Physics 361 - Machine Learning in
Physics

Lecture 25 - SBI, Uncertainty, Explicit
Inference

April 231 2024

Moritz Munchmeyer

SBI with Normalizing
Flows

lllustration of the MAF flow

(u)
f—l
(let.(T)|

zo = u ~ 7(u) zp = X ~ p(X)

X=fro..ofi(u)=f
0

Source: 2310.03741 p(x) = (f~(x))

fr-10---0fi fr

ZT
— -1 -
Ti1 o---0 f; le
u X
Uy Z1 X1
ci(X<i)
h; = {a;, pi}
X; = zi exp(ay) + p;
u; 7] e— Xi
zi = (X; — p;) exp(—a;)
up ZD XD

Figure 2. Diagram of how normalizing flows work, with the specific example of Masked Autoregressive
Flows. The samples from the vector zo = u, sampled from the simple distribution 7(u), are deformed
through the sequence of transformations f = fr o---o f; into those of zyr = x, which follow a more
complex distribution p(x). In the lower panel, we illustrate the conditioner that “masks out” the
connections between z; and h_;, as well as the affine functions applied to the vector components.

Simulation-based inference with NDEs

inputs: A candidate mechanistic model, prior knowledge or constraints on model parameters,
and observational data (or summary statistics thereof).

mechanistic model

10

T
=.
o
=

parameter 2

Qi

parameter 1

probability

inconsistent sample

consistent sample

simulated data

mV

ms

neural density estimator

)

IR
XXXXX

posterlor : /

probablllty

data or summary data

1

ms

consistent sample

Goal: Algorithmically identify mechanistic models (simulators) which are consistent with data.

Source: https://sbi-dev.github.io/sbi/

Recall: Neural Likelihood Estimation (NLE)

* |n neural likelihood estimation we learn the likelihood from simulated pairs of
model parameters and data:

(0,x))., mmy ZL(x|0)

* On the next slide we will learn the required training objective for the
normalizing flow.

* After training the NDE on our simulated data, we can then evaluate the
likelihood of observed data from our measurement.

fZ(xObS ‘ 9)

* Now we can proceed with normal Bayesian data analysis. That usually
means that we sample from the posterior with MCMC:

p(0]x°”) & Z(x** | 9)p(H)

Neural Likelihood estimation with NFs

« From a simulated data set {(0,, x)} _ drawn from a proposal density p(6) we want to
approximate the target likelihood p(x |) by a conditional normalizing flow q¢(x |19),

where (6,)& p(x| 0)p(6).
 We thus minimize the expected KL-divergence with respect to the flow parameters ¢.
P(X)]
O(X)

I
Recall from lecture 4: Dk (P||Q) = Ex.p [log

0

. 0
min E; g, [DKL lp(XIH) | C]¢(X|0)” = ngn daﬁ(ﬁ)[dxp(xlﬁ)IOg (p(x|0) >

¢ qp(x|0) ,
. pos ¢ - 4% 9
ON) i) -
= min | d@dx p(0, x)log
b qp(x|0)

= min — E; 4 llog qp(X | 0)] + const.

¢
: Slm
Qvaé ey/pr(:l[Q{lﬁﬁ [/M X~ min — : Z 10gq¢(X |0)+COnSt
[/ﬂéa'f vig gdmp 5 ¢ NSIm 1

* Minimizing the expected KL is thus the same as maximum likelihood training (see lecture
4).

Recall: Neural Posterior Estimation (NPE)

* You might wonder why why learn the likelihood and not the posterior which
IS our ultimate goal. Learning the posterior is indeed a possibility.

* From a simulated data set
N
{ (9}19 xn) }nzl
drawn from a proposal density p(f) it is possible to directly learn the

posterior
p(@]x)

* On the next slide we will learn the training objective that makes this possible.

* An advantage of learning the posterior directly is that we do not need to run
an MCMC anymore. The model directly outputs the desired posterior, i.e. our
parameter measurement. A disadvantage is that it is difficult to explore
different prior distributions of the parameters.

Neural posterior estimation with NFs

» From a simulated data set {(8,, x,)}"_; drawn from a prior p(6) we want to
approximate the target posterior p(@ | x) by a conditional normalizing flow

q,(0 | X).

* We minimize the KL-divergence with the joint PDF as follows. 17(9/)() fe \)
. | p(0, x)
min Dy (p(©.9)llg,010p(x)) = min | p(@, x)log
¢ 2 440 x)p(x)
i 0
= min | p(f, x)log P1x) dOdx
¢ . q4(0]x)

GVa[@&P(({G//'ﬂh

. . ~ min) logp(0;|x,) —logq,(0;|x,)
valae via sampling & Z &P g4y

~ n;ﬁin 2 — log g4(6;] x;)
i
* As in the previous case we can thus learn the posterior by sampling from the
simulator.

Some examples

Real-time gravitational-wave science with neural posterior estimation

Maximilian Dax,'* Stephen R. Green,? T Jonathan Gair,? *
Jakob H. Macke,»3 Alessandra Buonanno,>* and Bernhard Scholkopf!

! Max Planck Institute for Intelligent Systems, Maaz-Planck-Ring 4, 72076 Tiibingen, Germany
2Maz Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Miihlenberg 1, 14476 Potsdam, Germany

3 Machine Learning in Science, University of Tibingen, 72076 Tibingen, Germany
4 Department of Physics, University of Maryland, College Park, MD 20742, USA

We demonstrate unprecedented accuracy for rapid gravitational-wave parameter estimation with
deep learning. Using neural networks as surrogates for Bayesian posterior distributions, we analyze
eight gravitational-wave events from the first LIGO-Virgo Gravitational-Wave Transient Catalog and
find very close quantitative agreement with standard inference codes, but with inference times reduced
from O(day) to 20 seconds per event. Our networks are trained using simulated data, including
an estimate of the detector-noise characteristics near the event. This encodes the signal and noise
models within millions of neural-network parameters, and enables inference for any observed data
consistent with the training distribution, accounting for noise nonstationarity from event to event.
Our algorithm—called “DINGO”—sets a new standard in fast-and-accurate inference of physical
parameters of detected gravitational-wave events, which should enable real-time data analysis without
sacrificing accuracy.

https://arxiv.org/pdf/2106.12594.pdf

"(lv > astro-ph > arXiv:2301.06575

Astrophysics > Earth and Planetary Astrophysics

[Submitted on 16 Jan 2023 (v1), last revised 10 Feb 2023 (this version, v2)]

Neural posterior estimation for exoplanetary atmospheric retrieval

Malavika Vasist, Francois Rozet, Olivier Absil, Paul Molliére, Evert Nasedkin, Gilles Louppe

Retrieving the physical parameters from spectroscopic observations of exoplanets is key to understanding their atmospheric properties.
Exoplanetary atmospheric retrievals are usually based on approximate Bayesian inference and rely on sampling-based approaches to
compute parameter posterior distributions. Accurate or repeated retrievals, however, can result in very long computation times due to
the sequential nature of sampling-based algorithms. We aim to amortize exoplanetary atmospheric retrieval using neural posterior
estimation (NPE), a simulation-based inference algorithm based on variational inference and normalizing flows. In this way, we aim (i) to
strongly reduce inference time, (ii) to scale inference to complex simulation models with many nuisance parameters or intractable
likelihood functions, and (iii) to enable the statistical validation of the inference results. We evaluate NPE on a radiative transfer model for
exoplanet spectra petitRADTRANS, including the effects of scattering and clouds. We train a neural autoregressive flow to quickly
estimate posteriors and compare against retrievals computed with MultiNest. NPE produces accurate posterior approximations while
reducing inference time down to a few seconds. We demonstrate the computational faithfulness of our posterior approximations using
inference diagnostics including posterior predictive checks and coverage, taking advantage of the quasi-instantaneous inference time of
NPE. Our analysis confirms the reliability of the approximate posteriors produced by NPE. The accuracy and reliability of the inference
results produced by NPE establishes it as a promising approach for atmospheric retrievals. Amortization of the posterior inference makes
repeated inference on several observations computationally inexpensive since it does not require on-the-fly simulations, making the
retrieval efficient, scalable, and testable.

https://arxiv.org/abs/2301.06575

Simulation-Based
Inference

More on Uncertainty with
Neural Networks

Neural networks as summary statistics

Sfepl

Ler§ '
/(Q\\/W :5-//”'“77‘7 Eﬂﬂ/ 'I'O jC’,' L//‘t((éddc{
oV

r)l(((‘t +ralm : trax NV

7]

LM -z, (EF a
Slon

Above we have developed SBI. Usually the data that goes into SBI is no the raw
data but some summary statistic thereof.

If we simply “train a neural network” to learn a parameter, the neural network can
be considered as such a summary statistic.

We first train the neural network to extract the parameters, e.g. using MSE loss.
Then we learn the posterior or the likelihood of the neural network observable

with SBI (e.g. using a flow). In this way we get statistical “error bars” for the
neural network measurement.

Example:

S#(/Z . SB/
- %q/(¢ Ntw fﬂ//j {E'fmt En/ﬁ/f

Use ﬂ/[_& o7r ﬂ/‘OE

train 544”"‘4'/

ferter
IyM

o/ sttt |

Summary statistics are often Gaussian

 Summary statistics are often Gaussian due to the Central Limit Theorem. This is
also true for the output of neural networks (i.e. neural network summary
statistics).

* |f we can assume Gaussianity (which we can test using simulations), then we
can estimate the mean and covariance of the trained neural network output by
running many simulations through the trained network. In this case full SBI with a
normalizing flow is not necessary. e

/\

/

, | 4457 % |

/ /_W estimaty Eﬂ '
/ | |

|

el alun - trax NN
il | et | LN
: S10$ _tray E

S, st | E ~
Thx todia t/ WM//V‘LS
ostimatrs that ar =

G;dmcflé@ avouand Thy
Fraté.

Neural networks can be trained to output error bars

 The method we advocated before to assign error bars is to first train the neural

network, then keep the w

« However it is also possib
example, for some samp

eights fixed, and get error bars from SBI.

e to train the neural network to output error bars. For
es the network may be more confident in the

measurement than for other samples. This confidence can be learned from the

data.

 Atypical strategy is to make the neural network output the mean and the variance
of the measggement (rather than just the a 1-shot guess).

X

?a r-)l([[1
L_M

/W"? V. 4
/ 6 Curées S_ /

tratn : L :—A‘}Z A f (/V,IX/)

* Note however that there is no formal guarantee that the learned error bars will be

correct. SBI is a somewh

at more systematic approach.

Types of uncertainty

* As you know, there are several types of uncertainty in an analysis:

Statistical uncertainty (also called aleatoric uncertainty in the context of
machine learning): this is due to the inherent limitation of the data (e.g.
detector noise) and the analysis method (e.g. summary statistics
information loss). It can be reduced by getting mode data.

Systematic uncertainty: this is due to biases and flaws in the
measurement. It cannot be reduced by taking more data but only by
making better measurements with less bias.

In machine learning we often use a third concept, epistemic uncertainty.

Epistemic uncertainty is similar to systematic uncertainty but it is not
exactly the same thing.

Epistemic uncertainty deals with the uncertainty due to the model's
iInadequacy while systematic uncertainty usually means flaws in the
measurement method.

Example of epistemic uncertainty: Several neural networks trained on
the same data give slightly different measurements and error bars. We
do not know which (if any) is correct.

Epistemic uncertainty in neural networks

The basic idea is to have an ensemble of neural network predictions. If all
agree, epistemic uncertainty is low; if they disagree, it is high. There are
different versions of that idea:

Bayesian Neural Networks

* Bayesian Neural Networks (BNNs) are an approach to model epistemic
uncertainty by placing a probability distribution over the weights of the
network. By doing this, BNNs not only provide predictions but also give a
measure of uncertainty in those predictions based on the posterior
distribution of the weights.

* Advantages: Provides a principled way of quantifying uncertainty.

 Challenges: Computationally expensive and often complex to
Implement due to the need for approximations like variational inference
or Monte Carlo methods to compute the posterior distributions.

e Typical weight distribution: Gaussian, uncorrelated. But there is no one-
size-fits-all answer, and the choice of prior can significantly affect the
model's performance and its inferred posterior distributions.

Epistemic uncertainty in neural networks

 Monte Carlo Dropout

Monte Carlo (MC) Dropout is a practical and widely used method for
estimating uncertainty in neural networks. It involves applying dropout not
only during training but also at test time, allowing the model to generate
different outputs by randomly dropping units during multiple forward passes.

Advantages: Easy to implement and less computationally intensive than full
Bayesian methods.

Challenges: The estimates of uncertainty may depend significantly on the
dropout rate and the number of stochastic forward passes.

e Deep Ensembles

Deep Ensembiles involve training multiple versions of the same model on the
same data, but with different initializations or even slightly different model
architectures. The variance in the predictions from these models can be used
as a measure of epistemic uncertainty.

Advantages: Often provides improved prediction accuracy and uncertainty
estimation over the other methods.

Challenges: Requires more computational resources since multiple models
need to be trained and stored.

Epistemic uncertainty in neural networks

Some comments on these methods:

https://arxiv.org/abs/2004.10710 Deeply Uncertain: Comparing Methods of

Uncertainty Quantification in Deep Learning Algorithms
Often one reports the statistical and epistemic uncertainty as two different errors.

— 2 2
Opr = Ual T Uep

https://www.sciencedirect.com/science/article/pii/S1566253521001081 A

review of uncertainty quantification in deep learning: Techniques, applications
and challenges

Epistemic uncertainty in SBI: By treating a NN as a summary statistic it is not
important that the NN is exact. A bias would be corrected for in the likelihood or
posterior (though the NN could be sub-optimal if not trained out or too little
capacity). However the ML model used in the SBI, i.e. the normalizing flow, can
give incorrect probabilities. One could train several of them to test their
agreement (as part of the tests of SBI results).

If the data is out of the training data distribution (i.e. the simulations are
“wrong”) all bets are off (“unknown unknowns”). So we put a lot of effort into
making them reliable in the range where we use them, and also sample over
uncertain parameters (“known unknowns”).

https://arxiv.org/abs/2004.10710
https://www.sciencedirect.com/science/article/pii/S1566253521001081

Simulation-Based
Inference

Explicit inference

Recall: Implicit vs Explicit inference

* |n most situations a simulation does not provide a probability density

(likelihood) Z(x | @) of observations given parameters. Such simulations
are sometimes called implicit models.

* |Implicit means that their likelihood cannot be computed explicitly, i.e. it
Is not computationally tractable. We only get samples of the simulation.

* On the other hand, models or simulations that do provide a likelihood are
called explicit models. Recall for example Gaussian likelihoods.

* A key problem in explicit inference is to marginalize over the latent
variables, such as the random initial conditions of a simulation.

p(c|6) = / dz p(z, 2/6)

* For comparison to our study of SBI | now want to discuss a specific
example of explicit inference. This approach is also sometimes called
“forward modelling” or Bayesian hierarchical modelling. This is a
general approach to many problems that is important to know.

Explicit inference with probabilistic forward modelling

 Assume that we have a simulator, called the “forward model” f,

depending on parameters 6 that describes the evolution of a

system starting from a signal s (e.g. the initial conditions of the
forward process):

f(s,0)

« We want to infer the parameters @ and the signal s from data

d, which we take to be a the forward evolved signal plus
some observational noise.

d = £(s) + n

* This setup is also called an “inverse problem?”, i.e. we want to
reconstruct the signal from the data, assuming that we know the
forward model as a function of some parameters. Inverse
problems are generally ill-posed (need to regularize).

Example: Cosmology forward model

Matter distribution of the universe

Initial conditions of the universe s
Observable galaxies

Function of 8 Function of ¢

Drawn from prior P(s)

Function of 0

Example of a very complicated forward
model that maps from the initial conditions
of the universe to (simulated) observed
data from a telescope. Note that we can
easily add new effects to the forward Data d
model. Clearly the computational

challenge is enormous.

Function of 0

Example: Cosmology forward model

 Assuming the observational noise is Gaussian we can write an explicit
likelihood of the form

log L(d|s,©) = —%(f(s, 0) —d*)T'N~1(f(s,0) — d°%) + const.

* To complete the posterior we need to add a prior for the parameters
parameters @ and s which we want to infer.

* Then we need to sample the posterior. Since s is usually very high
dimensional, normal MCMC will not work.

 However there are sampling methods that work in very high dimensions,
in particular Hamiltonian Monte Carlo (HMC) and versions of Variational
Inference (VI). These require the forward model to be differentiable.

e Optimization in very high dimensions requires derivatives to find the
minimum. For this reason differentiable simulations have become an
important topic all over physics.

* More details about this approach in cosmology and references can be
found in my cosmology lecture notes.

Examples: differentiable cosmology simulations

nttps://arxiv.org/abs/2010.11847 FlowPM: Distributed TensorFlow
mplementation of the FastPM Cosmological N-body Solver

nttps://arxiv.org/abs/2211.09815 Differentiable Cosmological Simulation
with Adjoint Method

https://www.youtube.com/watch?
v=Epsgh6vrOgs&ab channel=ParticleMeshWithDerivatives

https://arxiv.org/abs/2002.00965 Bayesian de-lensing delight: sampling-
based inference of the primordial CMB and gravitational lensing

https://arxiv.org/abs/2010.11847
https://arxiv.org/abs/2211.09815
https://www.youtube.com/watch?v=Epsgh6vr0qs&ab_channel=ParticleMeshWithDerivatives
https://www.youtube.com/watch?v=Epsgh6vr0qs&ab_channel=ParticleMeshWithDerivatives
https://arxiv.org/abs/2002.00965

