
PHY 835: Machine Learning in Physics
Lecture 21: Reinforcement Learning Part 1

April 9, 2024

Moritz Münchmeyer

Physics 361 - Machine Learning
in Physics

Lecture 1 – Introduction

Jan. 23rd 2024

Gary Shiu

Introduction
• Reinforcement leaning is a sequential decision making framework in which agents learned to

perform actions in an environment with the goal of maximizing rewards.

• RL controls the actions of an agent in an environment to maximize the reward.

• RL applications: Go/Chess/Atari, robotics, financial trading, string theory, optimal experimental
design, ….

• RL is often used when problem involves searching a large configuration space.

• Other related approaches: genetic algorithms (GAs) which mimic natural selection. RL and GA
work complementarily like nurture and nature.

• References: Sutton and Barto: http://incompleteideas.net/book/the-book-2nd.html, Simon
Prince, Understanding Deep Learning: https://udlbook.github.io/udlbook/, Fabian Ruehle, Data
science applications to string theory, https://inspirehep.net/literature/1779782

• https://github.com/Farama-Foundation/Gymnasium (formerly https://github.com/openai/gym)

http://incompleteideas.net/book/the-book-2nd.html
https://inspirehep.net/literature/1779782
https://github.com/Farama-Foundation/Gymnasium
https://github.com/openai/gym

Challenges of RL

• Illustrate the challenges with chess game. A reward of +1, −1, or 0 is given at the end of
the game if the agent wins, loses, or draws and 0 at every other time step. The
challenges:

• The reward is sparse; we must play an entire game to receive feedback.

• Temporal credit assignment problem: The reward is temporally offset from the
action that caused it; a decisive advantage might be gained thirty moves before
victory. We must associate the reward with this critical action. (other examples?)

• The environment is stochastic; the opponent doesn’t always make the same move
in the same situation, so it’s hard to know if an action was truly good or just lucky.

• Exploration-exploitation trade-off: The agent must balance exploring the
environment (e.g., trying new opening moves) with exploiting what it already knows .

Markov Processes

• In RL, we learn a policy that maximizes the
expected return in a Markov decision process.

• The word Markov implies that the probability
of being in a state depends only on the
previous state and not on the states before.

• The changes between states are captured by
the transition probabilities of
moving to the next state given the current
state , where indexes the time step.

• A Markov process is an evolving system that
produces a sequence of states.

Pr(st+1 |st)
st+1

st t

s1, s2, s3, …

374 19 Reinforcement learning

Figure 19.1 Markov process. A Markov process consists of a set of states and tran-
sition probabilities Pr(st+1|st) that define the probability of moving to state st+1

given the current state is st. a) The penguin can visit 16 different positions
(states) on the ice. b) The ice is slippery, so at each time, it has an equal proba-
bility of moving to any adjacent state. For example, in position 6, it has a 25%
chance of moving to states 2, 5, 7, and 10. A trajectory τ = [s1, s2, s3, . . .] from
this process consists of a sequence of states.

19.1.1 Markov process

A Markov process assumes that the world is always in one of a set of possible states.
The word Markov implies that the probability of being in a state depends only on the
previous state and not on the states before. The changes between states are captured by
the transition probabilities Pr(st+1|st) of moving to the next state st+1 given the current
state st, where t indexes the time step. Hence, a Markov process is an evolving system
that produces a sequence s1, s2, s3 . . . of states (figure 19.1).

19.1.2 Markov reward process

A Markov reward process also includes a distribution Pr(rt+1|st) over the possible re-Problem 19.1 wards rt+1 received at the next time step, given that we are in state st. This produces
a sequence s1, r2, s2, r3, s3, r4 . . . of states and the associated rewards (figure 19.2).

The Markov reward process also includes a discount factor γ ∈ (0, 1] that is used to
compute the return Gt at time t:

Gt =
∞∑

k=0

γkrt+k+1. (19.1)

The return is the sum of the cumulative discounted future rewards; it measures the future
benefit of being on this trajectory. A discount factor of less than one makes rewards that
are closer in time more valuable than rewards that are further away.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Markov Reward Processes

• A Markov reward process also includes a distribution
over the possible rewards received at the next step, given .

• Introduce a discount factor to compute the return :

Pr(rt+1 |st)
rt+1 st

γ ∈ (0,1] Gt

374 19 Reinforcement learning

Figure 19.1 Markov process. A Markov process consists of a set of states and tran-
sition probabilities Pr(st+1|st) that define the probability of moving to state st+1

given the current state is st. a) The penguin can visit 16 different positions
(states) on the ice. b) The ice is slippery, so at each time, it has an equal proba-
bility of moving to any adjacent state. For example, in position 6, it has a 25%
chance of moving to states 2, 5, 7, and 10. A trajectory τ = [s1, s2, s3, . . .] from
this process consists of a sequence of states.

19.1.1 Markov process

A Markov process assumes that the world is always in one of a set of possible states.
The word Markov implies that the probability of being in a state depends only on the
previous state and not on the states before. The changes between states are captured by
the transition probabilities Pr(st+1|st) of moving to the next state st+1 given the current
state st, where t indexes the time step. Hence, a Markov process is an evolving system
that produces a sequence s1, s2, s3 . . . of states (figure 19.1).

19.1.2 Markov reward process

A Markov reward process also includes a distribution Pr(rt+1|st) over the possible re-Problem 19.1 wards rt+1 received at the next time step, given that we are in state st. This produces
a sequence s1, r2, s2, r3, s3, r4 . . . of states and the associated rewards (figure 19.2).

The Markov reward process also includes a discount factor γ ∈ (0, 1] that is used to
compute the return Gt at time t:

Gt =
∞∑

k=0

γkrt+k+1. (19.1)

The return is the sum of the cumulative discounted future rewards; it measures the future
benefit of being on this trajectory. A discount factor of less than one makes rewards that
are closer in time more valuable than rewards that are further away.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

19.1 Markov decision processes, returns, and policies 375

Figure 19.2 Markov reward process. This associates a distribution Pr(rt+1|st)
of rewards rt+1 with each state st. a) Here, the rewards are deterministic; the
penguin will receive a reward of +1 if it lands on a fish and 0 otherwise. The
trajectory τ now consists of a sequence s1, r2, s2, r3, s3, r4 . . . of alternating states
and rewards, terminating after eight steps. The return Gt of the sequence is the
sum of discounted future rewards, here with discount factor γ = 0.9. b-c) As the
penguin proceeds along the trajectory and gets closer to reaching the rewards,
the return increases.

Figure 19.3 Markov decision process. a) The agent (penguin) can perform one
of a set of actions in each state. The action influences both the probability of
moving to the successor state and the probability of receiving rewards. b) Here,
the four actions correspond to moving up, right, down, and left. c) For any state
(here, state 6), the action changes the probability of moving to the next state.
The penguin moves in the intended direction with 50% probability, but the ice is
slippery, so it may slide to one of the other adjacent positions with equal prob-
ability. Accordingly, in panel (a), the action taken (gray arrows) doesn’t always
line up with the trajectory (orange line). Here, the action does not affect the
reward, so Pr(rt+1|st, at) = Pr(rt+1|st). The trajectory τ from an MDP consists
of a sequence s1, a1, r2, s2, a2, r3, s3, a3, r4 . . . of alternating states st, actions at,
and rewards, rt+1. Note that here the penguin receives the reward when it leaves
a state with a fish (i.e., the reward is received for passing through the fish square,
regardless of whether the penguin arrived there intentionally or not).

Draft: please send errata to udlbookmail@gmail.com.

Markov Decision Processes

• A Markov decision process (MDP) adds a set of possible action at
each step which changes the transition probabilities .

• The rewards can also depend on the action: .

• MDP produces a sequence of states,
actions & rewards. The entity that performs the actions is the agent.

at
Pr(st+1 |st, at)

Pr(rt+1 |st, at)
s1, a1, r2, s2, a2, r3, s3, a3, …

19.1 Markov decision processes, returns, and policies 375

Figure 19.2 Markov reward process. This associates a distribution Pr(rt+1|st)
of rewards rt+1 with each state st. a) Here, the rewards are deterministic; the
penguin will receive a reward of +1 if it lands on a fish and 0 otherwise. The
trajectory τ now consists of a sequence s1, r2, s2, r3, s3, r4 . . . of alternating states
and rewards, terminating after eight steps. The return Gt of the sequence is the
sum of discounted future rewards, here with discount factor γ = 0.9. b-c) As the
penguin proceeds along the trajectory and gets closer to reaching the rewards,
the return increases.

Figure 19.3 Markov decision process. a) The agent (penguin) can perform one
of a set of actions in each state. The action influences both the probability of
moving to the successor state and the probability of receiving rewards. b) Here,
the four actions correspond to moving up, right, down, and left. c) For any state
(here, state 6), the action changes the probability of moving to the next state.
The penguin moves in the intended direction with 50% probability, but the ice is
slippery, so it may slide to one of the other adjacent positions with equal prob-
ability. Accordingly, in panel (a), the action taken (gray arrows) doesn’t always
line up with the trajectory (orange line). Here, the action does not affect the
reward, so Pr(rt+1|st, at) = Pr(rt+1|st). The trajectory τ from an MDP consists
of a sequence s1, a1, r2, s2, a2, r3, s3, a3, r4 . . . of alternating states st, actions at,
and rewards, rt+1. Note that here the penguin receives the reward when it leaves
a state with a fish (i.e., the reward is received for passing through the fish square,
regardless of whether the penguin arrived there intentionally or not).

Draft: please send errata to udlbookmail@gmail.com.

Policy

• The rules that determine the agent’s action are known as the policy.

• The policy can be deterministic (one action for a given state) or
stochastic (a probability distribution over each possible action):

376 19 Reinforcement learning

Figure 19.4 Partially observable Markov
decision process (POMDP). In a
POMDP, the agent does not have access
to the entire state. Here, the penguin
is in state three and can only see the
region in the dashed box. This is
indistinguishable from what it would see
in state nine. In the first case, moving
right leads to the hole in the ice (with
-2 reward) and, in the latter, to the fish
(with +3 reward).

Figure 19.5 Policies. a) A deterministic policy always chooses the same action in
each state (indicated by arrow). Some policies are better than others. This policy
is not optimal but still generally steers the penguin from top-left to bottom-right
where the reward lies. b) This policy is more random. c) A stochastic policy has
a probability distribution over actions for each state (probability indicated by
size of arrows). This has the advantage that the agent explores the states more
thoroughly and can be necessary for optimal performance in partially observable
Markov decision processes.

Figure 19.6 Reinforcement learning
loop. The agent takes an action at at
time t based on the state st, according
to the policy π[at|st]. This triggers
the generation of a new state st+1 (via
the state transition function) and a
reward rt+1 (via the reward function).
Both are passed back to the agent,
which then chooses a new action.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Deterministic Stochastic

Reinforcement Learning Loop
• The environment and the agent form a loop:

• The agent receives the state and reward from the last time step.
Based on the policy, the agent chooses the next action.

• The environment then assigns the next state according to
 and the reward according to . Pr(st+1 |st, at) Pr(rt+1 |st, at)

376 19 Reinforcement learning

Figure 19.4 Partially observable Markov
decision process (POMDP). In a
POMDP, the agent does not have access
to the entire state. Here, the penguin
is in state three and can only see the
region in the dashed box. This is
indistinguishable from what it would see
in state nine. In the first case, moving
right leads to the hole in the ice (with
-2 reward) and, in the latter, to the fish
(with +3 reward).

Figure 19.5 Policies. a) A deterministic policy always chooses the same action in
each state (indicated by arrow). Some policies are better than others. This policy
is not optimal but still generally steers the penguin from top-left to bottom-right
where the reward lies. b) This policy is more random. c) A stochastic policy has
a probability distribution over actions for each state (probability indicated by
size of arrows). This has the advantage that the agent explores the states more
thoroughly and can be necessary for optimal performance in partially observable
Markov decision processes.

Figure 19.6 Reinforcement learning
loop. The agent takes an action at at
time t based on the state st, according
to the policy π[at|st]. This triggers
the generation of a new state st+1 (via
the state transition function) and a
reward rt+1 (via the reward function).
Both are passed back to the agent,
which then chooses a new action.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Expected return: state and action values

• The return depends on the state and the policy

• Characterize how “good” a state is under a given policy by considering
the expected return . State-value function (long-term return on
average from sequences that starts from):

• Action value or state-action value function is the expected
return from executing action in state :

• Through this quantity, RL algorithms connect future rewards to current
actions (i.e., resolve the temporal credit assignment problem).

Gt st π[a |s]
π

v[st |π]
st

q[st, at |π]
at st

378 19 Reinforcement learning

Figure 19.7 State and action values. a) The value v[st|π] of a state st (number at
each position) is the expected return for this state for a given policy π (gray ar-
rows). It is the average sum of discounted rewards received over many trajectories
started from this state. Here, states closer to the fish are more valuable. b) The
value q[st, at,π] of an action at in state st (four numbers at each position/state
corresponding to four actions) is the expected return given that this particular
action is taken in this state. In this case, it gets larger as we get closer to the fish
and is larger for actions that head in the direction of the fish. c) If we know the
action values at a state, then the policy can be modified so that it chooses the
maximum of these values (red numbers in panel b).

π[at|st], the state transitions Pr(st+1|st, at), and the rewards issued Pr(rt+1|st, at) are
all stochastic.

We can characterize how “good” a state is under a given policy π by consideringAppendix C.2
Expectation the expected return v[st|π]. This is the return that would be received on average from

sequences that start from this state and is termed the state value or state-value function
(figure 19.7a):

v[st|π] = E
[
Gt|st,π

]
. (19.2)

Informally, the state value tells us the long-term reward we can expect on average if
we start in this state and follow the specified policy thereafter. It is highest for states
where it’s probable that subsequent transitions will bring large rewards soon (assuming
the discount factor γ is less than one).

Similarly, the action value or state-action value function q[st, at|π] is the expected
return from executing action at in state st (figure 19.7b):

q[st, at|π] = E
[
Gt|st, at,π

]
. (19.3)

The action value tells us the long-term reward we can expect on average if we start in this
state, take this action, and follow the specified policy thereafter. Through this quantity,
reinforcement learning algorithms connect future rewards to current actions (i.e., resolve
the temporal credit assignment problem).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

378 19 Reinforcement learning

Figure 19.7 State and action values. a) The value v[st|π] of a state st (number at
each position) is the expected return for this state for a given policy π (gray ar-
rows). It is the average sum of discounted rewards received over many trajectories
started from this state. Here, states closer to the fish are more valuable. b) The
value q[st, at,π] of an action at in state st (four numbers at each position/state
corresponding to four actions) is the expected return given that this particular
action is taken in this state. In this case, it gets larger as we get closer to the fish
and is larger for actions that head in the direction of the fish. c) If we know the
action values at a state, then the policy can be modified so that it chooses the
maximum of these values (red numbers in panel b).

π[at|st], the state transitions Pr(st+1|st, at), and the rewards issued Pr(rt+1|st, at) are
all stochastic.

We can characterize how “good” a state is under a given policy π by consideringAppendix C.2
Expectation the expected return v[st|π]. This is the return that would be received on average from

sequences that start from this state and is termed the state value or state-value function
(figure 19.7a):

v[st|π] = E
[
Gt|st,π

]
. (19.2)

Informally, the state value tells us the long-term reward we can expect on average if
we start in this state and follow the specified policy thereafter. It is highest for states
where it’s probable that subsequent transitions will bring large rewards soon (assuming
the discount factor γ is less than one).

Similarly, the action value or state-action value function q[st, at|π] is the expected
return from executing action at in state st (figure 19.7b):

q[st, at|π] = E
[
Gt|st, at,π

]
. (19.3)

The action value tells us the long-term reward we can expect on average if we start in this
state, take this action, and follow the specified policy thereafter. Through this quantity,
reinforcement learning algorithms connect future rewards to current actions (i.e., resolve
the temporal credit assignment problem).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Optimal Policy
• We want a policy that maximizes the expected return.

• For MDPs, there a deterministic, stationary (depends only on the current
state, not the time step) policy that maximizes the value of every state.

• If we know this optimal policy, then we get the optimal state-value function:

• Similarly, the optimal state-action value function:

• Turning this around, if we knew the optimal action-values, we can derive
the optimal policy. RL algorithms estimate the action and policy alternately.

∃

19.2 Expected return 379

19.2.2 Optimal policy

We want a policy that maximizes the expected return. For MDPs (but not POMDPs),
there is always a deterministic, stationary policy that maximizes the value of every state.
If we know this optimal policy, then we get the optimal state-value function v∗[st]:

v∗[st] = max
π

[
E
[
Gt|st,π

]]
. (19.4)

Similarly, the optimal state-action value function is obtained under the optimal policy:

q∗[st, at] = max
π

[
E
[
Gt|st, at,π

]]
. (19.5)

Turning this on its head, if we knew the optimal action-values q∗[st, at], then we can
derive the optimal policy by choosing the action at with the highest value (figure 19.7c):1

π[at|st]← argmax
at

[
q∗[st, at]

]
. (19.6)

Indeed, some reinforcement learning algorithms are based on alternately estimating the
action values and the policy (see section 19.3).

19.2.3 Bellman equations

We may not know the state values v[st] or action values q[st, at] for any policy.2 However,
we know that they must be consistent with one another, and it’s easy to write relations
between these quantities. The state value v[st] can be found by taking a weighted sum
of the action values q[st, at], where the weights depend on the probability under the
policy π[at|st] of taking that action (figure 19.8):

v[st] =
∑

at

π[at|st]q[st, at]. (19.7)

Similarly, the value of an action is the immediate reward rt+1 = r[st, at] generated by
taking the action, plus the value v[st+1] of being in the subsequent state st+1 discounted
by γ (figure 19.9).3 Since the assignment of st+1 is not deterministic, we weight the
values v[st+1] according to the transition probabilities Pr(st+1|st, at):

q[st, at] = r[st, at] + γ ·
∑

st+1

Pr(st+1|st, at)v[st+1]. (19.8)

Substituting equation 19.8 into equation 19.7 provides a relation between the state
value at time t and t+ 1:

1The notation π[at|st]← a in equations 19.6, 19.12, and 19.13 means set π[at|s] to one for action a
and π[at|s] to zero for other actions.

2For simplicity, we will just write v[st] and q[st, at] instead of v[st|π] and q[st, at|π] from now on.
3We also assume from now on that the rewards are deterministic and can be written as r[st, at].

Draft: please send errata to udlbookmail@gmail.com.

19.2 Expected return 379

19.2.2 Optimal policy

We want a policy that maximizes the expected return. For MDPs (but not POMDPs),
there is always a deterministic, stationary policy that maximizes the value of every state.
If we know this optimal policy, then we get the optimal state-value function v∗[st]:

v∗[st] = max
π

[
E
[
Gt|st,π

]]
. (19.4)

Similarly, the optimal state-action value function is obtained under the optimal policy:

q∗[st, at] = max
π

[
E
[
Gt|st, at,π

]]
. (19.5)

Turning this on its head, if we knew the optimal action-values q∗[st, at], then we can
derive the optimal policy by choosing the action at with the highest value (figure 19.7c):1

π[at|st]← argmax
at

[
q∗[st, at]

]
. (19.6)

Indeed, some reinforcement learning algorithms are based on alternately estimating the
action values and the policy (see section 19.3).

19.2.3 Bellman equations

We may not know the state values v[st] or action values q[st, at] for any policy.2 However,
we know that they must be consistent with one another, and it’s easy to write relations
between these quantities. The state value v[st] can be found by taking a weighted sum
of the action values q[st, at], where the weights depend on the probability under the
policy π[at|st] of taking that action (figure 19.8):

v[st] =
∑

at

π[at|st]q[st, at]. (19.7)

Similarly, the value of an action is the immediate reward rt+1 = r[st, at] generated by
taking the action, plus the value v[st+1] of being in the subsequent state st+1 discounted
by γ (figure 19.9).3 Since the assignment of st+1 is not deterministic, we weight the
values v[st+1] according to the transition probabilities Pr(st+1|st, at):

q[st, at] = r[st, at] + γ ·
∑

st+1

Pr(st+1|st, at)v[st+1]. (19.8)

Substituting equation 19.8 into equation 19.7 provides a relation between the state
value at time t and t+ 1:

1The notation π[at|st]← a in equations 19.6, 19.12, and 19.13 means set π[at|s] to one for action a
and π[at|s] to zero for other actions.

2For simplicity, we will just write v[st] and q[st, at] instead of v[st|π] and q[st, at|π] from now on.
3We also assume from now on that the rewards are deterministic and can be written as r[st, at].

Draft: please send errata to udlbookmail@gmail.com.

19.2 Expected return 379

19.2.2 Optimal policy

We want a policy that maximizes the expected return. For MDPs (but not POMDPs),
there is always a deterministic, stationary policy that maximizes the value of every state.
If we know this optimal policy, then we get the optimal state-value function v∗[st]:

v∗[st] = max
π

[
E
[
Gt|st,π

]]
. (19.4)

Similarly, the optimal state-action value function is obtained under the optimal policy:

q∗[st, at] = max
π

[
E
[
Gt|st, at,π

]]
. (19.5)

Turning this on its head, if we knew the optimal action-values q∗[st, at], then we can
derive the optimal policy by choosing the action at with the highest value (figure 19.7c):1

π[at|st]← argmax
at

[
q∗[st, at]

]
. (19.6)

Indeed, some reinforcement learning algorithms are based on alternately estimating the
action values and the policy (see section 19.3).

19.2.3 Bellman equations

We may not know the state values v[st] or action values q[st, at] for any policy.2 However,
we know that they must be consistent with one another, and it’s easy to write relations
between these quantities. The state value v[st] can be found by taking a weighted sum
of the action values q[st, at], where the weights depend on the probability under the
policy π[at|st] of taking that action (figure 19.8):

v[st] =
∑

at

π[at|st]q[st, at]. (19.7)

Similarly, the value of an action is the immediate reward rt+1 = r[st, at] generated by
taking the action, plus the value v[st+1] of being in the subsequent state st+1 discounted
by γ (figure 19.9).3 Since the assignment of st+1 is not deterministic, we weight the
values v[st+1] according to the transition probabilities Pr(st+1|st, at):

q[st, at] = r[st, at] + γ ·
∑

st+1

Pr(st+1|st, at)v[st+1]. (19.8)

Substituting equation 19.8 into equation 19.7 provides a relation between the state
value at time t and t+ 1:

1The notation π[at|st]← a in equations 19.6, 19.12, and 19.13 means set π[at|s] to one for action a
and π[at|s] to zero for other actions.

2For simplicity, we will just write v[st] and q[st, at] instead of v[st|π] and q[st, at|π] from now on.
3We also assume from now on that the rewards are deterministic and can be written as r[st, at].

Draft: please send errata to udlbookmail@gmail.com.

Tabular RL
• RL algorithms that do not rely on function approximation.

• Model-based methods use the MDP structure explicitly and find the
best policy from the transition matrix and reward .

• If the transition matrix & reward are known (often not), a straightforward
optimization problem is dynamic programming.

• It not, they must first be observed from observed MDP trajectories.

• Model-free methods fall into two classes:

• Value estimation - estimate the optimal state-action value and then
assign the policy according to the action with the greatest value.

• Policy estimation - estimate the optimal policy using gradient descent
w/o the intermediate steps of estimating the model or values.

Pr(st+1 |st, at) r[s, a]

Tabular RL
• Monte Carlo methods simulate many trajectories through the MDP for

a given policy to gather information to improve this policy.

• Temporal difference methods update the policy while the agent
traverses the MDP.

• We will later contrast tabular RL algorithms with the use of deep
learning in RL that does not require storing the large transition matrix.

Monte Carlo Methods
• Alternate between computing the action values (based on repeatedly

sampling trajectories) & updating the policy (based on action values).

• The action value is estimated as the average of the empirical returns.

• The policy is updated by choosing the action with the maximum value
at each state:

19.3 Tabular reinforcement learning 383

Figure 19.11 Monte Carlo methods. a) The policy (arrows) is initialized ran-
domly. The MDP is repeatedly simulated, and the trajectories of these episodes
are stored (orange and brown paths represent two trajectories). b) The action
values are empirically estimated based on the observed returns averaged over
these trajectories. In this case, the action values were all initially zero and have
been updated where an action was observed. c) The policy can then be updated
according to the action which received the best (or least bad) reward.

These two steps are iterated until the policy converges (figure 19.10). Problems 19.2–19.3
There are many variations of this approach. In policy iteration, the policy evaluation

step is iterated until convergence before policy improvement. The values can be updated
either in place or synchronously in each sweep. In value iteration, the policy evaluation Notebook 19.2

Dynamic
programming

procedure sweeps through the values just once before policy improvement. Asynchronous
dynamic programming algorithms don’t have to systematically sweep through all the
values at each step but can update a subset of the states in place in an arbitrary order.

19.3.2 Monte Carlo methods

Unlike dynamic programming algorithms, Monte Carlo methods don’t assume knowledge
of the MDP’s transition probabilities and reward structure. Instead, they gain experience
by repeatedly sampling trajectories from the MDP and observing the rewards. They
alternate between computing the action values (based on this experience) and updating
the policy (based on the action values).

To estimate the action values q[s, a], a series of episodes are run. Each starts with
a given state and action and thereafter follows the current policy, producing a series of
actions, states, and returns (figure 19.11a). The action value for a given state-action
pair under the current policy is estimated as the average of the empirical returns that
follow after each time this pair is observed (figure 19.11b). Then the policy is updated
by choosing the action with the maximum value at every state (figure 19.11c):

π[a|s]← argmax
a

[
q[s, a]

]
. (19.13)

Draft: please send errata to udlbookmail@gmail.com.

19.3 Tabular reinforcement learning 383

Figure 19.11 Monte Carlo methods. a) The policy (arrows) is initialized ran-
domly. The MDP is repeatedly simulated, and the trajectories of these episodes
are stored (orange and brown paths represent two trajectories). b) The action
values are empirically estimated based on the observed returns averaged over
these trajectories. In this case, the action values were all initially zero and have
been updated where an action was observed. c) The policy can then be updated
according to the action which received the best (or least bad) reward.

These two steps are iterated until the policy converges (figure 19.10). Problems 19.2–19.3
There are many variations of this approach. In policy iteration, the policy evaluation

step is iterated until convergence before policy improvement. The values can be updated
either in place or synchronously in each sweep. In value iteration, the policy evaluation Notebook 19.2

Dynamic
programming

procedure sweeps through the values just once before policy improvement. Asynchronous
dynamic programming algorithms don’t have to systematically sweep through all the
values at each step but can update a subset of the states in place in an arbitrary order.

19.3.2 Monte Carlo methods

Unlike dynamic programming algorithms, Monte Carlo methods don’t assume knowledge
of the MDP’s transition probabilities and reward structure. Instead, they gain experience
by repeatedly sampling trajectories from the MDP and observing the rewards. They
alternate between computing the action values (based on this experience) and updating
the policy (based on the action values).

To estimate the action values q[s, a], a series of episodes are run. Each starts with
a given state and action and thereafter follows the current policy, producing a series of
actions, states, and returns (figure 19.11a). The action value for a given state-action
pair under the current policy is estimated as the average of the empirical returns that
follow after each time this pair is observed (figure 19.11b). Then the policy is updated
by choosing the action with the maximum value at every state (figure 19.11c):

π[a|s]← argmax
a

[
q[s, a]

]
. (19.13)

Draft: please send errata to udlbookmail@gmail.com.

On/off-policy methods
• On-policy method: the current best policy is used to guide the agent

through the environment.

• It is not possible to estimate the value of actions that have not been
used, & there is nothing to encourage the algorithm to explore them.

• Exploring starts: episodes with all possible state-action pairs are
initiated, so every combination is observed at least once. (impossible
for large configuration space).

• -greedy policy: random action is taken with probability and optimal
action with probability (exploitation/exploration trade-off).

• Off-policy method: the optimal policy (the target policy) is learned
based on episodes generated by a different behavior policy .

• We want to explore the environment (stochastic) and the learned
policy to be efficient.

ϵ ϵ
1 − ϵ

π
π′￼

π′￼

π

Temporal difference methods

• Update the values/policy while the agent traverses the states of MDP.

• SARSA (State-Action-Reward-State-Action) is an on-policy algorithm
with update:

where is the learning rate. The bracketed term is TD error.

• Q-learning is an off-policy algorithm with update:

where the choice of action is derived from a different policy .

• In both cases, the policy is updated by maximizing the action values:

α ∈ ℝ+

π′￼

384 19 Reinforcement learning

This is an on-policy method; the current best policy is used to guide the agent
through the environment. This policy is based on the observed action values in every
state, but of course, it’s not possible to estimate the value of actions that haven’t been
used, and there is nothing to encourage the algorithm to explore these. One solution is
to use exploring starts. Here, episodes with all possible state-action pairs are initiated, so
every combination is observed at least once. However, this is impractical if the number
of states is large or the starting point cannot be controlled. A different approach isProblem 19.4 to use an epsilon greedy policy, in which a random action is taken with probability ε,
and the optimal action is allotted the remaining probability. The choice of ε trades off
exploitation and exploration. Here, an on-policy method will seek the best policy from
this epsilon-greedy family, which will not generally be the best overall policy.

Conversely, in off-policy methods, the optimal policy π (the target policy) is learned
based on episodes generated by a different behavior policy π′. Typically, the target
policy is deterministic, and the behavior policy is stochastic (e.g., an epsilon-greedy
policy). Hence, the behavior policy can explore the environment, but the learned targetNotebook 19.3

Monte Carlo
methods

policy remains efficient. Some off-policy methods explicitly use importance sampling
(section 17.8.1) to estimate the action value under policy π using samples from π′.
Others, such as Q-learning (described in the next section), estimate the values based
on the greedy action, even though this is not necessarily what was chosen.

19.3.3 Temporal difference methods

Dynamic programming methods use a bootstrapping process to update the values to
make them self-consistent under the current policy. Monte Carlo methods sampled the
MDP to acquire information. Temporal difference (TD) methods combine both boot-
strapping and sampling. However, unlike Monte Carlo methods, they update the values
and policy while the agent traverses the states of the MDP instead of afterward.

SARSA (State-Action-Reward-State-Action) is an on-policy algorithm with update:

q[st, at]← q[st, at] + α
(
r[st, at] + γ · q[st+1, at+1]− q[st, at]

)
, (19.14)

where α ∈ R+ is the learning rate. The bracketed term is called the TD error and
measures the consistency between the estimated action value q[st, at] and the esti-
mate r[st, at]+γ · q[st+1, at+1] after taking a single step.

By contrast, Q-Learning is an off-policy algorithm with update (figure 19.12):

q[st, at]← q[st, at] + α
(
r[st, at] + γ ·max

a

[
q[st+1, a]

]
− q[st, at]

)
, (19.15)

where now the choice of action at each step is derived from a different behavior policy π′.Notebook 19.4
Temporal difference

methods In both cases, the policy is updated by taking the maximum of the action values
at each state (equation 19.13). It can be shown that these updates are contraction

Problem 19.5 mappings (see equation 16.20); the action values will eventually converge, assuming that
every state-action pair is visited an infinite number of times.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

384 19 Reinforcement learning

This is an on-policy method; the current best policy is used to guide the agent
through the environment. This policy is based on the observed action values in every
state, but of course, it’s not possible to estimate the value of actions that haven’t been
used, and there is nothing to encourage the algorithm to explore these. One solution is
to use exploring starts. Here, episodes with all possible state-action pairs are initiated, so
every combination is observed at least once. However, this is impractical if the number
of states is large or the starting point cannot be controlled. A different approach isProblem 19.4 to use an epsilon greedy policy, in which a random action is taken with probability ε,
and the optimal action is allotted the remaining probability. The choice of ε trades off
exploitation and exploration. Here, an on-policy method will seek the best policy from
this epsilon-greedy family, which will not generally be the best overall policy.

Conversely, in off-policy methods, the optimal policy π (the target policy) is learned
based on episodes generated by a different behavior policy π′. Typically, the target
policy is deterministic, and the behavior policy is stochastic (e.g., an epsilon-greedy
policy). Hence, the behavior policy can explore the environment, but the learned targetNotebook 19.3

Monte Carlo
methods

policy remains efficient. Some off-policy methods explicitly use importance sampling
(section 17.8.1) to estimate the action value under policy π using samples from π′.
Others, such as Q-learning (described in the next section), estimate the values based
on the greedy action, even though this is not necessarily what was chosen.

19.3.3 Temporal difference methods

Dynamic programming methods use a bootstrapping process to update the values to
make them self-consistent under the current policy. Monte Carlo methods sampled the
MDP to acquire information. Temporal difference (TD) methods combine both boot-
strapping and sampling. However, unlike Monte Carlo methods, they update the values
and policy while the agent traverses the states of the MDP instead of afterward.

SARSA (State-Action-Reward-State-Action) is an on-policy algorithm with update:

q[st, at]← q[st, at] + α
(
r[st, at] + γ · q[st+1, at+1]− q[st, at]

)
, (19.14)

where α ∈ R+ is the learning rate. The bracketed term is called the TD error and
measures the consistency between the estimated action value q[st, at] and the esti-
mate r[st, at]+γ · q[st+1, at+1] after taking a single step.

By contrast, Q-Learning is an off-policy algorithm with update (figure 19.12):

q[st, at]← q[st, at] + α
(
r[st, at] + γ ·max

a

[
q[st+1, a]

]
− q[st, at]

)
, (19.15)

where now the choice of action at each step is derived from a different behavior policy π′.Notebook 19.4
Temporal difference

methods In both cases, the policy is updated by taking the maximum of the action values
at each state (equation 19.13). It can be shown that these updates are contraction

Problem 19.5 mappings (see equation 16.20); the action values will eventually converge, assuming that
every state-action pair is visited an infinite number of times.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

19.3 Tabular reinforcement learning 383

Figure 19.11 Monte Carlo methods. a) The policy (arrows) is initialized ran-
domly. The MDP is repeatedly simulated, and the trajectories of these episodes
are stored (orange and brown paths represent two trajectories). b) The action
values are empirically estimated based on the observed returns averaged over
these trajectories. In this case, the action values were all initially zero and have
been updated where an action was observed. c) The policy can then be updated
according to the action which received the best (or least bad) reward.

These two steps are iterated until the policy converges (figure 19.10). Problems 19.2–19.3
There are many variations of this approach. In policy iteration, the policy evaluation

step is iterated until convergence before policy improvement. The values can be updated
either in place or synchronously in each sweep. In value iteration, the policy evaluation Notebook 19.2

Dynamic
programming

procedure sweeps through the values just once before policy improvement. Asynchronous
dynamic programming algorithms don’t have to systematically sweep through all the
values at each step but can update a subset of the states in place in an arbitrary order.

19.3.2 Monte Carlo methods

Unlike dynamic programming algorithms, Monte Carlo methods don’t assume knowledge
of the MDP’s transition probabilities and reward structure. Instead, they gain experience
by repeatedly sampling trajectories from the MDP and observing the rewards. They
alternate between computing the action values (based on this experience) and updating
the policy (based on the action values).

To estimate the action values q[s, a], a series of episodes are run. Each starts with
a given state and action and thereafter follows the current policy, producing a series of
actions, states, and returns (figure 19.11a). The action value for a given state-action
pair under the current policy is estimated as the average of the empirical returns that
follow after each time this pair is observed (figure 19.11b). Then the policy is updated
by choosing the action with the maximum value at every state (figure 19.11c):

π[a|s]← argmax
a

[
q[s, a]

]
. (19.13)

Draft: please send errata to udlbookmail@gmail.com.

