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SBI with Normalizing 
Flows



Source: 2310.03741

Illustration of the MAF flow



Source: https://sbi-dev.github.io/sbi/

Goal: Algorithmically identify mechanistic models (simulators) which are consistent with data.

Simulation-based inference with NDEs
inputs: A candidate mechanistic model, prior knowledge or constraints on model parameters, 
and observational data (or summary statistics thereof).



Recall: Neural Likelihood Estimation (NLE)

• In neural likelihood estimation we learn the likelihood from simulated pairs of 
model parameters and data:


• On the next slide we will learn the required training objective for the 
normalizing flow. 


• After training the NDE on our simulated data, we can then evaluate the 
likelihood of observed data from our measurement.


• Now we can proceed with normal Bayesian data analysis. That usually 
means that we sample from the posterior with MCMC: 


{(θn, xn)}N
n=1 ℒ(x |θ)

ℒ(xobs |θ)

p(θ |xobs) ∝ ℒ(xobs |θ)p(θ)



Neural Likelihood estimation with NFs
• From a simulated data set  drawn from a proposal density  we want to 

approximate the target likelihood  by a conditional normalizing flow , 
where .


• We thus minimize the expected KL-divergence with respect to the flow parameters . 


Recall from lecture 4: 


•  Minimizing the expected KL is thus the same as maximum likelihood training (see lecture 
4). 

{(θn, xn)}N
n=1 p̃(θ)

p(x |θ) qϕ(x |θ)
p̃(θ, x) = p(x |θ)p̃(θ)

ϕ

DKL(P∥Q) = 𝔼X∼P [log
P(X)
Q(X) ]

min
ϕ

𝔼p̃(θ) [DKL [p(x |θ) ∥ qϕ(x |θ)]] = min
ϕ ∫ dθp̃(θ)∫ dxp(x |θ)log ( p(x |θ)

qϕ(x |θ) )
= min

ϕ ∫ dθdx p̃(θ, x)log ( p(x |θ)
qϕ(x |θ) )

= min
ϕ

− 𝔼p̃(θ,x) [log qϕ(x |θ)] + const.

≈ min
ϕ

−
1

Nsim

Nsim
∑
n=1

log qϕ(xn |θn) + const.,



Recall: Neural Posterior Estimation (NPE)
• You might wonder why why learn the likelihood and not the posterior which 

is our ultimate goal. Learning the posterior is indeed a possibility. 

• From a simulated data set 


drawn from a proposal density  it is possible to directly learn the 
posterior 


• On the next slide we will learn the training objective that makes this possible. 

• An advantage of learning the posterior directly is that we do not need to run 

an MCMC anymore. The model directly outputs the desired posterior, i.e. our 
parameter measurement. A disadvantage is that it is difficult to explore 
different prior distributions of the parameters. 

p̃(θ)

{(θn, xn)}N
n=1

p(θ |x)



Neural posterior estimation with NFs
• From a simulated data set  drawn from a prior  we want to 

approximate the target posterior  by a conditional normalizing flow 
.


• We minimize the KL-divergence with the joint PDF as follows. 


• As in the previous case we can thus learn the posterior by sampling from the 
simulator. 

{(θn, xn)}N
n=1 p(θ)

p(θ |x)
qϕ(θ |x)

min
ϕ

DKL (p(θ, x)∥qϕ(θ |x)p(x)) = min
ϕ ∫ p(θ, x)log

p(θ, x)
qϕ(θ |x)p(x)

dθdx

= min
ϕ ∫ p(θ, x)log

p(θ |x)
qϕ(θ |x)

dθdx

≈ min
ϕ ∑

i

log p(θi |xi) − log qϕ(θi |xi)

≈ min
ϕ ∑

i

− log qϕ(θi |xi)



Some examples

https://arxiv.org/pdf/2106.12594.pdf

https://arxiv.org/abs/2301.06575



Simulation-Based 
Inference
More on Uncertainty with 
Neural Networks



Neural networks as summary statistics
• Above we have developed SBI. Usually the data that goes into SBI is no the raw 

data but some summary statistic thereof.

• If we simply “train a neural network” to learn a parameter, the neural network can 

be considered as such a summary statistic. 

• We first train the neural network to extract the parameters, e.g. using MSE loss. 

Then we learn the posterior or the likelihood of the neural network observable 
with SBI (e.g. using a flow). In this way we get statistical “error bars” for the 
neural network measurement. 


• Example:



Summary statistics are often Gaussian
• Summary statistics are often Gaussian due to the Central Limit Theorem. This is 

also true for the output of neural networks (i.e. neural network summary 
statistics). 


• If we can assume Gaussianity (which we can test using simulations), then we 
can estimate the mean and covariance of the trained neural network output by 
running many simulations through the trained network. In this case full SBI with a 
normalizing flow is not necessary. 



Neural networks can be trained to output error bars
• The method we advocated before to assign error bars is to first train the neural 

network, then keep the weights fixed, and get error bars from SBI.

• However it is also possible to train the neural network to output error bars. For 

example, for some samples the network may be more confident in the 
measurement than for other samples. This confidence can be learned from the 
data.


• A typical strategy is to make the neural network output the mean and the variance 
of the measurement (rather than just the a 1-shot guess). 


• Note however that there is no formal guarantee that the learned error bars will be 
correct. SBI is a somewhat more systematic approach.



Types of uncertainty
• As you know, there are several types of uncertainty in an analysis:

• Statistical uncertainty (also called aleatoric uncertainty in the context of 

machine learning): this is due to the inherent limitation of the data (e.g. 
detector noise) and the analysis method (e.g. summary statistics 
information loss). It can be reduced by getting mode data. 


• Systematic uncertainty: this is due to biases and flaws in the 
measurement. It cannot be reduced by taking more data but only by 
making better measurements with less bias. 


• In machine learning we often use a third concept, epistemic uncertainty.

• Epistemic uncertainty is similar to systematic uncertainty but it is not 

exactly the same thing. 

• Epistemic uncertainty deals with the uncertainty due to the model's 

inadequacy while systematic uncertainty usually means flaws in the 
measurement method.


• Example of epistemic uncertainty: Several neural networks trained on 
the same data give slightly different measurements and error bars. We 
do not know which (if any) is correct.



Epistemic uncertainty in neural networks
• The basic idea is to have an ensemble of neural network predictions. If all 

agree, epistemic uncertainty is low; if they disagree, it is high. There are 
different versions of that idea:


• Bayesian Neural Networks 
• Bayesian Neural Networks (BNNs) are an approach to model epistemic 

uncertainty by placing a probability distribution over the weights of the 
network. By doing this, BNNs not only provide predictions but also give a 
measure of uncertainty in those predictions based on the posterior 
distribution of the weights.

• Advantages: Provides a principled way of quantifying uncertainty.

• Challenges: Computationally expensive and often complex to 

implement due to the need for approximations like variational inference 
or Monte Carlo methods to compute the posterior distributions.


• Typical weight distribution: Gaussian, uncorrelated. But there is no one-
size-fits-all answer, and the choice of prior can significantly affect the 
model's performance and its inferred posterior distributions. 



Epistemic uncertainty in neural networks
• Monte Carlo Dropout 
• Monte Carlo (MC) Dropout is a practical and widely used method for 

estimating uncertainty in neural networks. It involves applying dropout not 
only during training but also at test time, allowing the model to generate 
different outputs by randomly dropping units during multiple forward passes.


• Advantages: Easy to implement and less computationally intensive than full 
Bayesian methods.


• Challenges: The estimates of uncertainty may depend significantly on the 
dropout rate and the number of stochastic forward passes.


• Deep Ensembles 
• Deep Ensembles involve training multiple versions of the same model on the 

same data, but with different initializations or even slightly different model 
architectures. The variance in the predictions from these models can be used 
as a measure of epistemic uncertainty.


• Advantages: Often provides improved prediction accuracy and uncertainty 
estimation over the other methods.


• Challenges: Requires more computational resources since multiple models 
need to be trained and stored.



Epistemic uncertainty in neural networks
• Some comments on these methods:


• https://arxiv.org/abs/2004.10710 Deeply Uncertain: Comparing Methods of 
Uncertainty Quantification in Deep Learning Algorithms


• Often one reports the statistical and epistemic uncertainty as two different errors.


• https://www.sciencedirect.com/science/article/pii/S1566253521001081 A 
review of uncertainty quantification in deep learning: Techniques, applications 
and challenges


• Epistemic uncertainty in SBI: By treating a NN as a summary statistic it is not 
important that the NN is exact. A bias would be corrected for in the likelihood or 
posterior (though the NN could be sub-optimal if not trained out or too little 
capacity). However the ML model used in the SBI, i.e. the normalizing flow, can 
give incorrect probabilities. One could train several of them to test their 
agreement (as part of the tests of SBI results).


• If the data is out of the training data distribution (i.e. the simulations are 
“wrong”) all bets are off (“unknown unknowns”). So we put a lot of effort into 
making them reliable in the range where we use them, and also sample over 
uncertain parameters (“known unknowns”). 

https://arxiv.org/abs/2004.10710
https://www.sciencedirect.com/science/article/pii/S1566253521001081


Simulation-Based 
Inference

Explicit inference



Recall: Implicit vs Explicit inference
• In most situations a simulation does not provide a probability density 

(likelihood)  of observations given parameters. Such simulations 
are sometimes called implicit models. 


• Implicit means that their likelihood cannot be computed explicitly, i.e. it 
is not computationally tractable. We only get samples of the simulation.


• On the other hand, models or simulations that do provide a likelihood are 
called explicit models. Recall for example Gaussian likelihoods. 


• A key problem in explicit inference is to marginalize over the latent 
variables, such as the random initial conditions of a simulation. 


• For comparison to our study of SBI I now want to discuss a specific 
example of explicit inference. This approach is also sometimes called 
“forward modelling” or Bayesian hierarchical modelling. This is a 
general approach to many problems that is important to know.

ℒ(x |θ)



Explicit inference with probabilistic forward modelling

• Assume that we have a simulator, called the “forward model” f, 
depending on parameters  that describes the evolution of a 
system starting from a signal s (e.g. the initial conditions of the 
forward process):


• We want to infer the parameters  and the signal s from data 
d, which we take to be a the forward evolved signal plus 
some observational noise.  

       
• This setup is also called an “inverse problem”, i.e. we want to 

reconstruct the signal from the data, assuming that we know the 
forward model as a function of some parameters. Inverse 
problems are generally ill-posed (need to regularize). 

θ

θ

d = f(s) + n



Example: Cosmology forward model

Data d

forward

Observable galaxies

Matter distribution of the universe
Initial conditions of the universe s

forward

forw
ard

Telescope 
imaging model

forw
ard

Example of a very complicated forward 
model that maps from the initial conditions 
of the universe to (simulated) observed 
data from a telescope. Note that we can 
easily add new effects to the forward 
model. Clearly the computational 
challenge is enormous. 

Function of θ Function of θ

Function of θ

Function of θ

Drawn from prior P(s)



Example: Cosmology forward model
• Assuming the observational noise is Gaussian we can write an explicit 

likelihood of the form


• To complete the posterior we need to add a prior for the parameters 
parameters  and s which we want to infer. 


• Then we need to sample the posterior. Since s is usually very high 
dimensional, normal MCMC will not work.


• However there are sampling methods that work in very high dimensions, 
in particular Hamiltonian Monte Carlo (HMC) and versions of Variational 
Inference (VI). These require the forward model to be differentiable. 


• Optimization in very high dimensions requires derivatives to find the 
minimum. For this reason differentiable simulations have become an 
important topic all over physics.


• More details about this approach in cosmology and references can be 
found in my cosmology lecture notes. 

θ



Examples: differentiable cosmology simulations

• https://arxiv.org/abs/2010.11847 FlowPM: Distributed TensorFlow 
Implementation of the FastPM Cosmological N-body Solver 


• https://arxiv.org/abs/2211.09815 Differentiable Cosmological Simulation 
with Adjoint Method 


• https://www.youtube.com/watch?
v=Epsgh6vr0qs&ab_channel=ParticleMeshWithDerivatives 


• https://arxiv.org/abs/2002.00965 Bayesian de-lensing delight: sampling-
based inference of the primordial CMB and gravitational lensing

https://arxiv.org/abs/2010.11847
https://arxiv.org/abs/2211.09815
https://www.youtube.com/watch?v=Epsgh6vr0qs&ab_channel=ParticleMeshWithDerivatives
https://www.youtube.com/watch?v=Epsgh6vr0qs&ab_channel=ParticleMeshWithDerivatives
https://arxiv.org/abs/2002.00965

