
Moritz Münchmeyer

Physics 361 - Machine Learning in 
Physics 

Lecture 27 – PDEs, symbolic math, 
inverse problems 

April 30th 2024 



• For our last lecture I want to briefly discuss some recent interesting 
research. 

• I will pick topics/papers that I am interested in myself, without being very 
systematic. Not all work that I present here is influential, though some is.


• I hope this will inspire you to work on ideas in this field.

Some recent work at the interface between physics and 
machine learning



• Review: https://www.nature.com/articles/s42254-021-00314-5 (plots from this 
source)


• Simulating physics problems using the numerical discretization of partial 
differential equations (PDEs) remains difficult.


• Instead, machine learning based methods can be combined with physics 
(including physical laws or symmetries). This is called “physics-informed machine 
learning”. 


• Generally speaking, the less we have training data the more physics knowledge 
can help the model to perform.

“Physics-informed machine learning”

https://www.nature.com/articles/s42254-021-00314-5


• Physics knowledge can be included in machine learning in 3 general ways:


• Observational: Physical properties (e.g. symmetries) can be learned directly 
from the observations.


• Inductive biases: Physical properties can be exactly enforced in the model. A 
simple example are CNNs which are hard-coding translational invariance. E.g. 
Formally one can make a NN invariant under any symmetry group. Physics 
can thus be encoded in the model architecture. However, this often leads to 
complex implementations that are difficult to scale. 


• Learning bias: Physical constraints can be enforced in a soft way (i.e. not 
exact) by adding a term to the loss that penalizes violating the constraint (e.g. 
conservation of mass).


• Hybrid methods combine several of these. 

“Physics-informed machine learning”



Solving PDEs with PINNs
• PINNs: “Physics informed neural networks”

• Physics-informed neural networks (PINNs) integrate the information from both the 

measurements and partial differential equations (PDEs) by embedding the PDEs 
into the loss function of a neural network using automatic differentiation. 


• Example: solving the viscous Burgers’ equation


• We also have some data (boundary condition) so that the solution is uniquely 
defined. 


• Idea: We put the residual of the PDE into the loss function and solve the problem 
as an optimization problem with auto-differentiation. 



Solving PDEs with PINNs
• The Loss thus is



Solving PDEs with PINNs
• The PDE solution is specified by a neural network (rather than some pixelated discretization of 

space), so we get a continuous function. 



Neural Operators
• https://arxiv.org/abs/2309.15325 Neural Operators for Accelerating Scientific 

Simulations and Design

• The core idea behind Fourier Neural Operator is to perform neural network 

operations in the Fourier space (frequency domain), where convolution 
operations become multiplications. This approach efficiently captures the global 
interactions in the data, which are crucial for accurately solving PDEs.

https://arxiv.org/abs/2309.15325


Comparing PDE solving methods
• https://arxiv.org/abs/2210.07182  PDEBENCH: An Extensive Benchmark for 

Scientific Machine Learning

https://arxiv.org/abs/2210.07182


Comparing PDE methods
• The objective is to find some ML-based surrogate, sometimes referred to as an 

emulator, of the forward propagator (i.e. the next time step).

• Baseline ML models for PDE solving:


• Currently neural solvers often don’t outperform classical methods but they are more 
flexible. 



Foundation model for PDEs?
• https://arxiv.org/abs/2310.02994 


• At a fundamental level, many physical systems share underlying principles. Many of the equations 
describing physical behavior are derived from universal properties like conservation laws or 
invariances which persist across diverse disciplines like fluids, climate science, astrophysics, and 
chemistry. Can we learn these shared features ahead of time through pretraining and accelerate the 
development of models for new physical systems?


• Results are somewhat encouraging. 

https://arxiv.org/abs/2310.02994


Discovering symbolic laws from data
• Discovering symbolic laws = Symbolic regression 
• Symbolic Regression is usually done with Genetic algorithms, building a population of 

possible expressions that evolve (i.e. are modified). See for example the PySR paper 
https://arxiv.org/abs/2305.01582 . 


• Some examples of combining symbolic regression with machine learning:

• https://arxiv.org/abs/2006.11287 Discovering Symbolic Models from Deep Learning 

with Inductive Biases, 2202.02306 

• We develop a general approach to distill symbolic representations of a learned 

deep model by introducing strong inductive biases. We focus on Graph Neural 
Networks (GNNs). The technique works as follows: we first encourage sparse 
latent representations when we train a GNN in a supervised setting, then we apply 
symbolic regression to components of the learned model to extract explicit 
physical relations. We find the correct known equations, including force laws and 
Hamiltonians, can be extracted from the neural network


• https://www.science.org/doi/10.1126/sciadv.aay2631 AI Feynman: A physics-
inspired method for symbolic regression

• We develop a recursive multidimensional symbolic regression algorithm that 

combines neural network fitting with a suite of physics-inspired techniques. We 
apply it to 100 equations from the Feynman Lectures on Physics, and it discovers 
all of them.

https://arxiv.org/abs/2305.01582
https://arxiv.org/abs/2006.11287
https://www.science.org/doi/10.1126/sciadv.aay2631


Symbolic Regression methods
Comparison from https://arxiv.org/abs/2305.01582



Symbolic math with neural networks
• https://arxiv.org/abs/1912.01412 Deep Learning for Symbolic Mathematics 

• We use sequence-to-sequence models (e.g. transformer) on two problems of 
symbolic mathematics: function integration and ordinary differential equations 
(ODEs)


• Representing mathematical expressions as trees


• The tree can then be represented as a sequence of tokens.  

https://arxiv.org/abs/1912.01412


Symbolic math with neural networks
• Real numbers can also be discretized as tokens, for example as follows 

(2112.01898): 





• Next we need to generate a large training set, e.g. to learn integration. This can be 
done by randomly generating expressions, and then using conventional methods 
(such as Mathematica) to find solutions. 

• Random expressions can be generated forward or backward (e.g. differentiation 

is easier than integration). 

• The model in the paper 1912.01412 outperforms Mathematica at integration and 

ODE solution finding in the range where it was trained (note however that this is a 
rather restricted range, see e.g. 1912.05752). 


• The strategy of tokenizing equations has been widely adopted. 



ODEFormer
• Can we give a neural network observed data (solutions to differential equations) and ask it to 

find the underlying equation of motion (differential equations)?


• We are currently interested in this topic in my group so let me show you a recent paper by 
other authors in this direction: https://arxiv.org/abs/2310.05573 ODEFormer: Symbolic 
Regression of Dynamical Systems with Transformers 

• Example: 2-dimensional ODE

https://arxiv.org/abs/2310.05573


ODEFormer
• Use ideas we discussed: Tokenizing equations, transformer encoder-decoder


• Could we discover the equations of motion of an observed system for which we don’t know the 
answer?



Theorem proving with LLMs
• https://arxiv.org/abs/2009.03393 Generative Language Modeling for Automated Theorem 

Proving


• Come up with proposals for proofs (sequence of mathematical operations) that can then be 
checked . 


• https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-mathematical-
sciences-using-large-language-models/ FunSearch: Making new discoveries in mathematical 
sciences using Large Language Models


• Searching for programs

This work represents the first time a new 
discovery has been made for challenging 
open problems in science or mathematics 
using LLMs. FunSearch discovered new 
solutions for the cap set problem, a 
longstanding open problem in mathematics.

https://arxiv.org/abs/2009.03393
https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-mathematical-sciences-using-large-language-models/
https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-mathematical-sciences-using-large-language-models/


Inverse problems
• Most data analysis problems in research can be formulated as Inverse Problems, and 

we have already encountered some in previous lectures. 

• Review of inverse problems in the 2d image domain: https://arxiv.org/abs/2005.06001 




• There are many different machine learning methods to solve such problems. 


• A naive one is to simply train a Neural Network to map from y to x, on simulated 
training data pairs.


• A different method is to define a likelihood for the problem, with a generative prior 
(score matching, normalizing flows etc) and find the posterior of x given y. This 
results in a probabilistic solution (i.e. with error bars). 


• There are also specialized algorithms, for example 1706.04008 (“Recurrent 
Inference Machines for Solving Inverse Problems”) 

https://arxiv.org/abs/2005.06001


Example of solving a Inverse 
Problem from my research: Wiener 
filtering
https://arxiv.org/abs/1905.05846



Learning a mathematical operator
• Sometimes it is possible to design a neural network that is specifically designed to 

enforce a mathematical relation

• In cosmology, one often wants to first reconstruct the data from a noisy operation 

using a linear operation called “Wiener filtering”, which is solving a linear inverse 
problem.


• The problem is that Wiener filtering is too computationally expensive for large data 
sets. 


• We wanted to know if this task can be done better with a Neural network, but 
under several constraints:

• We did not want to use Wiener-filtered training data. Instead we train on the 

likelihood.

• We wanted to enforce the property that the Filtering is linear, but with a filter 

that depends non-linearity on the noise. 

• I want to show you here that this can be achieved by a non-trivial neural network 

architecture. 



Example from my research: Wiener filtering



Wiener filtering



New neural network architecture



Loss functions and training



Results


