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Final project
• You will write a paper on an application of machine learning to physics of your choice. Your paper needs to 

contain a computational analysis, which generally will mean applying a machine learning method to some data 

set. 


• You can work alone or in groups of two.


• The paper should be 5 to 10 pages.


• If you are already doing research in physics or a related field, you can write the paper on this topic if you wish.


• Your paper will be due on Sunday May 5th at midnight.

• We want to know your topic by April 16th at latest. We will make a list today at the end of the 

lecture.


• We will have a brief presentation of your results in the last lecture, May 2nd. We should have about 5 
minutes per student / pair. 



Simulation-Based 
Inference

Overview



References
• This presentation is based on the review “The frontier of 

simulation-based inference” (Cranmer et al 2019)

• https://arxiv.org/abs/1911.01429 


• Software packages for SBI include

• https://sbi-dev.github.io/sbi/ simulation-based inference in 

python

• https://docs.pyro.ai/en/stable/index.html Pyro - probabilistic 

machine learning with tensor flow

https://arxiv.org/abs/1911.01429
https://sbi-dev.github.io/sbi/
https://docs.pyro.ai/en/stable/index.html


Inference with Simulations
• Complex phenomena in physics and other sciences can often be 

described with simulations (while analytic treatment is often impossible)

• Examples:

• Formation of the universe

• Particle shower induced by a cosmic ray in the atmosphere

• Particle tracks generated by colliding protons at the LHC

• Climate, Weather, Epidemics etc.


• We want to infer physical parameters, that go into the simulation (such as 
the age of the universe or the mass of the Higgs) by “comparing” the 
outcome of simulations with measured data. 


• This is usually not straight forward to do. Problems include:

• Simulations usually don’t provide explicit likelihoods.

• We need a way to get statistical and systematic error bars.

• It may be difficult to run enough simulations.

• Simulations may have uncertainties themselves. 



Implicit vs Explicit inference
• In most situations a simulation does not provide a probability density 

(likelihood)  of observations given parameters. Such 
simulations are sometimes called implicit models. 


• Implicit means that their likelihood cannot be computed explicitly, 
i.e. it is not computationally tractable. We only get samples of the 
simulation.


• On the other hand, models or simulations that do provide a likelihood 
are called explicit models. Recall for example Gaussian likelihoods. 


• In this section we focus on implicit models, i.e. most simulations. 
Implicit inference is also called simulation-based inference or 
likelihood-free inference (a bit of a misnomer since we learn the 
likelihood from the simulation). These terms usually mean the same. 

ℒ(x |θ)



Simulators
• A simulator is a computer program that takes as input a vector of 

parameters , samples a series of internal states or latent variables 
, and finally produces a data vector  as 

output. 


• : the parameters of interest. z: Typically unobservable variables of the 
data generating process (including e.g. initial conditions). x: Observations. 


• Programs that involve random samplings and are interpreted as statistical 
models are known as probabilistic programs, and simulators are an 
example.

θ
zi ∼ pi(zi |θ, z<i) x ∼ p(x |θ, z)

θ



Example from cosmology

Cosmological 
parameters Θ

Latent variables z
Data : Raw data or 
summary statistics 

x

Simulator

Inference of p(θ |x)

Observable galaxies

Matter distribution of the universe



Inference
• In a Bayesian data analysis, the goal is to find the posterior over the 

parameters given the data:


• The likelihood is given by an intractable integral over the latent space of the 
simulator (e.g. we cannot simulate all possible initial conditions)


• The fundamental challenge of SBI is thus to perform Bayesian (or 
Frequentist) inference despite this intractability. 



Summary statistics
• Often there are many possible choices what the observed data  should be. 

• A summary statistic x’=f(x) is any compression of the raw data x. 

• Example: Instead of analyzing the raw electric field data from an antenna, 

we may chose to analyze the measured power spectrum.

• Low-dimensional summary statistics are usually required to analyze 

high dimensional data to make the computation tractable. 

• Traditionally the choice of good summary statistics was left to domain 

experts, which (should) know which parts of the data are important. 

• However, summary statistics are almost always lossy, i.e. they contain 

less information on the parameters than the uncompressed data.

• In principle with machine learning one can learn optimal summary 

statistics directly from the simulations. SBI works both with classical and 
with learned summary statistics. 

x



Approximate Bayesian Computation (ABC)
• There are two general traditional approaches of SBI, Approximate Bayesian 

Computation (ABC) and Density Estimation. The simplest rejection sampling ABC 
algorithm works as follows:


• The tolerance ϵ controls the trade-off between the approximation quality and the 
computational feasibility: smaller ϵ leads to a better approximation but requires more 
simulations and thus more computational effort.


• Problems: Need a distance metric between data and simulation. No amortized 
inference: Need to re-run simulations when we get new data. “Throws away” 
simulations that are not within the tolerance level. 


• There are many versions of ABC that improve its performance, e.g. Population Monte 
Carlo.



Classical density estimation of the likelihood

• Instead of ABC we can model the likelihood by estimating the distribution of 
simulated data given parameters.


• The density estimation algorithm works as follows:


• Define a proposal density  (not necessarily the prior)  

• Draw parameters from this proposal and run many simulations to generate 

a data set of N pairs of parameters  and data : 


• These are samples of the joint pdf 


• From the samples we can estimate the likelihood  with histograms 
or kernel density estimation.


• Advantage: Amortized inference, i.e. when we take new data we can directly 
evaluate the likelihood without running new simulations. 


• Problem: Potentially need more simulations than we can afford to compute 
(given computational limits). 

p̃(θ)

θ x {(θn, xn)}N
n=1

p(θ, x) = p(x |θ)p̃(θ)
p(x |θ)



Simulation-Based 
Inference
SBI with Neural Density 
Estimators



Improving SBI with machine learning
• Classical SBI has several shortcomings:


• Sample efficiency: Both ABC and classical density estimation techniques 
suffer from the curse of dimensionality. The poor scaling means that the number 
of simulated samples needed to provide a good estimate of the likelihood or 
posterior can be prohibitively expensive. 


• Quality of inference: The reduction of the data to low- dimensional summary 
statistics invariably discards some of the information in the data about θ, which 
results in a loss in statistical power 


• Machine learning can improve SBI in several ways:

• We can learn PDFs with neural networks rather than using histograms or kernel 

density estimation. These techniques work in higher dimensions. 

• Active learning methods can systematically improve sample efficiency. Draw 

new simulations where they help the most.

• Neural networks can work with very high-dimensional data. In particular we can 

learn optimal summary statistics of the data. 



Neural density estimators (NDEs)
• Machine learning offers several methods that can be used to learn the PDF 

underlying a data set. 

• Both unconditional and conditional PDFs can be learned. 


• An NDE learns a PDF  that, when sampled from, makes samples that 
“look like the training data”. It is trained to make the training data likely under 
the model. Normal neural networks learn functions, NDEs learn PDFs.


• The dominant NDEs in SBI are Normalizing Flows. We will discuss them in 
detail in the next lecture. For now assume that we have some model that can 
learn PDFs from data. 


• A different older NDE is a mixture density network. In this model a neural 
network outputs the parameters (means, variances, and mixture coefficients) of 
the mixture model (e.g. a collection of Gaussians). 

p(x)

{(θn, xn)}N
n=1 p(x |θ)

{xn}N
n=1 p(x)



Source: https://sbi-dev.github.io/sbi/

Goal: Algorithmically identify mechanistic models (simulators) which are consistent with data.

Simulation-based inference with NDEs
inputs: A candidate mechanistic model, prior knowledge or constraints on model parameters, 
and observational data (or summary statistics thereof).



Flavors of simulation-based inference with NDEs

• There are a number of slightly different approaches for SBI. 
These are (each with several variants):

• Neural Likelihood Estimation

• Neural Posterior Estimation

• Neural Ratio Estimation


• These have different properties and in some situations one is 
more suitable than the other. We will briefly discuss the first two. 


• Mathematical details will follow after we discuss normalizing 
flows. 



Neural Likelihood Estimation (NLE)
• In neural likelihood estimation we learn the likelihood from simulated pairs of 

model parameters and data:


• After training the NDE on our simulated data, we can then evaluate the 
likelihood of observed data from our measurement.


• Now we can proceed with normal Bayesian data analysis. That usually 
means that we sample from the posterior with MCMC: 


• NLE is amortized (no new sims needed for new data). However sometimes it 
takes too much training data to learn the likelihood everywhere. Sequential 
Neural Likelihood Estimation (S-NLE) only learns the likelihood near the data 
and thus saves samples, at the cost of not being amortized anymore. 

{(θn, xn)}N
n=1 ℒ(x |θ)

ℒ(xobs |θ)

p(θ |xobs) ∝ ℒ(xobs |θ)p(θ)



Neural Posterior Estimation (NPE)
• You might wonder why why learn the likelihood and not the posterior which 

is our ultimate goal. Learning the posterior is indeed a possibility. 

• From a simulated data set 


drawn from a proposal density  it is possible to directly learn the 
posterior 


• An advantage of learning the posterior directly is that we do not need to run 
an MCMC anymore. The model directly outputs the desired posterior, i.e. our 
parameter measurement. A disadvantage is that it is difficult to explore 
different prior distributions of the parameters. 

p̃(θ)

{(θn, xn)}N
n=1

p(θ |x)



Testing the neural density estimator
• After training the NLE or NPE, it is important to assess that the learned 

PDFs are correct, and we thus do not over- or under-estimate parameter 
uncertainties. Most importantly, we want to be sure that our posterior is not 
overconfident. 


• For example, if we did not train the NDE on enough simulations, we will get 
incorrect likelihoods and posteriors. 


• It is not possible to formally guarantee that our machine learning model is 
correct. However, one can run a series of tests. In general, the more test 
simulations we have (independent from the training simulations), the more 
convincing our tests can be. 


• Typical tests include in particular 

• Posterior Predictive Checks (PPC) 
• Simulation-based calibration 

• For more details, see https://sbi-dev.github.io/sbi/ diagnostics.

https://sbi-dev.github.io/sbi/


Simulation-Based 
Inference

Examples of SBI



Gaussian Toy example
• We will first have a look at the Gaussian demo from https://github.com/sbi-dev/

sbi/blob/main/tutorials/00_getting_started_flexible.ipynb 


• Model parameters : 3 parameters

• Output parameters x: 3 parameters 


• This example uses Neural Posterior Estimation. 


• (Discussion on Colab)

θ

https://github.com/sbi-dev/sbi/blob/main/tutorials/00_getting_started_flexible.ipynb
https://github.com/sbi-dev/sbi/blob/main/tutorials/00_getting_started_flexible.ipynb
https://github.com/sbi-dev/sbi/blob/main/tutorials/00_getting_started_flexible.ipynb


SBI in Cosmology
• SBI is used in cosmology to extract more information about the fundamental 

parameters of the universe from the observed galaxy distribution.

• We will have quick look at these papers: 


• https://arxiv.org/pdf/2211.00723.pdf SIMBIG: A Forward Modeling Approach To 
Analyzing Galaxy Clustering


• https://arxiv.org/pdf/2310.15246.pdf SIMBIG: The First Cosmological 
Constraints from Non-Gaussian and Non-Linear Galaxy Clustering


• The SBI method these papers use is NPE with a “Masked Autoregressive 
Flow”. We will see in the next lecture how this method works in detail. 

https://arxiv.org/pdf/2211.00723.pdf
https://arxiv.org/pdf/2310.15246.pdf


Recall example from cosmology

Cosmological 
parameters Θ

Latent variables z
Data : Raw data or 
summary statistics 

x

Simulator

Inference of p(θ |x)

Observable galaxies

Matter distribution of the universe







• Reading for this lecture: 

• This lecture was based mostly on https://arxiv.org/abs/

1911.01429 

Course logistics

https://arxiv.org/abs/1911.01429
https://arxiv.org/abs/1911.01429

