Physics 361 - Machine Learning in Physics

Lecture 24 – Normalizing flows

April 18th 2024

Moritz Münchmeyer

Normalizing Flows

Intro to Normalizing flows

Basics of Normalizing Flows

Normalizing flows

• Normalizing flow: Series of learned transformations that **deform a simple base distribution into a complicated target distribution**.

- Difference with most other ML methods: We learn a probability distribution, rather than an arbitrary input->output mapping.
- Review: https://arxiv.org/abs/1912.02762. Widely used in physics e.g. in QFT, likelihood-free inference and cosmology

Normalizing flows are generative models

- Like GANs and diffusion models, normalizing flows are generative models.
- They can be used to generate images too. However they are not currently as good at that as these other models.
- But they can do something other models cannot: give a normalized probability density for the sample. The are real PDFs.

Real-NVP flow

Glow flow

Normalizing flows

- Transformation T (the "flow") Change of variables of PDF $p_x(\mathbf{x}) = p_u(\mathbf{u}) |\det J_T(\mathbf{u})|^{-1}$ $\mathbf{x} = T(\mathbf{u})$
- Chain many "simple" transformations together to make a complicated distribution:

$$
T=T_K\circ\cdots\circ T_1
$$

$$
\mathbf{z}_k = T_k(\mathbf{z}_{k-1})
$$

- After training **two basic operations can be performed**:
	- **Exact density evaluation** (backward mode)

Sample x
$$
p(x)
$$

• **Sampling from the distribution** (forward mode)

Base distribution sample u Target sample x

Basics and definition:	\vec{x} : D-dimensional real vector	
... data distribution:	\vec{x} : D-dimensional real vector	
$\vec{x} \sim Pc\vec{x}$		
$E.g.: \vec{x} = \begin{pmatrix} height \\ age \\ weight \\ strength \end{pmatrix}$ of people		
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

Properties of the transformation . To specify pcks we used to specify - The transformation $T(x;\theta)$
with , Learned" parameters θ - The base distribution $\rho_u(u;\phi)$ often Kept
with "Learned" parameters ϕ static \bullet Defining properties of transformation T: . T mast be invertible $-$ Both T and T^{-1} must be differentiable Thus T is a diffeamarphism. $\bullet \implies u = T^{-1}(x)$ must also be D -dimensional.

$P_{\text{f} \text{operties of the frame formath}$	
• The flow transform from its a change of variables.	
$P_{x}(x) = P_{u}(u) det_{f}(u) ^{-1}$	
w here	$u = T^{-1}(x)$

$$
w_1H_1 \bigg[acobiag
$$
\n
$$
J_{T(u)} = \begin{bmatrix} \frac{\partial T_1}{\partial u_1} & \cdots & \frac{\partial T_L}{\partial u_0} \\ \vdots & \ddots & \vdots \\ \frac{\partial T_P}{\partial u_1} & \frac{\partial T_D}{\partial u_0} \end{bmatrix}
$$

$$
|det\rangle_{t^{(4)}}|_{q^{u\alpha}}t^{i}fiesfhr
$$
 Local change of volume
that *u models* "P(u) *into* P(x).

Composition of transformations

· Invertible and differentiable transformations are composable. In practice we stack many simple base transformations:

$$
T = T_{k} \circ T_{k-1} \circ ... \circ T_{1}
$$

det $\gamma_{T_{k} \circ T_{1}}(u) = d_{c} f_{\gamma_{T_{2}}}(T_{1}(u)) det \gamma_{T_{1}}(u) etc.$

Figure 1: Example of a 4-step flow transforming samples from a standard-normal base density to a cross-shaped target density.

Forward and backward use of the flow . The flow (after training) has two fundamental
operations: · Sampling! Draw samples from p(u) and transform $x = 1(u)$ to get samples from x . Other generative models (GANS, VAE) can also sample. • Density evaluation; From a sample x, we can calculate pcx, as $P_{x}(x) = P_{u}(u) | det \int f(u) |^{-1}$

Computational trade offs

- · Sampling and density evaluation have different
computational requirements
- . Density evaluation requires calculating T^{-1} and det \overline{f} + -1 .
- For large 0 , these calculations can easily be
forbiddingly expensive
- => Need flow architectures that are
both flexible (expressive) and fast. • T must be easily invertible. Most fanctions are not.
- Some flows are universal approximators, some aren't,
und some times it is unknown.

Training the flow · Goal: Fit a flow $p_x^{\prime}(x;\theta)$ to target distribution $p_x^{\prime\prime}(x)$ parameters of transformation $T(x;\theta)$
and sometimes prior ρ cu_i θ)

a Usually we have a collection of samples from
$$
p_x^*(x)
$$
 1
the training data.

i There are different measures of similarities between
 p_x and p_{cxy}^* .

· The most popular choice: Kullback-leibler (KL) dirergence

Training the flow: KL divergence

\nThe loss is given by (see lecture 4)

\n
$$
\begin{aligned}\n\mathcal{L}(\mathcal{O}) &= D_{KL} \left[P_{x}^{*} || P_{x}(x; \mathcal{O}) \right] \\
&= - \left[E_{p_{x}^{*}} \left[\log p_{x}(x; \mathcal{O}) \right] + \cos t \\
\text{max } x \text{ samples } f \text{ from training data} \\
\text{Likely under } f \text{ (low pdf)\n}\n\end{aligned}
$$

•
$$
Usin \varphi
$$
 $\varphi_{x}(x) = \varphi_{u} (T^{-1}(x)) |det \}_{T^{-1}} (x)|$
= $\int_{0}^{2} \{ (\theta) = -\frac{1}{N} \sum_{n=1}^{N} log \{ u (T^{-1}(x_{n}, \theta)) + log \} |det \}_{T^{-1}} (x_{n}, \theta) |$

· Training: SGD for ∇_{θ} λ

Designing normalizing flows

Designing efficient flows · We stack many simple building blocks. $T = T_{\overline{K}}$ 000 $T_{\overline{I}}$ $z_{k} = T_{k} (z_{k-1})$ $\lfloor log \left(\frac{1}{r} (z) \right) \rfloor = \sum_{K=1}^{n} \lfloor log \left(\frac{1}{r} \right) \frac{1}{r_{K}} (z_{K}-1) \rfloor$ more depth \rightarrow O_{CK} growth in cost $\dot\smile$. Note: making T_{is} invertible in theory and actually
inverting it are very different requirements => want easily invertible functions

Designing efficient flows

\n• We want a tractable Jacobian determinant.

\nFor a general map
$$
D
$$
 inputs \rightarrow D outputs C at C

Most flows are using forms for which
det is
$$
\mathcal{O}(D)
$$
.

building blocks T_K that have · We now discuss this feature. \vec{z} = $f(\vec{z})$

PLanar flows

Building block:

elementwise non-linearity $1505,05770$

$$
\begin{cases}\n(\dot{\Sigma}) = \dot{\Sigma} + \vec{u} \int_0 (\vec{w}^T \dot{\Sigma} + b) \\
\int_0^a \vec{v} \cos \phi \sin \phi\n\end{cases}
$$

e can calculate
$$
\det J
$$
 in $O_{(0)}$ time.

· stack many of these transformations

Autoregressive flows • Autoregressive property: $\vec{z} = (z_1, z_2, z_3, z_1, z_0)$ variable z_i , depends on $z_{i:i}$ only $Z_i' = \mathcal{I}(2; \overrightarrow{h_i})$ T_{utransformer}" must be invertible.
"transformer" i.e. monotonic in z; $z'_1 \mid z'_2 \mid \cdots \mid z'_{i-1} \mid z'_i \mid \cdots \mid z'_{D} \mid$ $\overrightarrow{h}_i = C_i (\overrightarrow{\mathcal{Z}}_{ci})$ $\begin{array}{|c|c|c|}\n\hline\nc_i & h_i \\
\hline\n\uparrow & & \uparrow\n\end{array}$ $\frac{1}{\pi}$ conditioner" modulates the $\frac{|c_i|^{-\frac{n_i}{n}} \tau}{\pi}$ ϵ This Leads to a triangular facobian: J_{τ} (z) = $|\sum_{n}$ (=) def) = π dij

Affine Autoregressive flows

. Particularly simple Linear transformer

$$
\tau_{(z_i)} = \alpha_i z_i + \beta_i \text{ shift and scale } z_i
$$
\n
$$
\text{invertible for } \alpha \neq 0 \text{ within the range of } z_i
$$
\n
$$
\text{or: } \alpha \times \rho^{\alpha_i} z_i + \beta_i
$$
\n
$$
\text{or: } \alpha \times \rho^{\alpha_i} z_i + \beta_i
$$

$$
\alpha_{1}\beta
$$
 depend on $\{z_{i}\}\$ by some mean
net work para mathematician
 $\{z_{i}\}\$ [Wb] α_{i} Wise.g. MLP
or CW

So the conditioner has the Learned parameters Θ .

Diffectent adotegressive flows
Again, aaloregressive flows are
$z_i^* = \mathcal{I}(z_i, \vec{h}_i)$
$\vec{h}_i = C_i (\vec{z}_{i,j})$
$\vec{h}_i = C_i (\vec{z}_{i,j})$
\vec{h}_i conditioner" must be invertible.
\vec{h}_i conditioner" modulates the transformer, not a bijection have been proposed. Popular: • Masked and togetheresive flows (UAF)
They have different cost and expressions

 \bullet .

Figure 2. Diagram of how normalizing flows work, with the specific example of Masked Autoregressive Flows. The samples from the vector $z_0 = u$, sampled from the simple distribution $\pi(u)$, are deformed through the sequence of transformations $f = f_T \circ \cdots \circ f_1$ into those of $\mathbf{z}_T = \mathbf{x}$, which follow a more complex distribution $p(x)$. In the lower panel, we illustrate the conditioner that "masks out" the connections between z_i and $h_{\leq i}$, as well as the affine functions applied to the vector components.

Real-MVP	2d spatial array
BaseLine flow for many image" applications 1605.08803	
Special case of affine antoregressive flow: Split variables into two halfs: $z_{1:k} = z_{1:k}$	How
$z_{k+1:0} = z_{k+1:0} \propto (z_{1:k}) + \beta (z_{1:k})$	
⇒ Jacobian $\overbrace{\overbrace{\overbrace{\overbrace{\overline{\cdots}}\overline{\cdots}}\overline{\overline{\cdots}}}}$	
ACLow's parallel computation of z'since all inputs are available.	
Stack many such layer's with different orderings of the variables.	

Use example: <https://arxiv.org/abs/2101.08176>Normalizing Flows for Lattice Field Theory

Conditional	Lows	
. We want to Learn not past PDF, $p(y)$		
but also conditional PDF, $p(x y)$		
. This is achieved by making the flow transformations T depends on the condition y .		
. For example, in a antangressive, $f(w)$		
. For example, in a antangressive, $f(w)$		
For neural network which parametrizes x may also get 3 an input of Y		
$\{2c_i\}$	100	6;
. Training works the same as before (KL-div.)		

Research Example: Normalizing flows to model the matter distribution in cosmology

(work from my group)

NFs vs structure formation

Gaussian initial conditions PDF morphs into complicated late-time matter distribution.

Gaussian primordial matter perturbations Non-gaussian matter/galaxy distribution today

Rouhiainen, MM: [arXiv:2105.12024](https://arxiv.org/abs/2105.12024) Normalizing flows for random fields in cosmology

Flowing from a correlated Gaussian to todays matter distribution

De-noising with a Generative Prior

In data analysis in cosmology we often make use of **Gaussian priors (Wiener Filter)**. This is no longer justified for very high resolution observations. Using the trained normalizing flow we can **include non-Gaussian priors:**

$$
\ln p(y | d) = -\frac{1}{2}(y - d)^T N^{-1}(y - d) - \ln p_{flow}(y)
$$

True matter field
Noisy observation

We use a flow trained on simulations of the matter distribution. Then we use this knowledge of the matter PDF to **de-noise an observation of the matter field by maximizing the posterior**.

De-noising the observed matter field

Observed (noisy, masked)

Wiener filtered

As expected, the NF lowers the reconstruction noise on non-linear scales compared to the Wiener filter.

Generative de-noising is useful in many other domains.

Rouhiainen, MM: [arXiv:2211.15161](https://arxiv.org/abs/2211.15161) Denoising non-Gaussian fields in cosmology with normalizing flows

Truth

MAP