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Fitted Q-learning

Instead of tabulating the action-values (table size grows as |S “]A|
| S|, |A|are sizes of state & action spaces), we can learn with a NN.

Replace the action values gls,, a,] by a ML model g([s,, a,, ¢].

Loss function which measures consistency of adjacent action values:

Lig] = (T[St,at] T mC?X[Q[StH,G, ¢]] — q[s¢, ay, ¢])2>

which in turn leads to an update:

aQ[Sta ag, ¢] .

¢ ¢+ ()4(7“[575,@75] T mgx [Q[St—i-laaa Cb]} — q|st, at, ¢]) Db

Convergence is not guaranteed. A change to the parameters modifies
both the target r[s, a,] — y - max_g[s,., a, ¢] & the prediction g[s,, a,, 1.



Deep Q-networks

e Use deep NN for fitted Q-learning. Q stands for action-value ¢l[s,, a,, ¢].

e Deep Q-network was a RL architecture that exploited deep NN to

learn to play ATARI 2600 games.
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Deep Q-networks

 The data comprises 220 x 160 images with 128 possible colors at each
pixel. Reshaped to 84 x 84 and only brightness value was kepit.
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* |ssue of convergence was alleviated by fixing the target parameters to
¢~ and only updating them periodically. Only update the prediction:
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* Not chasing a moving target; less prone to oscillations.



Policy gradient methods

Recall the notions of value estimation vs policy estimation. Q-learning
is an example of value estimation: estimate q[s, a,, ¢] and update .

Policy-based methods directly learn a stochastic policy z[a, | s,, 0].

For MDP, there is always an optimal deterministic policy.
There are reasons to use instead a stochastic policy:

 Exploration of the action-state space: not obliged to take the
best action at each step.

 Loss function changes smoothly: can use gradient descent.

* Knowledge of the state is often incomplete: two locations may
look locally the same but nearby reward structure is different.
Stochastic policy: taking different actions until ambiguity resolved.



Gradient update

Consider a trajectory 7 = [S{, a;, Sy, @, ..., ST, ay] through an MDP.

The probability of this trajectory depends on the current policy:
T
Pr(r|0) = Pr(s1) H'ﬂ-[axt‘St,9]PT(St+1‘St,CLt>.

t=1

Policy gradient algorithms aim to maximize the expected return r| 7]
over many such trajectories:

0 = argmax [ET [T[T]H = argmax [ / Pr(fye)r[f]dT] |

The return is the sum of all the rewards received along the trajectory.

To maximize the return, we use the gradient ascent update:

0 <+ 9+a-({% Pr(r|0)r|T]dT

— H—I—ow/apggw)r[ﬂdr

a = learning rate




Gradient update

~ this integral with a sum over empirically observed trajectories

0 <+ 0—1—04-/6Pg(;-|0>7“[7']d7'

— 0+a-/Pr(T\9)PT(i‘0) 8Pg(;'|9)r[7_]d7_

I
~ 1 1 8Pr(7'7;|9)
- " z:: 00

r|Ti.

« Using identity involving log, we can S|mplify the update on &

Olog|Pr(T;|0)
00+ - FZ g[(%’ }T[Ti].

* The log probability is given by the sum of logs:

T

log[Pr(T]0)] = log [Pr(sl) H wlas|st, O] Pr(ses1se, a,t)}

T
= log Pr 81 Zlog lat|st, O] Zlog[P’I“(StH\St,at)]a

t=1



Gradient update

Only the policy z[q, | s,, ] term depends on 6:

O +— 0+« - _Zzﬁlog mlaitlSit, HT[Ti]a

1=1 t=1

Since the state evolution Pr(S,,|S,, a,), parameter update does not
assume Markov time evolution process.

The total reward can be expressed as a sum of two contributions:

The first term does not affect the update, thus:

0 — 0+a- _S‘Yalog azt’Szta Hzmk

1=1 t=1 k=t




REINFORCE Algorithm

A policy gradient algorithm that incorporates discounting.

Use Monte Carlo to generate episodes [s;;, @, 77, Si, Ainy Fizy « - Vi
based on the current policy z[a | s, 0].

n[a | s, O] takes the current state & returns one output for each action.

The outputs (| A | dim.) are passed through a softmax function to
create a distribution over actions, which is sampled at each time step.

For each episode i, calculate the empirical discounted return for each

trajectory t;, that starts at time #:
T

riTit) = Z Y

k=t41

and then we update the parameters for each step 7 in each trajectory:

t 0 log |:7Ta/it [Sita HH

0<—0+a- v 20

T’[Tit] V’L,t



Baselines

Drawback of policy gradient methods: high variance; many episodes
may be needed to get stable updates of the derivatives.

To reduce the variance, we subtract the returns from a baseline:

1 T
1 c‘ﬂogwatsz,ﬁ
0« 60+a j§ > kil (r[Tit] —b).

1=1 t=1

The baseline is often taken to be:
- 1
=7 ZT[TZ]

Subtracting this baseline factors out variance that might occur when
the trajectories happen to pass through states with higher than
average returns.



Actor-critic methods

Actor-critic algorithms: temporal difference policy gradient algorithms.

Parameters of the policy network are updated at each time step, in
contrast with Monte Carlo REINFORCE algorithms.

We do not have access to the future rewards along the trajectory.

Approximate the sum over all the future rewards with:

Z r Tzk Tt t+ Y [Sz,t—i—la Qb]
k=1

The value v[s; ., , ¢] is estimated by a second NN with parameter ¢.

This gives the update:

00+ ZZ Zﬂog P’I" azt’Szta )H (Tit NEPVS U[Si,t+1a¢] B U[Si,t,qb])-

zltl



Actor-critic methods

Concurrently, we update the parameter ¢ using the loss function:

I T
:ZZ Tit + Y- Sz t+17¢] _U[Si?t’¢])2'

1 =1 t=1
The policy network z[s,, 0] that predicts Pr(a|s,) is term the actor.
The value network v[s,, ¢] is termed the critic.

Actor-critic methods can update the policy parameter at each step.

In practice, the agent typically collects a batch of experience over
many time steps before the policy is updated.



Nature or Nurture?




Genetic Algorithm: The basic Idea
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Various choices to be made:

e definition of fithess function

final population |

e selection method

e crossover procedure

e mutation rate

e further attributes



The String Landscape Inverse Problem

Inverse Problem: how to a) identify and b) characterize
flux vectors with particular properties

4

( _ ) ( _
Input vector N € Z™ — “Physical Observables”,
(subject to consistency -_— ¢ =(,....¢) ER" | =————Pp | o g. A, particle spectrum,
conditions) masses, couplings, ...
_ o

solve equations of motion

minimizing potential

calculate
phenomenology

—
N — (topologies of compactification, number of branes and wrapping numbers,
quantized fluxes, ....)



Understanding the structure of the Landscape

Task

Apply GA+RL to find
string vacua with
| Wy | = 50,000 = 1000

We performed a Principal Component Analysis (PCA)
on the output of flux vectors in Z°

PCA on combined output

PCA on individual output
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https://arxiv.org/abs/1907.10072
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https://arxiv.org/abs/1907.10072
https://arxiv.org/abs/2111.11466

Genetic Algorithms + RL

e Correlations:

Correlation map GA+RL Correlation map GA
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* GGAs and RL have also been used to optimize the search for realistic
particle physics models: https://arxiv.org/abs/2112.08391

e Using dynamic programming, we can even count the exact number of

solutions: https://arxiv.org/abs/2206.03506



https://arxiv.org/abs/2112.08391
https://arxiv.org/abs/2206.03506




IS

Topological Data Analys

From String Theory to Cosmology to Phases of Matter
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Cosmology Phases of Matter

String Landscape


https://arxiv.org/abs/1710.04737
https://arxiv.org/abs/2009.04819
https://arxiv.org/abs/2308.02636
https://arxiv.org/abs/2403.13985
https://arxiv.org/abs/1812.06960
https://arxiv.org/abs/1907.10072
https://arxiv.org/abs/2009.14231

Learning from Topology

DM Simulation
Parameters

- (Qm708)

SElEE o FlowPM [Modi, 21]
Halo Map e 256 (Mpc/h)3; 1602 particles
e 36000+5000+10000

- 1 PI-CNN -

=51000 total simulations | = et
e Rockstar halo finder X Touth
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Machine Learning

Persistence

- x3 Parameter Recovery Test
',;2:{‘5..3;3.:. ;. Persistence images: 3 X 642
Birth 3 x 3 conv: 64 x 622

Persistence Diagrams

2 x 2 max pool: 64 x 312

ReLU

) ‘ 3 X 3 conv: 64 X 292 Sum along z, y: 3 X 2 X 64
. - Flatten
Summary Statistics 2 x 2 max pool: 64 x 147 Dense: 512

3 X 3 conv: 128 x 122 Dense: 1024

ReLU

2 X 2 max pool: 128 x 62 Dense: 256

ReLU

3 x 3 conv: 128 x 42 Dense: 128

ReLU

2 X 2 max pool: 128 x 22 Dense: 2 Y CNN + dense branCh
Dense: 128 e +10% in the errors w/o dense branch

Dense: 2

Persistence

Birth
Persistence Images

https://arxiv.org/abs/2308.02636



https://arxiv.org/abs/2308.02636

