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Fitted Q-learning
• Instead of tabulating the action-values (table size grows as  

are sizes of state & action spaces), we can learn with a NN.

• Replace the action values  by a ML model .

• Loss function which measures consistency of adjacent action values:

which in turn leads to an update:

• Convergence is not guaranteed. A change to the parameters modifies 
both the target  & the prediction .
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Figure 19.12 Q-learning. a) The agent starts in state st and takes action at = 2
according to the policy. It does not slip on the ice and moves downward, receiving
reward r[st, at] = 0 for leaving the original state. b) The maximum action value
at the new state is found (here 0.43). c) The action value for action 2 in the
original state is updated to 1.12 based on the current estimate of the maximum
action value at the subsequent state, the reward, discount factor γ = 0.9, and
learning rate α = 0.1. This changes the highest action value at the original state,
so the policy changes.

19.4 Fitted Q-learning

The tabular Monte Carlo and TD algorithms described above repeatedly traverse the
entire MDP and update the action values. However, this is only practical if the state-
action space is small. Unfortunately, this is rarely the case; even for the constrained
environment of a chessboard, there are more than 1040 possible legal states.

In fitted Q-learning, the discrete representation q[st, at] of the action values is replaced
by a machine learning model q[st, at,φ], where now the state is represented by a vector
st rather than just an index. We then define a least squares loss based on the consistency
of adjacent action values (similarly to in Q-learning, see equation 19.15):

L[φ] =

(
r[st, at] + γ ·max

a

[
q[st+1, a,φ]

]
− q[st, at,φ]

)2

, (19.16)

which in turn leads to the update:

φ← φ+ α

(
r[st, at] + γ ·max

a

[
q[st+1, a,φ]

]
− q[st, at,φ]

)
∂q[st, at,φ]

∂φ
. (19.17)

Fitted Q-learning differs from Q-Learning in that convergence is no longer guar-
anteed. A change to the parameters potentially modifies both the target r[st, at] + γ ·
maxat+1 [q[st+1, at+1,φ]] (the maximum value may change) and the prediction q[st, at,φ].
This can be shown both theoretically and empirically to damage convergence.

Draft: please send errata to udlbookmail@gmail.com.
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Deep Q-networks

• Use deep NN for fitted Q-learning. Q stands for action-value .

• Deep Q-network was a RL architecture that exploited deep NN to 
learn to play ATARI 2600 games.

q[st, at, ϕ]
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Figure 19.13 Atari Benchmark. The Atari benchmark consists of 49 Atari 2600
games, including Breakout (pictured), Pong, and various shoot-em-up, platform,
and other types of games. a-d) Even for games with a single screen, the state
is not fully observable from a single frame because the velocity of the objects is
unknown. Consequently, it is usual to use several adjacent frames (here, four)
to represent the state. e) The action simulates the user input via a joystick. f)
There are eighteen actions corresponding to eight directions of movement or no
movement, and for each of these nine cases, the button being pressed or not.

19.4.1 Deep Q-networks for playing ATARI games

Deep networks are ideally suited to making predictions from a high-dimensional state
space, so they are a natural choice for the model in fitted Q-learning. In principle, they
could take both state and action as input and predict the values, but in practice, the
network takes only the state and simultaneously predicts the values for each action.

The Deep Q-Network was a breakthrough reinforcement learning architecture that
exploited deep networks to learn to play ATARI 2600 games. The observed data com-
prises 220×160 images with 128 possible colors at each pixel (figure 19.13). This was
reshaped to size 84×84, and only the brightness value was retained. Unfortunately, the
full state is not observable from a single frame. For example, the velocity of game ob-
jects is unknown. To help resolve this problem, the network ingests the last four frames
at each time step to form st. It maps these frames through three convolutional layers
followed by a fully connected layer to predict the value of every action (figure 19.14).

Several modifications were made to the standard training procedure. First, the re-
wards (which were driven by the score in the game) were clipped to −1 for a negative
change and +1 for a positive change. This compensates for the wide variation in scores
between different games and allows the same learning rate to be used. Second, the
system exploited experience replay. Rather than update the network based on the tu-
ple <st, at, rt+1, st+1> at the current step or with a batch of the last I tuples, all recent

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Single frame does not specify 
velocity  4 adjacent frames 

to represent a state
⇒

18 possible actions 
(9 directions, on/off)



Deep Q-networks
• The data comprises 220 x 160 images with 128 possible colors at each 

pixel. Reshaped to 84 x 84 and only brightness value was kept.

• Issue of convergence was alleviated by fixing the target parameters to 
 and only updating them periodically. Only update the prediction:

• Not chasing a moving target; less prone to oscillations.

ϕ−
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Figure 19.14 Deep Q-network architec-
ture. The input st consists of four adja-
cent frames of the ATARI game. Each
is resized to 84×84 and converted to
grayscale. These frames are represented
as four channels and processed by an 8×8
convolution with stride four, followed by
a 4×4 convolution with stride 2, followed
by two fully connected layers. The final
output predicts the action value q[st, at]
for each of the 18 actions in this state.

tuples were stored in a buffer. This buffer was sampled randomly to generate a batch
at each step. This approach reuses data samples many times and reduces correlations
between the samples in the batch that arise due to the similarity of adjacent frames.

Finally, the issue of convergence in fitted Q-Networks was tackled by fixing the target
parameters to values φ− and only updating them periodically. This gives the update:

φ← φ+ α

(
r[st, at] + γ ·max

a

[
q[st+1, a,φ

−]
]
− q[st, at,φ]

)
∂q[st, at,φ]

∂φ
. (19.18)

Now the network no longer chases a moving target and is less prone to oscillation.
Using these and other heuristics and with an ε-greedy policy, Deep Q-Networks per-

formed at a level comparable to a professional game tester across a set of 49 games using
the same network (trained separately for each game). It should be noted that the train-
ing process was data-intensive. It took around 38 full days of experience to learn each
game. In some games, the algorithm exceeded human performance. On other games
like “Montezuma’s Revenge,” it barely made any progress. This game features sparse
rewards and multiple screens with quite different appearances.

19.4.2 Double Q-learning and double deep Q-networks

One potential flaw of Q-Learning is that the maximization over the actions in the update:

q[st, at]← q[st, at] + α
(
r[st, at] + γ ·max

a

[
q[st+1, a]

]
− q[st, at]

)
(19.19)

leads to a systematic bias in the estimated state values q[st, at]. Consider two actions
that provide the same average reward, but one is stochastic and the other deterministic.
The stochastic reward will exceed the average roughly half of the time and be chosen
by the maximum operation, causing the corresponding action value q[st, at] to be over-
estimated. A similar argument can be made about random inaccuracies in the output of
the network q[st, at,φ] or random initializations of the q-function.

Draft: please send errata to udlbookmail@gmail.com.
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Experience replay: store recent states, 
action, and rewards in a buffer, reuses 
data samples many times.

Rewards  instead of raw scores
of different games, can keep the 
same learning rate.

±1



Policy gradient methods
• Recall the notions of value estimation vs policy estimation. Q-learning 

is an example of value estimation: estimate  and update .

• Policy-based methods directly learn a stochastic policy .

• For MDP, there is always an optimal deterministic policy.

• There are reasons to use instead a stochastic policy:

• Exploration of the action-state space: not obliged to take the 
best action at each step.

• Loss function changes smoothly: can use gradient descent.

• Knowledge of the state is often incomplete: two locations may 
look locally the same but nearby reward structure is different. 
Stochastic policy: taking different actions until ambiguity resolved.

q[st, at, ϕ] π
π[at |st, θ]



Gradient update
• Consider a trajectory  through an MDP.

• The probability of this trajectory depends on the current policy:

• Policy gradient algorithms aim to maximize the expected return 
over many such trajectories:

• The return is the sum of all the rewards received along the trajectory.

• To maximize the return, we use the gradient ascent update:

τ = [s1, a1, s2, a2, …, sT, aT]

r[τ]

19.5 Policy gradient methods 389

19.5.1 Derivation of gradient update

Consider a trajectory τ = [s1, a1, s2, a2, . . . , sT , aT ] through an MDP. The probability of
this trajectory Pr(τ |θ) depends on both the state evolution function Pr(st+1|st, at) and
the current stochastic policy π[at|st,θ]:

Pr(τ |θ) = Pr(s1)
T∏

t=1

π[at|st,θ]Pr(st+1|st, at). (19.22)

Policy gradient algorithms aim to maximize the expected return r[τ ] over many such
trajectories:

θ = argmax
θ

[
Eτ

[
r[τ ]

]]
= argmax

θ

[∫
Pr(τ |θ)r[τ ]dτ

]
, (19.23)

where the return is the sum of all the rewards received along the trajectory.
To maximize this quantity, we use the gradient ascent update:

θ ← θ + α · ∂
∂θ

∫
Pr(τ |θ)r[τ ]dτ

= θ + α ·
∫
∂Pr(τ |θ)

∂θ
r[τ ]dτ . (19.24)

where α is the learning rate.
We want to approximate this integral with a sum over empirically observed trajecto-

ries. These are drawn from the distribution Pr(τ |θ), so to make progress, we multiply
and divide the integrand by this distribution:

θ ← θ + α ·
∫
∂Pr(τ |θ)

∂θ
r[τ ]dτ

= θ + α ·
∫

Pr(τ |θ) 1

Pr(τ |θ)
∂Pr(τ |θ)

∂θ
r[τ ]dτ

≈ θ + α · 1
I

I∑

i=1

1

Pr(τ i|θ)
∂Pr(τ i|θ)

∂θ
r[τ i]. (19.25)

This equation has a simple interpretation (figure 19.15); the update changes the pa-
rameters θ to increase the likelihood Pr(τ i|θ) of an observed trajectory τ i in proportion
to the reward r[τ i] from that trajectory. However, it also normalizes by the probabil-
ity of observing that trajectory in the first place to compensate for the fact that some
trajectories are observed more often than others. If a trajectory is already common and
yields high rewards, then we don’t need to change much. The biggest updates will come
from trajectories that are uncommon but create large rewards.

We can simplify this expression using the likelihood ratio identity:

Draft: please send errata to udlbookmail@gmail.com.
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Gradient update

•   this integral with a sum over empirically observed trajectories

• Using identity involving log, we can simplify the update on :

• The log probability is given by the sum of logs:

≈

θ
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Figure 19.15 Policy gradients. Five
episodes for the same policy (brighter in-
dicates higher reward). Trajectories 1,
2, and 3 generate consistently high re-
wards, but similar trajectories already
frequently occur with this policy, so
there is no need to change. Conversely,
trajectory 4 receives low rewards, so the
policy should be modified to avoid pro-
ducing similar trajectories. Trajectory 5
receives high rewards and is unusual.
This will cause the largest change to the
policy under equation 19.25.

∂ log[f[z]]
∂z

=
1

f [z]

∂f[z]
∂z

, (19.26)

which yields the update:

θ ← θ + α · 1
I

I∑

i=1

∂ log
[
Pr(τ i|θ)

]

∂θ
r[τ i]. (19.27)

The log probability log[Pr(τ |θ)] of a trajectory is given by:

log[Pr(τ |θ)] = log
[
Pr(s1)

T∏

t=1

π[at|st,θ]Pr(st+1|st, at)
]

(19.28)

= log
[
Pr(s1)

]
+

T∑

t=1

log
[
π[at|st,θ]

]
+

T∑

t=1

log
[
Pr(st+1|st, at)

]
,

and noting that only the center term depends on θ, we can rewrite the update from
equation 19.27 as:

θ ← θ + α · 1
I

I∑

i=1

T∑

t=1

∂ log
[
π[ait|sit,θ]

]

∂θ
r[τ i],

(19.29)

where sit is the state at time t in episode i, and ait is the action taken at time t
in episode i. Note that since the terms relating to the state evolution Pr(st+1|st, at)
disappear, this parameter update does not assume a Markov time evolution process.

We can further simplify this by noting that:

r[τ i] =
T∑

t=1

rit =
t−1∑

k=1

rik +
T∑

k=t

rik, (19.30)

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.
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Gradient update

• Only the policy  term depends on :

• Since the state evolution , parameter update does not 
assume Markov time evolution process.

• The total reward can be expressed as a sum of two contributions:

• The first term does not affect the update, thus: 

π[at |st, θ] θ

Pr(st+1 |st, at)
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Figure 19.15 Policy gradients. Five
episodes for the same policy (brighter in-
dicates higher reward). Trajectories 1,
2, and 3 generate consistently high re-
wards, but similar trajectories already
frequently occur with this policy, so
there is no need to change. Conversely,
trajectory 4 receives low rewards, so the
policy should be modified to avoid pro-
ducing similar trajectories. Trajectory 5
receives high rewards and is unusual.
This will cause the largest change to the
policy under equation 19.25.

∂ log[f[z]]
∂z

=
1

f [z]

∂f[z]
∂z

, (19.26)

which yields the update:

θ ← θ + α · 1
I

I∑

i=1

∂ log
[
Pr(τ i|θ)

]

∂θ
r[τ i]. (19.27)

The log probability log[Pr(τ |θ)] of a trajectory is given by:

log[Pr(τ |θ)] = log
[
Pr(s1)

T∏

t=1

π[at|st,θ]Pr(st+1|st, at)
]

(19.28)

= log
[
Pr(s1)

]
+

T∑

t=1

log
[
π[at|st,θ]

]
+

T∑

t=1

log
[
Pr(st+1|st, at)

]
,

and noting that only the center term depends on θ, we can rewrite the update from
equation 19.27 as:

θ ← θ + α · 1
I

I∑

i=1

T∑

t=1

∂ log
[
π[ait|sit,θ]

]

∂θ
r[τ i],

(19.29)

where sit is the state at time t in episode i, and ait is the action taken at time t
in episode i. Note that since the terms relating to the state evolution Pr(st+1|st, at)
disappear, this parameter update does not assume a Markov time evolution process.

We can further simplify this by noting that:

r[τ i] =
T∑

t=1

rit =
t−1∑

k=1

rik +
T∑

k=t

rik, (19.30)
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where rit is the reward at time t in the ith episode. The first term (the rewards before
time t) does not affect the update from time t, so we can write:

θ ← θ + α · 1
I

I∑

i=1

T∑

t=1

∂ log
[
π[ait|sit,θ]

]

∂θ

T∑

k=t

rik. (19.31)

19.5.2 REINFORCE algorithm

REINFORCE is an early policy gradient algorithm that exploits this result and in-
corporates discounting. It is a Monte Carlo method that generates episodes τ i =
[si1, ai1, ri2, si2, ai2, ri3, . . . , riT ] based on the current policy π[a|s,θ]. For discrete ac-
tions, this policy could be determined by a neural network π[s|θ], which takes the cur-
rent state s and returns one output for each possible action. These outputs are passed
through a softmax function to create a distribution over actions, which is sampled at
each time step.

For each episode i, we loop through each step t and calculate the empirical discounted
return for the partial trajectory τ it that starts at time t:

r[τ it] =
T∑

k=t+1

γk−t−1rik, (19.32)

and then we update the parameters for each time step t in each trajectory:

θ ← θ + α · γt
∂ log

[
πait [sit,θ]

]

∂θ
r[τ it] ∀ i, t, (19.33)

where πat [st,θ] is the probability of at produced by the neural network given the current
state st and parameters θ, and α is the learning rate. The extra term γt ensures that
the rewards are discounted relative to the start of the sequence because we maximize the
log probability of returns in the whole sequence (equation 19.23).

19.5.3 Baselines

Policy gradient methods have the drawback that they exhibit high variance; many
episodes may be needed to get stable updates of the derivatives. One way to reduce
this variance is to subtract the trajectory returns r[τ ] from a baseline b:

θ ← θ + α · 1
I

I∑

i=1

T∑

t=1

∂ log
[
πait [sit,θ]

]

∂θ
(r[τ it]− b) . (19.34)

As long as the baseline b doesn’t depend on the actions: Problem 19.6
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REINFORCE Algorithm
• A policy gradient algorithm that incorporates discounting.

• Use Monte Carlo to generate episodes  
based on the current policy .

•  takes the current state & returns one output for each action.

• The outputs (  dim.) are passed through a softmax function to 
create a distribution over actions, which is sampled at each time step.

• For each episode , calculate the empirical discounted return for each 
trajectory  that starts at time :

and then we update the parameters for each step  in each trajectory:

[si1, ai1, ri2, si2, ai2, ri3, …, riT]
π[a |s, θ]

π[a |s, θ]
|A |

i
τit t

t
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Baselines

• Drawback of policy gradient methods: high variance; many episodes 
may be needed to get stable updates of the derivatives. 

• To reduce the variance, we subtract the returns from a baseline:

• The baseline is often taken to be:

• Subtracting this baseline factors out variance that might occur when 
the trajectories happen to pass through states with higher than 
average returns.
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Figure 19.16 Decreasing variance of estimates using control variates. a) Consider
trying to estimate E[a] from a small number of samples. The estimate (the mean
of the samples) will vary based on the number of samples and the variance of those
samples. b) Now consider observing another variable b that co-varies with a and
has E[b] = 0 and the same variance as a. c) The variance of the samples of a− b
is much less than that of a, but the expected value E[a− b] = E[a], so we get an
estimator with lower variance.

Eτ

[
T∑

t=1

∂ log
[
πait [sit,θ]

]

∂θ
· b
]
= 0, (19.35)

and the expected value will not change. However, if the baseline co-varies with irrelevantNotebook 19.5
Control variates factors that add uncertainty, then subtracting it reduces the variance (figure 19.16). This

is a special case of the method of control variates (see problem 19.7).Problem 19.7
This raises the question of how we should choose b. We can find the value of b that

minimizes the variance by writing an expression for the variance, taking the derivative
with respect to b, setting the result to zero, and solving to yield:Problem 19.8

b =
∑

i

∑T
t=1

(
∂ log

[
πait [sit,θ]

]
/∂θ

)2
r[τ it]

∑T
t=1

(
∂ log

[
πait [sit,θ]

]
/∂θ

)2 . (19.36)

In practice, this is often approximated as:

b =
1

I

∑

i

r[τ i]. (19.37)

Subtracting this baseline factors out variance that might occur when the returns r[τ i]
from all trajectories are greater than is typical but only because they happen to pass
through states with higher than average returns whatever actions are taken.
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Actor-critic methods
• Actor-critic algorithms: temporal difference policy gradient algorithms.

• Parameters of the policy network are updated at each time step, in 
contrast with Monte Carlo REINFORCE algorithms.

• We do not have access to the future rewards along the trajectory.

• Approximate the sum over all the future rewards with:

• The value  is estimated by a second NN with parameter .

• This gives the update:

v[si,t+1, ϕ] ϕ
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19.5.4 State-dependent baselines

A better option is to use a baseline b[sit] that depends on the current state sit.

θ ← θ + α · 1
I

I∑

i=1

T∑

t=1

∂ log
[
πait [sit,θ]

]

∂θ
(r[τ it]− b[sit]) . (19.38)

Here, we are compensating for variance introduced by some states having greater overall
returns than others, whichever actions we take.

A sensible choice is the expected future reward based on the current state, which is
just the state value v[s]. In this case, the difference between the empirically observed re-
wards and the baseline is known as the advantage estimate. Since we are in a Monte Carlo
context, this can be parameterized by a neural network b[s] = v[s,φ] with parameters φ,
which we can fit to the observed returns using least squares loss:

L[φ] =
I∑

i=1

T∑

t=1



v[sit,φ]−
T∑

j=y

rij




2

. (19.39)

19.6 Actor-critic methods

Actor-critic algorithms are temporal difference (TD) policy gradient algorithms. They
can update the parameters of the policy network at each step. This contrasts with
the Monte Carlo REINFORCE algorithm, which must wait for one or more episodes to
complete before updating the parameters.

In the TD approach, we do not have access to the future rewards r[τ t] =
∑T

k=t rk
along this trajectory. Actor-critic algorithms approximate the sum over all the future
rewards with the observed current reward plus the discounted value of the next state:

T∑

k=1

r[τ ik] ≈ rit + γ · v[si,t+1,φ]. (19.40)

Here the value v[si,t+1,φ] is estimated by a second neural network with parameters φ.
Substituting this into equation 19.38 gives the update:

θ ← θ + α · 1
I

I∑

i=1

T∑

t=1

∂ log
[
Pr(ait|sit,θ)]

]

∂θ

(
rit + γ · v[si,t+1,φ]− v[si,t,φ]

)
. (19.41)

Concurrently, we update the parameters φ by bootstrapping using the loss function:

L[φ] =
I∑

i=1

T∑

t=1

(rit + γ · v[si,t+1,φ]− v[si,t,φ])
2 . (19.42)
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Actor-critic methods

• Concurrently, we update the parameter  using the loss function:

• The policy network  that predicts  is term the actor.

• The value network  is termed the critic.

• Actor-critic methods can update the policy parameter at each step.

• In practice, the agent typically collects a batch of experience over 
many time steps before the policy is updated.

ϕ

π[st, θ] Pr(a |st)
v[st, ϕ]
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Nature or Nurture?
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The String Landscape Inverse Problem

 (topologies of compactification, number of branes and wrapping numbers, 
quantized fluxes, ….)

⃗N =GARY SHIU, THE STRING GENOME PROJECT

The Landscape Inverse Problem

Input vector  
(subject to consistency 

conditions)

⃗N ∈ ℤm

solve equations of motion 
= 

minimizing potential

⃗ϕ = (ϕ1, …, ϕ4) ∈ ℝn
“Physical Observables”, 

e.g. , particle spectrum, 
masses, couplings, …

Λ

Inverse Problem: how to a) identify and b) characterize  
flux vectors with particular properties

calculate 
phenomenology

 (topologies of compactification, number of branes and wrapping numbers, quantized fluxes, ….)⃗N =
[Also in Krippendorf’s talk]



Understanding the structure of the Landscape
Understanding the local structure of the string landscape

We performed a Principal Component Analysis (PCA) 
on the output of flux vectors in ℤ8

Apply GA+RL to find 
string vacua with  

|W0 | = 50,000 ± 1000

PCA on combined output

Task

Two clusters as 
universal feature!

GA RL
PCA on individual output

Scaling with 
respect to  

reveals difference 
in GA/RL output

N1

Hint for discrete 
symmetry 

N5 → − N5

https://arxiv.org/abs/1907.10072
 https://arxiv.org/abs/2111.11466

https://arxiv.org/abs/1907.10072
https://arxiv.org/abs/2111.11466


Genetic Algorithms + RL

• Correlations:

• GAs and RL have also been used to optimize the search for realistic 
particle physics models: https://arxiv.org/abs/2112.08391

• Using dynamic programming, we can even count the exact number of 
solutions: https://arxiv.org/abs/2206.03506 

Correlations on the Landscape

• Some correlations are obvious as pairs of fluxes contribute as products to the tadpoles.  

• There are correlations unrelated to the tadpoles. 

• Comparing individual correlation maps with the combined one can unpack how GA & RL 
find solutions.

https://arxiv.org/abs/2112.08391
https://arxiv.org/abs/2206.03506


Learning from Topology:



Topological Data Analysis:
From String Theory to Cosmology to Phases of Matter

techniques. In the approximation that the vacuum density is just the volume form on

moduli space, the surface area of the boundary will just be the surface area of the boundary

in moduli space. Taking the region R to be a sphere in moduli space of radius r, we find

A(S1)

V (S1)
∼

√
K

r

so the condition Eq. (5.2) becomes

L >
K

r2
. (5.3)

Thus, if we consider a large enough region, or the entire moduli space in order to find

the total number of vacua, the condition for the asymptotic vacuum counting formulas we

have discussed in this work to hold is L > cK with some order one coefficient. But if we

subdivide the region into subregions which do not satisfy Eq. (5.3), we will find that the

number of vacua in each subregion will show oscillations around this central scaling. In

fact, most regions will contain a smaller number of vacua (like S above), while a few should

have anomalously large numbers (like S′ above), averaging out to Eq. (5.1).

5.1 Flux vacua on rigid Calabi-Yau

As an illustration of this, consider the following toy

-0.5 0.5

1

2

3

Figure 6: Values of τ for rigid CY
flux vacua with Lmax = 150.

problem with K = 4, studied in [1]. The configuration

space is simply the fundamental region of the upper

half plane, parameterized by τ . The flux superpoten-

tials are taken to be

W = Aτ + B

with A = a1 + ia2 and B = b1 + ib2 each taking values

in Z+ iZ. This would be obtained if we considered flux

vacua on a rigid Calabi-Yau, with no complex structure

moduli, b3 = 2, and the periods Π1 = 1 and Π2 = i.

The tadpole condition NηN/2 ≤ L becomes

ImA∗B ≤ L (5.4)

One then has

DW = 0 ↔ τ̄ = −B

A
. (5.5)

Thus, it is very easy to find all the vacua and the value

of τ at which they are stabilized in this problem. We

first enumerate all choices of A and B satisfying the

bound Eq. (5.4), taking one representative of each orbit

of the SL(2, Z) duality group. As discussed in [1], this can be done by taking a2 = 0,

0 ≤ b1 < a1 and a1b2 ≤ L. Then, for each choice of flux, we take the value of τ from

Eq. (5.5) and map it into the fundamental region by an SL(2, Z) transformation. The

resulting plot for L = 150 is shown in figure 6.
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https://mbiagetti.gitlab.io/cosmos/nbody/

Cosmology
https://arxiv.org/abs/1710.04737 
https://arxiv.org/abs/2009.04819
https://arxiv.org/abs/2308.02636
https://arxiv.org/abs/2403.13985

String Landscape
https://arxiv.org/abs/1812.06960 
https://arxiv.org/abs/1907.10072

Phases of Matter
https://arxiv.org/abs/2009.14231

https://arxiv.org/abs/1710.04737
https://arxiv.org/abs/2009.04819
https://arxiv.org/abs/2308.02636
https://arxiv.org/abs/2403.13985
https://arxiv.org/abs/1812.06960
https://arxiv.org/abs/1907.10072
https://arxiv.org/abs/2009.14231
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Learning from Topology: Cosmological Parameter Estimation

6. Estimation Methods

6.1. Convolutional Neural Network Model

We design a neural network model that combines in parallel
a CNN with a stack of dense layers to map the persistence
images to (⌦m,�8). The inputs of the model are the 0-, 1-,
and 2-cycle persistence images stacked into 3 channels, and
the outputs are 2 numbers for the two parameters (Figure 3).

The CNN side of our parallel networks has four sequential
blocks, each made of a 3⇥ 3 convolution with no padding,
and ReLU activation functions. Each convolution is fol-
lowed by a 2⇥ 2 max pooling layer with stride 2. After the
fourth block, the data is reduced to 22 pixels, and two dense
layers with ReLUs follow to output 2 numbers.

On the dense side, we turn the persistence images into a 1D
array by summing along the birth and persistence axes of the
images. As this summed data contains only 3⇥2⇥64 = 384
numbers, we use a stack of dense layers on the entire data
without pooling. We tested different combinations of 1D
convolutions and pooling, with and without ResNet blocks,
and have found no increase in model performance over
simply using a stack of five dense layers with ReLUs.

We find a modest increase in inference precision (variances
are reduced by ⇠10%) with the parallel networks over the
CNN side alone. The 2 numbers from each side of the model
are finally averaged into our (⌦m,�8) estimate.

We use 33000 persistence images for the training set and
3000 for the validation set. For every (⌦m,�8) configura-
tion, we average 10 corresponding images pixelwise. While
this averaging does reduce the number of images for training
by a factor of 10, we find increased precision of our model
even with the extra risk of overfitting. Our loss function is
the mean squared error between the model outputs and the
true parameter values. By analyzing the training and vali-
dation performance, we have carefully chosen the number
of parameters in our architecture (detailed in Figure 3) to
maximize performance while preventing overfitting. Our
model has 1.34 million parameters in total. To further help
prevent overfitting, we use a small batch size of 16. We
train with a learning rate of 10�4 with the Adam optimizer,
decreased by a factor of 0.75 when the loss plateaus.

A potential hurdle we suspect in using a traditional CNN on
persistence images is the overall smoothness of each image.
In a traditional image classification dataset, we encounter,
e.g., many distinct edges in each image; the convolutional
filters in the first few layers of the network would learn to
detect these edges. It may require a more novel approach to
capture more of the features of persistence images.

Persistence images: 3 ⇥ 642

3 ⇥ 3 conv: 64 ⇥ 622

2 ⇥ 2 max pool: 64 ⇥ 312

3 ⇥ 3 conv: 64 ⇥ 292

2 ⇥ 2 max pool: 64 ⇥ 142

3 ⇥ 3 conv: 128 ⇥ 122

2 ⇥ 2 max pool: 128 ⇥ 62

3 ⇥ 3 conv: 128 ⇥ 42

2 ⇥ 2 max pool: 128 ⇥ 22

Dense: 128

Dense: 2

Sum along x, y: 3 ⇥ 2 ⇥ 64

Dense: 512

Dense: 1024

Dense: 256

Dense: 128

Dense: 2

(⌦m,�8)

ReLU

ReLU

ReLU

ReLU

Flatten

ReLU

Flatten

ReLU

ReLU

ReLU

ReLU

Figure 3. Architecture of our CNN model, with layer names and
output dimensions.

6.2. Bayesian Inference

We adopt a Gaussian likelihood L(✓|D) and a flat prior
p(✓) such that the log-posterior is

ln p(✓|D) = �1

2
(D � µ(✓))TC�1(D � µ(✓)) + const.

by Bayes’ theorem. Here ✓ is one of the 3600 (⌦m,�8)
configurations at which the log-posterior is to be numeri-
cally evaluated. µ(✓) is the data vector (the full histogram
statistic or the power spectrum) measured at ✓ and averaged
over 10 realizations. D is an observation, also averaged
over 10 realizations, measured at some unknown configu-
ration that we want to recover. C is the covariance matrix,
and we include the Hartlap factor (Eq. (17) in Hartlap et al.,
2006) for the unbiased estimation of C�1. The constant
term const. = ln p(✓)

p(D) can be ignored as it plays no role in
finding the maximum a posteriori (MAP) estimate.

It is worth noting that the likelihood function of the his-
togram statistic may be checked empirically to be Gaussian
(Biagetti et al., 2022; Yip et al., 2023). For the power spec-
trum, assuming a Gaussian likelihood is customary (Carron,
2013). By additionally averaging over realizations (such
that the central limit theorem helps), the Gaussian likelihood
for inference is well-motivated overall.

We use a 2D Gaussian filter to smooth out the noise in the
numerically evaluated log-posterior, with � of the kernel
set to 1 and 0.2 pixels (optimized for inference accuracy)
for the histogram statistic and the power spectrum, respec-
tively. The MAP estimate is the (⌦m,�8) configuration that
maximizes the (log-)posterior.
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Parameter Recovery Test

https://arxiv.org/abs/2308.02636
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