, the
sequence lengths are 2048 tokens long, and the total batch size is 3.2 million tokens.
There are 96 transformer layers (some of which implement a sparse version of attention),
each processing a word embedding of size 12288. There are 96 heads in the self-attention
layers, and the value, query, and key dimension is 128. It is trained with 300 billion
tokens and contains 175 billion parameters.
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Generating text from a decoder

• The autoregressive language model is a generative model.

• Start with an input sequence of text, beginning with a <start> token.

• The outputs are the probabilities over possible subsequent tokens.

• We can either pick the most likely token or sample from this 
probability distribution.

• The new extended sequence can be fed back into the decoder 
network that outputs the probability distribution over the next token.

• Rinse and repeat: we generate large bodies of text.

• The computation is efficient as prior embeddings do not depend on 
subsequent ones (masked self-attention) and can be recycled. 

• Other strategies (instead of greedy search): beam search and top-k 
sampling, etc.



Encoder-decoder model example: machine translation

• Translation between languages is a sequence-to-sequence task.

• An encoder computes a good rep. of the source sentence.

• A decoder generates the sentence in the target language.

• Consider a encoder-decoder model for English-French translation.

• The encoder receives the sentence in English and process it through 
a series of transformer layers to create an output rep. for each token.

• During training, the decoder receives the ground truth translation in 
French and passes it through a series of transformer layers that use 
masked self-attention and predict the following word at each position.

• However, the decoder layers also attend to the output of the encoder. 
Each French output word is conditioned on the previous output words 
and the source English sentence.
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Figure 12.13 Encoder-decoder architecture. Two sentences are passed to the
system with the goal of translating the first into the second. a) The first sentence
is passed through a standard encoder. b) The second sentence is passed through a
decoder that uses masked self-attention but also attends to the output embeddings
of the encoder using cross-attention (orange rectangle). The loss function is the
same as for the decoder model; we want to maximize the probability of the next
word in the output sequence.

12.8 Encoder-decoder model example: machine translation

Translation between languages is an example of a sequence-to-sequence task. This re-
quires an encoder (to compute a good representation of the source sentence) and a
decoder (to generate the sentence in the target language). This task can be tackled
using an encoder-decoder model.

Consider translating from English to French. The encoder receives the sentence
in English and processes it through a series of transformer layers to create an output
representation for each token. During training, the decoder receives the ground truth
translation in French and passes it through a series of transformer layers that use masked
self-attention and predict the following word at each position. However, the decoder
layers also attend to the output of the encoder. Consequently, each French output word is
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Figure 12.14 Cross-attention. The flow of computation is the same as in stan-
dard self-attention. However, the queries are calculated from the decoder embed-
dings Xdec, and the keys and values from the encoder embeddings Xenc. In the
context of translation, the encoder contains information about the source lan-
guage, and the decoder contains information about the target language statistics.

conditioned on the previous output words and the source English sentence (figure 12.13).
This is achieved by modifying the transformer layers in the decoder. Originally,

these consisted of a masked self-attention layer followed by a neural network applied
individually to each embedding (figure 12.12). A new self-attention layer is added be-
tween these two components, in which the decoder embeddings attend to the encoder
embeddings. This uses a version of self-attention known as encoder-decoder attention or
cross-attention, where the queries are computed from the decoder embeddings and the
keys and values from the encoder embeddings (figure 12.14).

12.9 Transformers for long sequences

Since each token in a transformer encoder model interacts with every other token, the
computational complexity scales quadratically with the length of the sequence. For a
decoder model, each token only interacts with previous tokens, so there are roughly
half the number of interactions, but the complexity still scales quadratically. These
relationships can be visualized as interaction matrices (figure 12.15a–b).

This quadratic increase in the amount of computation ultimately limits the length of
sequences that can be used. Many methods have been developed to extend the trans-
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