
Moritz Münchmeyer

Physics 361 - Machine Learning in
Physics

Lecture 23 – Simulation-Based
Inference

April 16th 2024

Final project
• You will write a paper on an application of machine learning to physics of your choice. Your paper needs to

contain a computational analysis, which generally will mean applying a machine learning method to some data

set.

• You can work alone or in groups of two.

• The paper should be 5 to 10 pages.

• If you are already doing research in physics or a related field, you can write the paper on this topic if you wish.

• Your paper will be due on Sunday May 5th at midnight.

• We want to know your topic by April 16th at latest. We will make a list today at the end of the

lecture.

• We will have a brief presentation of your results in the last lecture, May 2nd. We should have about 5
minutes per student / pair.

Simulation-Based
Inference

Overview

References
• This presentation is based on the review “The frontier of

simulation-based inference” (Cranmer et al 2019)

• https://arxiv.org/abs/1911.01429

• Software packages for SBI include

• https://sbi-dev.github.io/sbi/ simulation-based inference in

python

• https://docs.pyro.ai/en/stable/index.html Pyro - probabilistic

machine learning with tensor flow

https://arxiv.org/abs/1911.01429
https://sbi-dev.github.io/sbi/
https://docs.pyro.ai/en/stable/index.html

Inference with Simulations
• Complex phenomena in physics and other sciences can often be

described with simulations (while analytic treatment is often impossible)

• Examples:

• Formation of the universe

• Particle shower induced by a cosmic ray in the atmosphere

• Particle tracks generated by colliding protons at the LHC

• Climate, Weather, Epidemics etc.

• We want to infer physical parameters, that go into the simulation (such as
the age of the universe or the mass of the Higgs) by “comparing” the
outcome of simulations with measured data.

• This is usually not straight forward to do. Problems include:

• Simulations usually don’t provide explicit likelihoods.

• We need a way to get statistical and systematic error bars.

• It may be difficult to run enough simulations.

• Simulations may have uncertainties themselves.

Implicit vs Explicit inference
• In most situations a simulation does not provide a probability density

(likelihood) of observations given parameters. Such
simulations are sometimes called implicit models.

• Implicit means that their likelihood cannot be computed explicitly,
i.e. it is not computationally tractable. We only get samples of the
simulation.

• On the other hand, models or simulations that do provide a likelihood
are called explicit models. Recall for example Gaussian likelihoods.

• In this section we focus on implicit models, i.e. most simulations.
Implicit inference is also called simulation-based inference or
likelihood-free inference (a bit of a misnomer since we learn the
likelihood from the simulation). These terms usually mean the same.

ℒ(x |θ)

Simulators
• A simulator is a computer program that takes as input a vector of

parameters , samples a series of internal states or latent variables
, and finally produces a data vector as

output.

• : the parameters of interest. z: Typically unobservable variables of the
data generating process (including e.g. initial conditions). x: Observations.

• Programs that involve random samplings and are interpreted as statistical
models are known as probabilistic programs, and simulators are an
example.

θ
zi ∼ pi(zi |θ, z<i) x ∼ p(x |θ, z)

θ

Example from cosmology

Cosmological
parameters Θ

Latent variables z
Data : Raw data or
summary statistics

x

Simulator

Inference of p(θ |x)

Observable galaxies

Matter distribution of the universe

Inference
• In a Bayesian data analysis, the goal is to find the posterior over the

parameters given the data:

• The likelihood is given by an intractable integral over the latent space of the
simulator (e.g. we cannot simulate all possible initial conditions)

• The fundamental challenge of SBI is thus to perform Bayesian (or
Frequentist) inference despite this intractability.

Summary statistics
• Often there are many possible choices what the observed data should be.

• A summary statistic x’=f(x) is any compression of the raw data x.

• Example: Instead of analyzing the raw electric field data from an antenna,

we may chose to analyze the measured power spectrum.

• Low-dimensional summary statistics are usually required to analyze

high dimensional data to make the computation tractable.

• Traditionally the choice of good summary statistics was left to domain

experts, which (should) know which parts of the data are important.

• However, summary statistics are almost always lossy, i.e. they contain

less information on the parameters than the uncompressed data.

• In principle with machine learning one can learn optimal summary

statistics directly from the simulations. SBI works both with classical and
with learned summary statistics.

x

Approximate Bayesian Computation (ABC)
• There are two general traditional approaches of SBI, Approximate Bayesian

Computation (ABC) and Density Estimation. The simplest rejection sampling ABC
algorithm works as follows:

• The tolerance ϵ controls the trade-off between the approximation quality and the
computational feasibility: smaller ϵ leads to a better approximation but requires more
simulations and thus more computational effort.

• Problems: Need a distance metric between data and simulation. No amortized
inference: Need to re-run simulations when we get new data. “Throws away”
simulations that are not within the tolerance level.

• There are many versions of ABC that improve its performance, e.g. Population Monte
Carlo.

Classical density estimation of the likelihood

• Instead of ABC we can model the likelihood by estimating the distribution of
simulated data given parameters.

• The density estimation algorithm works as follows:

• Define a proposal density (not necessarily the prior)

• Draw parameters from this proposal and run many simulations to generate

a data set of N pairs of parameters and data :

• These are samples of the joint pdf

• From the samples we can estimate the likelihood with histograms
or kernel density estimation.

• Advantage: Amortized inference, i.e. when we take new data we can directly
evaluate the likelihood without running new simulations.

• Problem: Potentially need more simulations than we can afford to compute
(given computational limits).

p̃(θ)

θ x {(θn, xn)}N
n=1

p(θ, x) = p(x |θ)p̃(θ)
p(x |θ)

Simulation-Based
Inference
SBI with Neural Density
Estimators

Improving SBI with machine learning
• Classical SBI has several shortcomings:

• Sample efficiency: Both ABC and classical density estimation techniques
suffer from the curse of dimensionality. The poor scaling means that the number
of simulated samples needed to provide a good estimate of the likelihood or
posterior can be prohibitively expensive.

• Quality of inference: The reduction of the data to low- dimensional summary
statistics invariably discards some of the information in the data about θ, which
results in a loss in statistical power

• Machine learning can improve SBI in several ways:

• We can learn PDFs with neural networks rather than using histograms or kernel

density estimation. These techniques work in higher dimensions.

• Active learning methods can systematically improve sample efficiency. Draw

new simulations where they help the most.

• Neural networks can work with very high-dimensional data. In particular we can

learn optimal summary statistics of the data.

Neural density estimators (NDEs)
• Machine learning offers several methods that can be used to learn the PDF

underlying a data set.

• Both unconditional and conditional PDFs can be learned.

• An NDE learns a PDF that, when sampled from, makes samples that
“look like the training data”. It is trained to make the training data likely under
the model. Normal neural networks learn functions, NDEs learn PDFs.

• The dominant NDEs in SBI are Normalizing Flows. We will discuss them in
detail in the next lecture. For now assume that we have some model that can
learn PDFs from data.

• A different older NDE is a mixture density network. In this model a neural
network outputs the parameters (means, variances, and mixture coefficients) of
the mixture model (e.g. a collection of Gaussians).

p(x)

{(θn, xn)}N
n=1 p(x |θ)

{xn}N
n=1 p(x)

Source: https://sbi-dev.github.io/sbi/

Goal: Algorithmically identify mechanistic models (simulators) which are consistent with data.

Simulation-based inference with NDEs
inputs: A candidate mechanistic model, prior knowledge or constraints on model parameters,
and observational data (or summary statistics thereof).

Flavors of simulation-based inference with NDEs

• There are a number of slightly different approaches for SBI.
These are (each with several variants):

• Neural Likelihood Estimation

• Neural Posterior Estimation

• Neural Ratio Estimation

• These have different properties and in some situations one is
more suitable than the other. We will briefly discuss the first two.

• Mathematical details will follow after we discuss normalizing
flows.

Neural Likelihood Estimation (NLE)
• In neural likelihood estimation we learn the likelihood from simulated pairs of

model parameters and data:

• After training the NDE on our simulated data, we can then evaluate the
likelihood of observed data from our measurement.

• Now we can proceed with normal Bayesian data analysis. That usually
means that we sample from the posterior with MCMC:

• NLE is amortized (no new sims needed for new data). However sometimes it
takes too much training data to learn the likelihood everywhere. Sequential
Neural Likelihood Estimation (S-NLE) only learns the likelihood near the data
and thus saves samples, at the cost of not being amortized anymore.

{(θn, xn)}N
n=1 ℒ(x |θ)

ℒ(xobs |θ)

p(θ |xobs) ∝ ℒ(xobs |θ)p(θ)

Neural Posterior Estimation (NPE)
• You might wonder why why learn the likelihood and not the posterior which

is our ultimate goal. Learning the posterior is indeed a possibility.

• From a simulated data set

drawn from a proposal density it is possible to directly learn the
posterior

• An advantage of learning the posterior directly is that we do not need to run
an MCMC anymore. The model directly outputs the desired posterior, i.e. our
parameter measurement. A disadvantage is that it is difficult to explore
different prior distributions of the parameters.

p̃(θ)

{(θn, xn)}N
n=1

p(θ |x)

Testing the neural density estimator
• After training the NLE or NPE, it is important to assess that the learned

PDFs are correct, and we thus do not over- or under-estimate parameter
uncertainties. Most importantly, we want to be sure that our posterior is not
overconfident.

• For example, if we did not train the NDE on enough simulations, we will get
incorrect likelihoods and posteriors.

• It is not possible to formally guarantee that our machine learning model is
correct. However, one can run a series of tests. In general, the more test
simulations we have (independent from the training simulations), the more
convincing our tests can be.

• Typical tests include in particular

• Posterior Predictive Checks (PPC)
• Simulation-based calibration

• For more details, see https://sbi-dev.github.io/sbi/ diagnostics.

https://sbi-dev.github.io/sbi/

Simulation-Based
Inference

Examples of SBI

Gaussian Toy example
• We will first have a look at the Gaussian demo from https://github.com/sbi-dev/

sbi/blob/main/tutorials/00_getting_started_flexible.ipynb

• Model parameters : 3 parameters

• Output parameters x: 3 parameters

• This example uses Neural Posterior Estimation.

• (Discussion on Colab)

θ

https://github.com/sbi-dev/sbi/blob/main/tutorials/00_getting_started_flexible.ipynb
https://github.com/sbi-dev/sbi/blob/main/tutorials/00_getting_started_flexible.ipynb
https://github.com/sbi-dev/sbi/blob/main/tutorials/00_getting_started_flexible.ipynb

SBI in Cosmology
• SBI is used in cosmology to extract more information about the fundamental

parameters of the universe from the observed galaxy distribution.

• We will have quick look at these papers:

• https://arxiv.org/pdf/2211.00723.pdf SIMBIG: A Forward Modeling Approach To
Analyzing Galaxy Clustering

• https://arxiv.org/pdf/2310.15246.pdf SIMBIG: The First Cosmological
Constraints from Non-Gaussian and Non-Linear Galaxy Clustering

• The SBI method these papers use is NPE with a “Masked Autoregressive
Flow”. We will see in the next lecture how this method works in detail.

https://arxiv.org/pdf/2211.00723.pdf
https://arxiv.org/pdf/2310.15246.pdf

Recall example from cosmology

Cosmological
parameters Θ

Latent variables z
Data : Raw data or
summary statistics

x

Simulator

Inference of p(θ |x)

Observable galaxies

Matter distribution of the universe

• Reading for this lecture:

• This lecture was based mostly on https://arxiv.org/abs/

1911.01429

Course logistics

https://arxiv.org/abs/1911.01429
https://arxiv.org/abs/1911.01429

