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Some recent work at the interface between physics and
machine learning

 For our last lecture | want to briefly discuss some recent interesting
research.

* | will pick topics/papers that | am interested in myself, without being very
systematic. Not all work that | present here is influential, though some is.

* | hope this will inspire you to work on ideas in this field.



“Physics-informed machine learning”

* Review: https://www.nature.com/articles/s42254-021-00314-5 (plots from this
source)

e Simulating physics problems using the numerical discretization of partial
differential equations (PDEs) remains difficult.

* |nstead, machine learning based methods can be combined with physics
(including physical laws or symmetries). This is called “physics-informed machine
learning”.

* Generally speaking, the less we have training data the more physics knowledge
can help the model to perform.

Small data Some data Big data

Lots of physics Some physics No physics



https://www.nature.com/articles/s42254-021-00314-5

“Physics-informed machine learning”

* Physics knowledge can be included in machine learning in 3 general ways:

 Observational: Physical properties (e.g. symmetries) can be learned directly
from the observations.

* Inductive biases: Physical properties can be exactly enforced in the model. A
simple example are CNNs which are hard-coding translational invariance. E.g.
Formally one can make a NN invariant under any symmetry group. Physics
can thus be encoded in the model architecture. However, this often leads to
complex implementations that are difficult to scale.

* Learning bias: Physical constraints can be enforced in a soft way (i.e. not
exact) by adding a term to the loss that penalizes violating the constraint (e.qg.
conservation of mass).

 Hybrid methods combine several of these.



Solving PDEs with PINNs

* PINNSs: “Physics informed neural networks”

* Physics-informed neural networks (PINNSs) integrate the information from both the
measurements and partial differential equations (PDEs) by embedding the PDEs
into the loss function of a neural network using automatic differentiation.

 Example: solving the viscous Burgers’ equation

* We also have some data (boundary condition) so that the solution is uniquely
defined.

* Idea: We put the residual of the PDE into the loss function and solve the problem
as an optimization problem with auto-differentiation.



Solving PDEs with PINNs

e The Loss thus is
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Here {(x, t)} and {(xj, tj)} are two sets of points sampled at the initial/boundary locations
and in the entire domain, respectively, and u. are values of u at (x, t); w,_.. and w, are the
weights used to balance the interplay between the two loss terms. These weights can

be user-defined or tuned automatically, and play an important role in improving the
trainability of PINNs’®*">,



Solving PDEs with PINNs

 The PDE solution is specified by a neural network (rather than some pixelated discretization of
space), so we get a continuous function.
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Algorithm 1: The PINN algorithm.

Construct a neural network (NN) u(x, t; 8) with @ the set of trainable weights w and biases b,
and o denotes a nonlinear activation function. Specify the measurement data {x, t,u}

for uand the residual points {x, t} for the PDE. Specify the loss L in Eq. (3) by summing

the weighted losses of the data and PDE. Train the NN to find the best parameters 6*

by minimizing the loss L.



Neural Operators

e https://arxiv.org/abs/2309.15325 Neural Operators for Accelerating Scientific
Simulations and Design

 The core idea behind Fourier Neural Operator is to perform neural network
operations in the Fourier space (frequency domain), where convolution
operations become multiplications. This approach efficiently captures the global
Interactions in the data, which are crucial for accurately solving PDEs.
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Fig. 3: Diagram comparing pseudo-spectral solver, Fourier Neural Operator (FNO),
and the general Neural Operator architecture. F'T and IFT refer to Fourier and Inverse
Fourier Transforms. In general, lifting and projection operators P, Q can be non-
linear. Pseudo-spectral solvers are popular numerical solvers for fluid dynamics where
the Fourier basis is utilized, and operations are iteratively carried out, as shown. The
Fourier Neural Operator (FNO) is inspired by the pseudo-spectral solver, but has a
non-linear representation that is learned. FNO is a special case of the Neural-Operator
framework, shown in the last row, where the kernel integration can be carried out
through different methods, e.g., direct discretization or through Fourier transform.


https://arxiv.org/abs/2309.15325

Comparing PDE solving methods

e https://arxiv.org/abs/2210.07182 PDEBENCH: An Extensive Benchmark for
Scientific Machine Learning

Figure 1: PDEBENCH provides multiple non-trivial challenges from the Sciences to benchmark
current and future ML methods, including wave propagation and turbulent flow in 2D and 3D

Table 1: Summary of PDEBENCH’s datasets with their respective number of spatial dimensions N,
time dependency, spatial resolution /Ny, temporal resolution NV;, and number of samples generated.

PDE Ng; Time N, N;  Number of samples
advection 1 yes 1024 200 10000
Burgers’ 1 yes 1024 200 10000
diffusion-reaction 1 vyes 1024 200 10000
diffusion-reaction 2 yes 128 x 128 100 1000
diffusion-sorption 1 vyes 1024 100 10000
compressible Navier-Stokes 1 yes 1024 100 10000
compressible Navier-Stokes 2 yes 512 x 512 21 1000
compressible Navier-Stokes 3 yes 128 x 128 x 128 21 100
incompressible Navier-Stokes 2 yes 256 x 256 1000 1000
Darcy flow 2 no 128 x 128 - 10000
shallow-water 2 yes 128 x 128 100 1000



https://arxiv.org/abs/2210.07182

Comparing PDE methods

 The objective is to find some ML-based surrogate, sometimes referred to as an
emulator, of the forward propagator (i.e. the next time step).

* Baseline ML models for PDE solving:

U-Net U-Net [48] is an auto-encoding neural network architecture used for processing images using
multi-resolution convolutional networks with skip layers. U-Net is a black-box machine learning
model that propagates information efficiently at different scales. Here, we extended the original
implementation, which uses 2D-CNN, to the spatial dimension of the PDEs (i.e. 1D,3D).

Fourier neural operator (FNO) FNO [32] belongs to the family of Neural Operators (NOs),
designed to approximate the forward propagator of PDEs. FNO learns a resolution-invariant NO by
working in the Fourier space and has shown success in learning challenging PDEs.

Physics-Informed Neural Networks (PINNs) Physics-informed neural networks [47] are methods
for solving differential equations using a neural network ug(t, z) to approximate the solution by
turning it into a multi-objective optimization problem. The neural network is trained to minimize the
PDE residual as well as the error with regard to the boundary and initial conditions. PINNs naturally
integrate observational data [30], but require retraining for each new condition.
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Figure 2: Comparisons of baseline models’ performance for different problems for (a) the forward
problem and (b) the inverse problem.

» Currently neural solvers often don’t outperform classical methods but they are more
flexible.



Foundation model for PDEs?

https://arxiv.org/abs/2310.02994

At a fundamental level, many physical systems share underlying principles. Many of the equations

describing physical behavior are derived from universal properties like conservation laws or

invariances which persist across diverse disciplines like fluids, climate science, astrophysics, and
chemistry. Can we learn these shared features ahead of time through pretraining and accelerate the

development of models for new physical systems?

Results are somewhat encouraging.
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https://arxiv.org/abs/2310.02994

Discovering symbolic laws from data

 Discovering symbolic laws = Symbolic regression

 Symbolic Regression is usually done with Genetic algorithms, building a population of
possible expressions that evolve (i.e. are modified). See for example the PySR paper
https://arxiv.org/abs/2305.01582 .

« Some examples of combining symbolic regression with machine learning:

« https://arxiv.org/abs/2006.11287 Discovering Symbolic Models from Deep Learning
with Inductive Biases, 2202.02306

 We develop a general approach to distill symbolic representations of a learned
deep model by introducing strong inductive biases. We focus on Graph Neural
Networks (GNNSs). The technique works as follows: we first encourage sparse
latent representations when we train a GNN in a supervised setting, then we apply
symbolic regression to components of the learned model to extract explicit
physical relations. We find the correct known equations, including force laws and
Hamiltonians, can be extracted from the neural network

e https://www.science.org/doi/10.1126/sciadv.aay2631 Al Feynman: A physics-
inspired method for symbolic regression

* We develop a recursive multidimensional symbolic regression algorithm that
combines neural network fitting with a suite of physics-inspired techniques. We
apply it to 100 equations from the Feynman Lectures on Physics, and it discovers
all of them.


https://arxiv.org/abs/2305.01582
https://arxiv.org/abs/2006.11287
https://www.science.org/doi/10.1126/sciadv.aay2631

Symbolic Regression methods

Comparison from https://arxiv.org/abs/2305.01582
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No pre-training X -
Denoising X X X X *11 X ? X X
BT Rttty Fgature s:election . X X *11 X X X
Differential equations X X X X X X X X
High-dimensional X X X X X X X X X
Full Pareto curve X *11 X X X
API X X -
Interfacing SymPy Interface X X X X X -
Deep Learning export X X X X X X *I11 X *111 X -
Expressivity score 4 5 4 3 3 3 1b 2 3 la 3 6
Open-source X X
Real Constants X *11 -
Custom operators X X X X *]1 X X X X -
Extensibility Discontinuous operators X X X *11 X X X X -
Custom losses X X X X X X X
Symbolic Constraints X X X X X X X X
Custom complexity X X X X X X X X -
Custom types X X X X X X X X X X X
Citation [self] [11] - [73] [44] [27] [74] [34] [75] [30] [21] [23]
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Expressivity scores: (1la) Pre-trained on equations generated from limited prior. (1b) Basis of fixed expressions, combined in a linear sum. (2) Flexible basis of expressions,
with variable internal coefficients. (3) Any scalar tree, with binary and unary operators. (4) Any scalar tree, with custom operators allowed. (5) Any scalar tree, with
n-ary operators. (6) Scalar/vector/tensor expressions of any arity.

* Note that the “Symbolic Distillation” method from [23] is not an algorithm itself; it can be applied to any SR technique. Applying this general method to a specific
technique will inherit a v from the Symbolic Distillation column, if given. However, in general, this technique is easiest with those methods which have deep learning
export.

*] Only the symmetry discovery module is GPU-capable.

*11 Conceptually different, as is a linear basis of static nonlinear expressions.

*]II  Is itself a neural network.



Symbolic math with neural networks

e https://arxiv.org/abs/1912.01412 Deep Learning for Symbolic Mathematics

 We use sequence-to-sequence models (e.g. transformer) on two problems of

symbolic mathematics: function integration and ordinary differential equations
(ODEs)

* Representing mathematical expressions as trees

Mathematical expressions can be represented as trees, with operators and functions as internal nodes,
operands as children, and numbers, constants and variables as leaves. The following trees represent

expressions 2 + 3 X (5 + 2), 3z% + cos(2x) — 1, and % - U%_%

+ + -
2 X
7y SA 0 x
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 The tree can then be represented as a sequence of tokens.

Using seq2seq models to generate trees requires to map trees to sequences. To this effect, we use
prefix notation (also known as normal Polish notation), writing each node before its children, listed
from left to right. For instance, the arithmetic expression 2 + 3 * (5 + 2) is represented as the sequence
[+ 2 % 3 + 5 2]|. In contrast to the more common infix notation 2 + 3 x (5 + 2), prefix sequences


https://arxiv.org/abs/1912.01412

Symbolic math with neural networks

Real numbers can also be discretized as tokens, for example as follows
(2112.01898):

Base 10 positional encoding (P10) represents numbers as sequences of five tokens : one sign token (+ or

-), 3 digits (from 0 to 9) for the mantissa, and a symbolic token (from E-100 to E+100) for the exponent. For
instance, 3.14 is represented as 314.1072, and encoded as [+, 3, 1, 4, E-2].

Next we need to generate a large training set, e.g. to learn integration. This can be

done by randomly generating expressions, and then using conventional methods
(such as Mathematica) to find solutions.

Random expressions can be generated forward or backward (e.g. differentiation
IS easier than integration).

The model in the paper 1912.01412 outperforms Mathematica at integration and

ODE solution finding in the range where it was trained (note however that this is a
rather restricted range, see e.g. 1912.05752).

The strategy of tokenizing equations has been widely adopted.



ODEFormer

 (Can we give a neural network observed data (solutions to differential equations) and ask it to
find the underlying equation of motion (differential equations)?

 We are currently interested in this topic in my group so let me show you a recent paper by
other authors in this direction: https://arxiv.org/abs/2310.05573 ODEFormer: Symbolic
Regression of Dynamical Systems with Transformers

 Example: 2-dimensional ODE

& = f(z)

Lotka-Volterra competition model

Harmonic oscillator without (Strogatz version with sheeps Lotka-Volterra simple (as on
damping Harmonic oscillator with damping and rabbits) Wikipedia) ) Pendulum without friction
0.50 || .
0.1 '
0.25 ’\ \ 4 | ] 1
0.0 N 3
0.00 _/ L \ 0
2 4
__0'25 _0.1
1 2 -1 \/
—0.50 -
: : |70 : A 0L : 0L, : 215 : :
ID | System description | Equation | Parameters | Initial values
T
24 Harmonic oscillator without damp- 1 2.1 [0.4,-0.03], [0.0, 0.2]
ing —C0To
T
25 Harmonic oscillator with damping { 1 4.5, 0.43 [0.12, 0.043], [0.0, -0.3]
—CoTo — €171
zg (cgp —c1x1 — @
26 Lotka-Volterra competition model { o (eo L 0) 3.0, 2.0, 2.0 [5.0,4.3], [2.3, 3.6]
(Strogatz version with sheeps and z1 (c2 — 0 — =1)
rabbits)
zo (cg — c1@;
27 | Lotka-Volterra simple (as on Wiki- 0 (co = c1z1) 1.84, 1.45, 3.0, 1.62 (8.3, 3.4], [0.4, 0.65]
pedia) —z1 (c2 — c3z0)
T
28 | Pendulum without friction L 0.9 [-1.9, 0.0], [0.3, 0.8]
—co sin (zq)



https://arxiv.org/abs/2310.05573

ODEFormer

« Use ideas we discussed: Tokenizing equations, transformer encoder-decoder

(" ¢

mul, 2, x2, |,

Embedder

Input Transformer

\_

9 = cos(1+ 1)

fa
z =il cos, add 1, x]
zo| = 0.5 Tokenize = FFN Encode —» Decode
t 2.5 / :1:1 = 2z,
N

Output

XE | mdl, 3, x2, |,
loss sin, add, 1, x1
Tr1 = 3.’1:2
&9 = sin(1 + 1)

Target )

Figure 2: Sketch of our method to train ODEFormer. We generate random ODE systems, integrate
a solution trajectory on a grid of N points z € R, and train ODEFormer to directly output the ODE
system in symbolic form, supervising the predicted expression via cross-entropy loss.
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e Could we discover the equations of motion of an observed system for which we don’t know the

answer?




Theorem proving with LLMs

e https://arxiv.org/abs/2009.03393 Generative Language Modeling for Automated Theorem
Proving

« Come up with proposals for proofs (sequence of mathematical operations) that can then be
checked .

« https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-mathematical-
sciences-using-large-language-models/ FunSearch: Making new discoveries in mathematical
sciences using Large Language Models

e Searching for programs FunSearch

Evaluation

This work represents the first time a new
discovery has been made for challenging
open problems in science or mathematics —

Pre-trained LLM /] — ul%

. . > acdll
using LLMs. FunSearch discovered new El— %
solutions for the cap set problem, a Specification / \ — Novel program
longstanding open problem in mathematics. III — — "8 -

Prompt l:] D ey [:]

Programs
database

The FunSearch process. The LLM is shown a selection of the best programs it has generated
so far (retrieved from the programs database), and asked to generate an even better one. The
programs proposed by the LLM are automatically executed, and evaluated. The best programs
are added to the database, for selection in subsequent cycles. The user can at any point

retrieve the highest-scoring programs discovered so far.


https://arxiv.org/abs/2009.03393
https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-mathematical-sciences-using-large-language-models/
https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-mathematical-sciences-using-large-language-models/

Inverse problems

 Most data analysis problems in research can be formulated as Inverse Problems, and
we have already encountered some in previous lectures.

 Review of inverse problems in the 2d image domain: https://arxiv.org/abs/2005.06001

To be more precise, we consider inverse problems in which an unknown n-pixel image (in

vectorized form) * € R"™ (or C") is observed via m noisy measurements y € R™ (or C™)
according to the model

y = Az") +e,

where A is the (possibly nonlinear) forward measurement operator and € represents a vector of

noise. The goal is to recover * from y. More generally, we can consider non-additive noise
models of the form

y = N(Az"),

where N (-) samples from a noisy distribution. Without loss of generality, we assume that y, x*, A,

* There are many different machine learning methods to solve such problems.

A naive one is to simply train a Neural Network to map from y to x, on simulated
training data pairs.

A different method is to define a likelihood for the problem, with a generative prior
(score matching, normalizing flows etc) and find the posterior of x given y. This
results in a probabilistic solution (i.e. with error bars).

 There are also specialized algorithms, for example 1706.04008 (“Recurrent
Inference Machines for Solving Inverse Problems”)


https://arxiv.org/abs/2005.06001

Example of solving a Inverse
Problem from my research: Wiener
filtering

https://arxiv.org/abs/1905.05846



Learning a mathematical operator

« Sometimes it is possible to design a neural network that is specifically designed to
enforce a mathematical relation

* In cosmology, one often wants to first reconstruct the data from a noisy operation
using a linear operation called “Wiener filtering”, which is solving a linear inverse
problem.

 The problem is that Wiener filtering is too computationally expensive for large data
sets.

e We wanted to know if this task can be done better with a Neural network, but
under several constraints:

 We did not want to use Wiener-filtered training data. Instead we train on the
likelihood.

 We wanted to enforce the property that the Filtering is linear, but with a filter
that depends non-linearity on the noise.

| want to show you here that this can be achieved by a non-trivial neural network
architecture.



Example from my research: Wiener filtering

mask, noise Wiener filter
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Very important method! First step for any optimal statistical analysis.



Wiener filtering

e Common situation: d = S+ N
data signal noise
* Wiener filter: dwrp = S(S-|- N)_ld
Signal covariance matrix. Noise covariance matrix.

* Optimal reconstruction of s given d.
e Data d can have 102 elements. Direct matrix inversion impossible.

e Standard approach: conjugate gradient method. But too slow! Most Planck
CMB analysis is suboptimal for this reason.

‘ Neural network approach



* Crucial: must not induce non-
linearities.

e Construct a neural network
that is explicitly linear in the
data!

y = M (mask)d

* Nonlinear in mask/noise

Machine learning does not need
to be based on “generic

functions”! J

New neural network architecture
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MM et. al., 1905.05846, NeurlIPS 2019



Loss functions and training

* 3 possible loss functions (training objectives) with very different properties:

'} o ” ]. . .
naive loss Ji(d,y) = §(y _ yWF)TA(y — ywF) Not useful in practice.
1 . .
“supervised loss” Jo(s,y) = §(y —s)T A(y — s) Works well in S/N>1 regime.
1 1
“physical loss”  Js(d,y) = 5(y— )TN (y—d) + 5y"sly  Works well everywhere.

J3(d,y) = —log P(s|d)s=y + const.

* All can be analytically shown to be minimized by WF solution, i.e.

8<J>L _ —1
B—M_O mmmm) M=S(S+N)

Neural networks can be used in low signal-to-noise situations!



Results

Neural network output maps are at least 99% Wiener filtered.

Neural Network Wiener filtering is 1000 times faster than the
exact method!

* Works independent of mask and noise levels.

* Pluginto standard analysis pipelines in cosmology.

Q map WF NN , Q map WF exact
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