
Moritz Münchmeyer

Physics 361 - Machine Learning
in Physics

Lecture 26 – Diffusion Models

April 25th 2024

Final project
• We will have short presentations on May 2nd during class.

• We have about 15 projects in 75min, so 5min per presentation.

• I will share a google drive or box folder where you can all upload your
slides and edit them right until the lecture.

• Grading will be primarily based on your submitted paper, so no need to
squeeze a lot of information in the talk.

• Your main goal is to show the other students what you are working on.

• Papers are due on Sunday May 5th at midnight.

Final project
• You will write a paper on an application of machine learning to physics of your choice. Your paper needs to

contain a computational analysis, which generally will mean applying a machine learning method to some data

set.

• You can work alone or in groups of two.

• The paper should be 5 to 10 pages and contain the following:

• A short review of at least one research paper related to your topic. This is to encourage you to learn how to

browse the literature.

• A description of the data set you will be working with and its properties.

• A brief description of the machine learning method you will use. Don’t re-explain basics such as how CNNs

work, rather describe the detailed properties of your approach.

• Train the model and put the results in your paper. Explore some variations such as different hyper parameters.

• Describe successes and problems in your analysis.

• Also submit the Colab notebook you used for training/evaluation.

• I will not re-run the notebook. Notebook submission is not required but encouraged.

• The project should take you ~three days of work, spread over the last weeks of the semester. 

• The landscape of generative models is currently dominated by
transformers (for text) and diffusion models (for images, video).
We already studied transformers, now let’s talk about the latter.

• Diffusion is a training process rather than an architecture.

• For example, OpenAI’s Sora uses a Diffusion Transformer, i.e.
the transformer model is used as a component of the diffusion
model.

• Diffusion can be used to train many architectures as generative
models: CNNs, transformers, graphs neural networks etc.

• Diffusion models have taken over GANs as the best performing
models / training process for generative models.

• They scale well, are easy to parallelize, and are easier to train than GANs
(no mode collapse). But they are computationally expensive to run.

Importance of Diffusion Models

• This is a large topic that could easily cover a few weeks of classes.
Much more details can be found here:

• Bishop DL book https://www.bishopbook.com/

• https://arxiv.org/abs/2209.00796 Diffusion Models: A Comprehensive
Survey of Methods and Applications

• https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

• Overview of diffusion model architectures: https://encord.com/blog/
diffusion-models/

References

Figure credit: Akhil Premkumar, KICP

https://www.bishopbook.com/
https://arxiv.org/abs/2209.00796
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://encord.com/blog/diffusion-models/
https://encord.com/blog/diffusion-models/

• Diffusion models are similar to normalizing flows and other generative
models in that they start with a simple (usually Gaussian) latent
space distribution p(z) and then progressively deform it into a
highly flexible distribution p(x) of the data.

• This deformation is done using a diffusion process (physics!).

Latent space to target space

Figure credit: Akhil Premkumar, KICP

Original idea: https://arxiv.org/abs/1503.03585 Deep Unsupervised Learning using Nonequilibrium Thermodynamics

https://arxiv.org/abs/1503.03585

• We will focus on the most popular version of diffusion models, “denoising diffusion
probabilistic models” (DDPM)

• Pictorially the process works as follows

• The noise to data (denoising) process is learned by a neural network, which is applied
many times (roughly 100 to 1000 times).

DDPM

https://arxiv.org/pdf/2209.00796.pdf

• Given a data point sampled from a real data distribution , we define a forward
diffusion process in which we add small amounts of Gaussian noise to the sample in
steps, producing a sequence of noisy samples .

• The transition probability is

• The parameter, , controls the amount of noise and there are different possible
values (noise schedules).

• It is possible sample at any arbitrary time step in a closed form due to the properties of
Gaussians:

 and thus

where and

x0 ∼ q(x)
T

x1, …, xT

q(xt |xt−1) = 𝒩(xt; 1 − βtxt−1, βtI)

q(x1:T |x0) =
T

∏
t=1

q(xt |xt−1)

βt βt ≪ 1

xt t

q(xt |x0) = 𝒩(xt; ᾱt x0, (1 − ᾱt)I) xt = ᾱt x0 + 1 − ᾱtϵ

αt = 1 − βt ᾱt = ∏t
i=1 αi

Forward Diffusion Process

• To reverse the process we would need to know the transition probabilities .
They cannot be directly calculated. Instead we learn a model to approximate these
conditional probabilities.

• The reverse transition probabilities for are also Gaussian (proof left out)

but now we need to parametrize the mean and covariance with a deep neural
network.

q(xt−1 |xt)
pθ

βt ≪ 1

pθ(xt−1 |xt) = 𝒩(xt−1; μθ(xt, t), Σθ(xt, t))

Reverse Diffusion Process

Figure credit: Ho et al. 2020

https://arxiv.org/abs/2006.11239

• Training the neural network that parametrizes the reverse diffusion process is somewhat
involved.

• The obvious training objective would be negative log-likelihood .
Unfortunately this involves an intractable integral over all diffusion trajectories.

• So instead one uses a related quantity called the evidence lower bound (ELBO) or
variational lower bound (VLB). The VLB can be evaluated by sampling over the training
set.

−log pθ(x0)

Variational Lower Bound

• Starting from the general equation for the VLB on the last slide there are a number of analytic
tricks and simplifications that people use to arrive at the actual loss function used in
practice. The steps are written out for example here: https://lilianweng.github.io/posts/
2021-07-11-diffusion-models/

• It turns out that it is somewhat easier to predict the noise in an image rather than to predict
the de-noised mean .

• While the calculations are cumbersome, the final simplified result is intuitive:

• Next let us look into the final training and sampling algorithms to understand some more
details.

ϵ
μ

Lsimple
t = 𝔼t∼[1,T],x0,ϵt [ϵt − ϵθ(xt, t)

2]
= 𝔼t∼[1,T],x0,ϵt [ϵt − ϵθ (ᾱt x0 + 1 − ᾱtϵt, t)

2

]

Loss function

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Training algorithm

Figure credit: Bishop Deep Learning

Sampling algorithm

Figure credit: Bishop Deep Learning

• Why do we need to run diffusion in many small steps rather than one large one?

• From the original paper: “The essential idea, inspired by non-equilibrium statistical
physics, is to systematically and slowly destroy structure in a data distribution through
an iterative forward diffusion process.” https://arxiv.org/pdf/1503.03585.pdf

• If we were to add all the noise in one step, it would be akin to destroying all the data's
structure immediately, which is very difficult to reverse. By adding noise slowly, the model
learns a series of simpler denoising steps, which together can effectively reconstruct the
original data from noise.

• Adding noise gradually helps maintain the stability of the training process. Abrupt changes
can lead to training instabilities, while gradual changes allow the model to adapt slowly
and steadily.

Why does diffusion work?

https://arxiv.org/pdf/1503.03585.pdf

• Given a probability density function , its score function is defined as the gradient of the
log probability density . The Stein score considered here is a function of the data

 rather than the model parameter . It is a vector field that points to directions along which
the probability density function has the largest growth rate.

• Clearly, learning the score is closely related to learning de-noising.

• The key idea of score-based generative models (SGMs) is to perturb data with a
sequence of intensifying Gaussian noise and jointly estimate the score functions for all
noisy data distributions by training a deep neural network model conditioned on noise
levels.

• For score matching, the loss function is

which can be re-written in a computable way for Gaussian noise perturbations.

• After one has estimated the score function, there are several different methods how one can
sample from it. The classic one is called “Langevin Dynamics”, again a physics method.

• The learned score can also be used as a generative prior in a Bayesian data analysis.

p(x)
∇xlog p(x)

x θ

𝔼t∼[1,T],x0∼q(x0),xt∼q(xt|x0) [λ(t)2 ∇xt
log q(xt) − sθ(xt, t)

2]

Score-based Generative Models

• In physics, diffusion is modelled by a stochastic differential equation

where and are diffusion and drift functions and w is a Wiener process (Brownian
motion)

• Both DDPM and score matching generative models are discretization of this SDE.

• It can be mathematically shown that there is a reverse diffusion SED:

• For an analysis of diffusion models by a physicist see https://arxiv.org/abs/2310.04490 Generative
Diffusion From An Action Principle

dx = f(x, t)dt + g(t)dw

f(x, t) g(t)

Relation to physics: Stochastic differential equations

https://arxiv.org/abs/2011.13456

https://arxiv.org/abs/2310.04490

• Diffusion models are a very nice example of how physics can be used to do
machine learning (rather than the other way round).

• Since diffusion is a physical process, one may ask if there are other physical
processes which can be use as generative models. This idea was developed
here:

• https://arxiv.org/abs/2209.11178 Poisson Flow Generative Models

• https://arxiv.org/abs/2302.04265 PFGM++: Unlocking the Potential of
Physics-Inspired Generative Models

• https://arxiv.org/abs/2304.02637 GenPhys: From Physical Processes to
Generative Models

• While so far these results have not been very important in practice, let’s have
a quick look in the papers because they are a great example of combining
physics and ML.

Other physical processes as generative models?

https://arxiv.org/abs/2209.11178
https://arxiv.org/abs/2302.04265
https://arxiv.org/abs/2304.02637

Poisson flow from https://arxiv.org/pdf/2209.11178.pdf

Example from my own research:
Super-resolution Emulator
Super-Resolution Emulation of Large Cosmological Fields with
a 3D Conditional Diffusion Model https://arxiv.org/abs/
2311.05217

Collaborators:

Adam Rouhiainen,

UW Madison Physics

Prof. Gary Shiu,

UW Madison Physics

Prof. Kangwook Lee,

UW Madison ECE & CS

Michael Gira,

UW Madison ECE & CS,

Microsoft

https://arxiv.org/abs/2311.05217
https://arxiv.org/abs/2311.05217

Super-resolution Emulators
• Cosmology is increasingly simulation-driven. Simulations are required for

theoretical studies, statistical method development and parameter inference.

• High-resolution baryonic hydro-simulations are computationally extremely
expensive. Not possible on a realistic survey volume.

• Low-resolution dark matter simulations on the other hand are cheap to make
on large volumes

• Idea of super-resolution (SR) emulators: Run low-res (LR) dark matter sim and
upgrade to high-res (HR) hydro simulation with a generative neural network.

Superresolution

Conditional diffusion for Super-resolution
• A conditional flow or conditional diffusion model can learn how small-

scale structure reacts to large-scale structure, probabilistically, at field
level.

• We started with the flows from the last section. However we found that
existing NFs in 3d are not expressive enough, so we switched to
diffusion models.

P(small-scale structure | large-scale structure)

Low resolution IllustrisTNG DMHigh resolution IllustrisTNG
gas density

Here:

Outpainting (Conditional Patching)

P(high resolution | low resolution, neighboring high resolution)

New super-resolution
region gets generated

conditioned on low
resolution map and
neighbour regions.

• Important ingredient: Locality of structure formation. Need only small
volume HR training simulations to learn the complicated hydro
physics.

• We developed a 3d “outpointing” procedure to make in principle
arbitrarily large SR simulations with smooth patching.

• Model:

• For the model we use a DDPM based on the Palette image-to-
image code which we generalized from 2d to 3d.

• The de-noising is learned by a U-Net with added self-attention layers,
with about 30 million parameters in total. Training ~3 days.

• We use the standard DDPM sampler with 2000 steps.

• Training data:

• High res: Illustris-TNG 300 baryon density, sampled on 2643 px cube.

• Low res: Custom AREPO dark matter simulation using the same
initial conditions as Illustris-TNG.

• Test data: New low-res AREPO dark matter simulations with different
initial conditions.

Details of our Setup

U-Net architecture
for de-noising

Results

Results: SR matches HR on validation data

Making larger volumes than the training data

This is a 3d “Illustris-TNG 600”, where we increased the volume by a factor of
8 compared to the training data. Current limitation: Sample generation time.

• https://arxiv.org/abs/2311.17141 (Not from my group)

•

Another example in cosmology: Diffusion on Graphs NNs

https://arxiv.org/abs/2311.17141

