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Introduction

Reinforcement leaning is a sequential decision making framework in which agents learned to
perform actions in an environment with the goal of maximizing rewards.

RL controls the actions of an agent in an environment to maximize the

RL applications: Go/Chess/Atari, robotics, financial trading, string theory, optimal experimental
design, ....

RL is often used when problem involves searching a large configuration space.

Other related approaches: genetic algorithms (GAs) which mimic natural selection. RL and GA
work complementarily like nurture and nature.

References: Sutton and Barto: http://incompleteideas.net/book/the-book-2nd.html, Simon
Prince, Understanding Deep Learning: https://udlbook.github.io/udibook/, Fabian Ruehle, Data
science applications to string theory, https://inspirehep.net/literature/1779782

https://github.com/Farama-Foundation/Gymnasium (formerly https://github.com/openai/gym)



http://incompleteideas.net/book/the-book-2nd.html
https://inspirehep.net/literature/1779782
https://github.com/Farama-Foundation/Gymnasium
https://github.com/openai/gym

Challenges of RL

 lllustrate the challenges with chess game. A reward of +1, -1, or O is given at the end of
the game if the agent wins, loses, or draws and O at every other time step. The
challenges:

 The reward is sparse; we must play an entire game to receive feedback.

e Temporal credit assignment problem: The reward is temporally offset from the
action that caused it; a decisive advantage might be gained thirty moves before
victory. We must associate the reward with this critical action. (other examples?)

* The environment is stochastic; the opponent doesn’t always make the same move
in the same situation, so it’s hard to know if an action was truly good or just lucky.

 Exploration-exploitation trade-off: The agent must balance exploring the
environment (e.g., trying new opening moves) with exploiting what it already knows .



Markov Processes

In RL, we learn a policy that maximizes the
expected return in a Markov decision process.

The word Markov implies that the probability

. g 2 B |4
of being in a state depends only on the {
previous state and not on the states before. 5 6| [7 [8
The changes between states are captured by 0 |10l 1 h2

the transition probabilities Pr(s,, | s,) of

moving to the next state s,, | given the current |13 |14 151 ]

state s,, where f indexes the time step.
T=11,2,6,10,9,10,11,15]
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Markov Reward Processes

« A Markov reward process also includes a distribution Pr(r, |s,)
over the possible rewards r,  received at the next step, given s..

o Introduce a discount factor y € (0,1] to compute the return G
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Markov Decision Processes

o A Markov decision process (MDP) adds a set of possible action a, at
each step which changes the transition probabilities Pr(s,, | s,, a,).

« The rewards can also depend on the action: Pr(r,.|s, a,).

« MDP produces a sequence sy, d;, I, $5, 45, '3, S3, A3, ... Of states,
actions & rewards. The entity that performs the actions is the agent.
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Policy

* The rules that determine the agent’s action are known as the policy.

* The policy can be deterministic (one action for a given state) or

stochastic (a probability distribution over each possible action):
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Reinforcement Learning Loop

* The environment and the agent form a loop:

Agent
Policy m[at|s¢]

Reward State State Action
Tt St St a¢

: sHl/Environ ment
: State transition
. Pr(s¢s1]|se, at)
: "t+1]  Reward function

K Pr(ryilse, ap) j

* The agent receives the state and reward from the last time step.
Based on the policy, the agent chooses the next action.

e The environment then assigns the next state according to
Pr(s,,(|s, a,) and the reward according to Pr(r,.{|s,, a,).



Expected return: state and action values

The return G, depends on the state s, and the policy z[a | s]

Characterize how “good” a state is under a given policy 7 by considering
the expected return v[s, | z]. State-value function (long-term return on
average from sequences that starts from s,):

vlse|7] :E[Gt\st,w}.

Action value or state-action value function g[s,, a, | 7] is the expected
return from executing action a, in state s:

q[st,at\w] — E[Gt‘St,CLt,TF} .

Through this quantity, RL algorithms connect future rewards to current
actions (i.e., resolve the temporal credit assignment problem).



Optimal Policy

We want a policy that maximizes the expected return.

For MDPs, there d a deterministic, stationary (depends only on the current
state, not the time step) policy that maximizes the value of every state.

If we know this optimal policy, then we get the optimal state-value function:

v*[s,] = max [IE [Gt\st, WH |

Similarly, the optimal state-action value function:

q*[staat] — IMax |:E [Gt‘staataﬂ-}_ .

Turning this around, if we knew the optimal action-values, we can derive
the optimal policy. RL algorithms estimate the action and policy alternately.

mlat|st| < argmax {Q* St @t]} -



Tabular RL

RL algorithms that do not rely on function approximation.

Model-based methods use the MDP structure explicitly and find the
best policy from the transition matrix Pr(s,, | s, a,) and reward r[s, a].

If the transition matrix & reward are known (often not), a straightforward
optimization problem is dynamic programming.

It not, they must first be observed from observed MDP trajectories.
Model-free methods fall into two classes:

e \alue estimation - estimate the optimal state-action value and then
assign the policy according to the action with the greatest value.

. - estimate the optimal policy using gradient descent
w/0 the intermediate steps of estimating the model or values.



Tabular RL

 Monte Carlo methods simulate many trajectories through the MDP for
a given policy to gather information to improve this policy.

e Temporal difference methods update the policy while the agent
traverses the MDP.

 We will later contrast tabular RL algorithms with the use of deep
learning in RL that does not require storing the large transition matrix.



Monte Carlo Methods

Alternate between computing the action values (based on repeatedly
sampling trajectories) & updating the policy (based on action values).

The action value is estimated as the average of the empirical returns.

The policy is updated by choosing the action with the maximum value

at each state:
mlals] «— argmax {q[s, a]}
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On/off-policy methods

On-policy method: the current best policy is used to guide the agent
through the environment.

It is not possible to estimate the value of actions that have not been
used, & there is nothing to encourage the algorithm to explore them.

Exploring starts: episodes with all possible state-action pairs are
Initiated, so every combination is observed at least once. (impossible
for large configuration space).

c-greedy policy: random action is taken with € probability and optimal
action with 1 — € probability (exploitation/exploration trade-off).

Off-policy method: the optimal policy & (the target policy) is learned
based on episodes generated by a different behavior policy x’"

We want 7’ to explore the environment (stochastic) and the learned
policy i to be efficient.



Temporal difference methods

Update the values/policy while the agent traverses the states of MDP.

SARSA (State-Action-Reward-State-Action) is an on-policy algorithm
with update:

dlsesar) < qlse, a) + a(rlse al +7 - qlsesrsac] = qlse,ar),
where @ € R™ is the learning rate. The bracketed term is TD error.
Q-learning is an off-policy algorithm with update:
dlse, ] — qlss, as] + Oz(r[st, ar] + 7 - max|qfsi 11, a]] — glsi, at]),
where the choice of action is derived from a different policy 7’.

In both cases, the policy is updated by maximizing the action values:

mlals] < argmax {q[s, a]}
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