PHY 835: Machine Learning in Physics
Lecture 19: Transformers Part 2
April 4, 2024

Al
N
Universe

Gary Shiu

Transformer Layers

NNs benefit greatly from depth, so we Y

can stack self-attention layers (like the _T

right) on top of each other. E - 1

To improve efficiency, transformer L J
IayerS are followed by Iayer [self-attention] [self-attention] [self-attention]
normalization: https://arxiv.org/abs/ {1 I 1 1 I 1
1607.06450 !

Output of an attention layer are <
constrained to be linear combinations of }

the inputs, though non-linearities enter -
through the attention weights. (wr)

Enhance flexibility by post-processing
the output of each layer using non-linear
network denoted by MLP (e.g., fully [mutihead |

self-attention

connected NN with RelLu activation. = ? -

p
add & norm |
\ J

X

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450

Position Encoding

The weight matrices W@, WX W) gre shared among the input
tokens, so transformer is equivariant w.r.t. input permutations.

Token ordering is important in sequential processing: “The professor
failed the students”is different from “The students failed the professor”.

Construct a position encoding vector r, and combine with the input
token embedding X, . Concatenation would increase the dim of input
space and significantly increase computational cost. Instead:

~

X, = Xn + 1.

The position & input vectors have the same dim. Two randomly
chosen uncorrelated vectors tend to be nearly orthogonal in high dim.

Associate an integer 1,2,3,... to each position has the problem of
corrupting the input vector because the length is unbounded, and vary
among training sets. May not recognize new longer input sequence.

Position Encoding

Assigning a # between (0,1) to each token
In the sequence does not work as the rep.

IS not unique for a given position (depends
on sequence length).

Is there an encoding that provides a
unique rep. for each position, is bounded,
generalizable to longer sequences, &
capture relative positions?

Use sinusoidal functions (Vaswani et al):

{s' (n if 7 1s even
in : 7 .
LZ/D) Y, S

Tni =
n

COS (L(Z——I)/D> , if 2 1s odd.

Because of the properties of sine and
cosine, the encoding allows the network to
attend to relative positions.

m

IIIIII
rrrrrrrrrrrr

Similar to binary reps of integers,
except that r, ; is continuous:

OO Ui W=

OO OO0 o oo

embedding dimension

HOMHROFROROHR

/
/
v

1

Transformer for NLP

* Atypical NLP pipeline starts with a tokenizer that splits the text into
words or word fragments. Using words as tokens may not be ideal:

e Some words (e.g. names, technical terms) aren’t in the vocabulary.
e How about punctuation? A question mark contains info to encode.

 The vocabulary would need different tokens for different versions
of the same word with different suffices (e.g., walk, walks, walked,
walking), and there is no way to clarify these variations are related.

 Then each of the tokens is mapped to a learned embedding.

e The whole vocabulary is stored in a matrix 2, € RPXI71 where
| 7| is the vocabulary size; this vocabulary matrix is learned.

* These embeddings are passed thru a series of transformer layers.

Tokenization

e One approach is to use letters and punctuations as the vocabulary.
But this requires the subsequent network to re-learn the relations
between the very small pieces.

e Acompromise is sub-word tokenizer such as byte pair encoding
that greedily merges sub-strings based on their frequencies.

* Consider the following nursery rhyme:

a_sailor_.went_to_sea_sea_sea_
to_see_what_he_could_see_see_see_
but_all_that_he_could_see_see_see_
was_the_bottom_of_the_deep_blue_sea_sea_sea_

e bld|w|c|f|i|m|n|p
28 71

tolh|1]u]
M[8[6(6[4|3|3|3 21|11

id
I

 The tokens are initially just the characters & whitespace (represented
by an underscore), and their frequencies given in the table.

Byte pair encoding

* At each iteration, the sub-word tokenizer looks for the most commonly
occurring adjacent pair of tokens and merges them. This creates a new
token & decreases the counts for the original tokens.

a_sailor_went_to_sea sea sea

to_see what_he could sece sece sece

but_all_that he could see see see_
was_the bottom of the deep blue seca sea sea

||||||||||||W|C||||m||P|r|
3315113 [12[n]sl6[6[4]3]3|3[2[2[T[T[T]1]1

* At the second iteration, the algorithm merges e and the whitespace
character_. The last character of the first token to be merged cannot be
whitespace, which prevents merging across words.

a_sailor went to sea sea sea

to_see what_he could see see see

but_all that he could see see see
was_the bottom_of the deep blue sea sea sea

Byte pair encoding (continued)

o After 22 iterations, the tokens consist of a mix of letters, word
fragments, and commonly occurring words:

|see_|sea_|e|b|l|w]|a|could_|hat_|he_|o|t|t_|the_|to_|u|a_|d|f|m|n]|p]|s]sailor_|to|
716 [43[31313] 2 [2 [2 2f2[2] 2 2 [2[1 [T pnpngon

* |f we continue this process indefinitely, the tokens eventually
represent the full words:

|see_|sea_|could_|he_|the_|a_]all_|blue_|bottom_|but_|deep_|of_|sailor_|that_|to_|was_|went_|what_|
c7le 2 fzp 2o r g 1|

30

The number of tokens increases as we add
word fragments to the letters and then
decreases again as we merge these fragments.

tokens

R 50
lterations

Embeddings

 Each token is mapped to a unigue word embedding; the embeddings
for the whole vocabulary are storied in a matrix €2, € RDXI7]

~——ue
JIeapiee
are

~——ue

- que
yIeapiee
areqe

. I103eqQqe

— ATe

— e

—ue

. jue

- odoojue

(AU

- oI®
ordse
oe

- TWIoIX®

<~

Input, X Vocabulary embeddings, €2,

“an aardvark ate an ant”

Token indices, T

e The matrix €2, is learned like any other network parameter.

« Atypical embedding size D is 1024 and a typical total vocabulary size
| 7| is 30,000. Many parameters in €2, to learn.

Transformer model

e The embedding matrix X representing the text is passed through a
series of K transformer layers, called a transformer model.

* Three types of transformer models:

* An encoder transforms the text embeddings into a representation
that can support a variety of tasks (e.g., sentiment analysis).

* A decoder predicts the next token to continue the input text.

e Encoder-decoder used in sequence-to-sequence tasks, where
one text string is converted into another, e.g., machine translation.

* A hands-on tutorial on transformers in pytorch can be found here:
https://peterbloem.nl/blog/transformers

https://peterbloem.nl/blog/transformers

Encoder model example: BERT

https://arxiv.org/abs/1810.04805v2

BERT is an encoder model that uses a vocabulary of 30,000 tokens.

Input tokens are converted to 1024 dimensional word embeddings
and passed through 24 transformer layers.

Each contains a self-attention mechanism with 16 heads.

The weight matrices Q,, K;,, V, for each head are 1024 X 64.

The total number of parameters is ~ 340 million, but it is now much
smaller than state-of-the-art models.

Encoder models like BERT exploit transfer learning: parameters of
the ML model are learned during pre-training using self-supervision
from a large corpus of data, followed by a fine-tuning stage to adapt
for specific task using a smaller body of supervised training data.

https://arxiv.org/abs/1810.04805v2

Pre-training

 For BERT, the self-supervision task consists of predicting missing
words from sentences from a large internet corpus.

Word Linear + Probability of
embeddings Transformer softmax masked token

——————————————

?

/) 7
f
3

% "v»;«'»f RO
XX »0«‘» 4y (AN
N\

)

7

(151 /X 8
i\‘« Y ‘
R

\\

A/
9.5
O\ N

1
<mask>—|
1

\\/ /
a

\ “ ’
ON“¢Q A/

(x K)

&
T
* @

9

4»:«‘\

N/

;
/ ,%N’~

DNROPLERLP

Q,

*
Q‘
K/
7

S R D R
A,»
5
o
XK
AN
)

"1
\
9,
(0%
(V////

N P*"’)o

&
»’\‘7, NORT /2
DT IRKIX
s
(/
\(

1
INtO —j
1

\/
X

1
<mask>—=|
1

station _>i|

\

|
|
|
pulled —i[]
|
|
|

yIeaper
snoeqe
019Z
©)oZ

* Predicting missing words forces the transformer model to understand
some syntax. For example, red is often found before car or dress
than swim. In the above example, train is more likely than lasagna.

Fine-tuning

* In the fine-tuning stage, the model parameters are adjusted to
specialize the network to a particular task.

 An extra layer is appended onto the transformer network to convert
the output vectors to the desired output format.

e Specific tasks include:

 Text classification: <cls> token is added to the start of each string
during pre-training. sentiment analysis, the vector associated with
<cls> is mapped to a number & passed through a logistic sigmoid.

e Word classification: e.g., to classify a word into entity types
(person, place, organization, or no-entry). Input is mapped to a
E X 1 vector where E = entry types, then Softmax for probabilities.

e Text span predictions: A question & a passage from Wikipedia
containing the answer are inputs, predicts the text span of answer.

Fine-tuning

Text classification

a) Word MLP + Probability of
embeddings Transformer sigmoid positive review
<cls>—[TTTTT 1] ~)]
The—[T T T T T 11+ ~
soup—{[T T T T 111+ ~
tasted—>i| HEREN |§_ ~
like—[T T T T 111~ ~
socks—>:‘|-_|_“|__|“|___|__|“'E— —
b) Word Word classification Linear + Probability of
embeddings Transformer softmax entity type
<cls>—TTTIT T 10N B
Zara—[T TTTTT1- - - ——Imm
works—[T T T T T[]~ Nans : - ——mme
: | n (XK)
at—[TTTTTT] - — — . —mm
Chanel [T T T T - Sans i -) ——Dhnm
in—{[TTTT T Sans | - ——mmm
Victoria—={ T T T[]~ J Ld U - —Imm

uostad
ooe[d

UoI)eZIuesdIo
Ajus ou

Decoder model example: GPT3

The basic architecture is similar to the encoder model & comprises a
series of transformer layers that operate on learned word embeddings.

Different goal: to generate the next token in a sequence (and generate
a coherent text passage by feeding the sequence back into the model).

Autoregressive langauge model: factors the joint probability of a
sequence of observed tokens into an autoregressive sequence.

Consider e.g.: “It takes great courage to let yourself appear weak.”

Pr(It takes great courage to let yourself appear weak) =
r(It) x Pr(takes|It) x Pr(great|lt takes) x Pr(courage|lt takes great) x

T

Pr(to|lt takes great courage) x Pr(let|It takes great courage to) x

T

(
(
Pr(yourself|It takes great courage to let) x
r(appear|lt takes great courage to let yourself) x
(

Pr(weak|It takes great Courage to let yourself appear).

Generally: Pr(ti,ts,...,tn) = Pr(t1) HPH 1, 1)
n=2

Decoder model example: GPT3

To train a decoder, we maximize the log probability of the input text under
the autoregressive model defined above.

This poses a problem: if we pass the full sentence, the term computing
log | Pr(great | It takes) has access to the rest of the sentence.

The system can cheat rather than learn to predict, and thus will not train
properly.

Masked self-attention: setting the dot products with future tokens in the
self-attention computation to — oo before passing through softmax.

The transformer layers use masked self-attention so that only attention to
the current and previous tokens are allowed.

During training, we aim to maximize the sum of the log probabilities of the
next token using a standard multclass cross-entropy loss.

Masked self-attention

Word Transformer with
embeddings masked attention
<start>—{ TTTT 1T | N 1 N

. .

—TTTTTIH ! - §

takes— T TTTT1H ! Nt i
great— T T T T T T+ D

courage —TTTTTIH | - | |

. .

to—[TTTTTI ! ~O- ;

let—{TTTTTIH | J o U

attend only to the current and previous tokens

© X
5

Linear +
softmax

Probability of

target token

e

JIeApIer

snoeqe
0197

©OZ

It

takes
great
courage
to

let

yourself

Generating text from a decoder

The autoregressive language model is a generative model.
Start with an input sequence of text, beginning with a <start> token.
The outputs are the probabilities over possible subsequent tokens.

We can either pick the most likely token or sample from this
probability distribution.

The new extended sequence can be fed back into the decoder
network that outputs the probability distribution over the next token.

Rinse and repeat: we generate large bodies of text.

The computation is efficient as prior embeddings do not depend on
subsequent ones (masked self-attention) and can be recycled.

Other strategies (instead of greedy search): beam search and top-k
sampling, etc.

Encoder-decoder model example: machine translation

Translation between languages is a sequence-to-sequence task.
An encoder computes a good rep. of the source sentence.

A decoder generates the sentence in the target language.
Consider a encoder-decoder model for English-French translation.

The encoder receives the sentence in English and process it through
a series of transformer layers to create an output rep. for each token.

During training, the decoder receives the ground truth translation in
French and passes it through a series of transformer layers that use
masked self-attention and predict the following word at each position.

However, the decoder layers also attend to the output of the encoder.
Each French output word is conditioned on the previous output words
and the source English sentence.

Encoder-decoder model example: machine translation

3) Word

embeddings

——————————

V4
<start>—»i
1

The—{ T T T 1]

1
tasted—i[T T T[]
1

Word

——————————

V4
<Start>—>i
1

]
la[T T T]

1

1

soupe—!
upe—[TTTT]

&
_ B
¢} <+

[A A N I B B S

1

A]
gott—[TTTT]

1

i

1
1
1
chaussettes J:I:I:[:[]

——————————

\

Transformer

o

T T 1T 17T

\

o o

/

———

——

Transformer with masked
and cross attention

——————— -

3
3

Linear + Probability of
softmax target token

---____-_____-__k

Cross-attention

aka encoder-decoder attention

Cross-attention N\

Ng / Ng
D D
Decoder Queries, Ny
Input, Xdec Q:,Bq]-T + Qquec
Ne
N, Ny
Attention,
D Softmax | K Q] D
Ne
Keys, Output,
D K:ﬁle + QX0 V - Softmax [KTQ}
Ne
Encoder
Input, X D
Values,

Qf :/Bv]-T + QvXenc

