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Unit 2: Machine 
Learning Basics

2.4 Training our first model



Train an MLP on SUSY data
• We will use the simulated collider data. The goal will be to discriminate SUSY 

(supersymmetry) events from non-SUSY events. The data is from the paper 
https://www.nature.com/articles/ncomms5308.


• We use a modified version of the code from  https://physics.bu.edu/~pankajm/
MLnotebooks.html which was written for the review https://arxiv.org/abs/1803.08823  
A high-bias, low-variance introduction to Machine Learning for physicists. 

• We will use python with the pytorch framework (it does the auto-differentiation). 
Pytorch is the most widely used tool in ML research (followed probably by JAX now).


• We will use Google Colab to run the python code. Colab provides free 
computational resources, including GPUs, with a nice interface based on python’s 
Jupyter. 


• I uploaded a basic python tutorial to canvas in files/python/python tutorial (from 
a previous class, Physics 249). You will have to self study some python if you don’t 
have prior experience. 

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://arxiv.org/abs/1803.08823


• Using the dataset from the UC 
Irvine ML repository produced by 
MC simulations to contain events 
with 2 leptons (electrons or muons)

• These events with 2 leptons with 
large  can occur in SUSY 
models or within the SM.

• 18 kinematic variables (“features”) 
are recorded for each event.

• We train a MLP classifier to 
classify the events into SUSY or 
SM background. 

pT

! stransverse mass MT2: estimating the mass of particles
produced in pairs and decaying semi-invisibly17,18,

! T
Rel: T if DfZp/2, T sin(Df) if Dfop/2, where Df is the

minimum angle between T and a jet or lepton,
! razor quantities b,R and MR (ref. 19),
! super-razor quantities bRþ 1, cos(yRþ 1), DfR

b, MR
D, M

T
R , andffiffiffiffi

ŝR
p

(ref. 20).

See Fig. 6 for distributions of these high-level features for both
signal and background processes.

A data set containing five million simulated collision events is
available for download at archive.ics.uci.edu/ml/datasets/SUSY.

Current approach. Standard techniques in high-energy physics
data analyses include feed-forward neural networks with a single
hidden layer and boosted decision trees. We use the widely-used
TMVA package21, which provides a standardized implementation
of common multivariate learning techniques and an excellent
performance baseline.

Deep learning. We explored the use of DNs as a practical tool for
applications in high-energy physics. Hyper-parameters were
chosen using a subset of the HIGGS data consisting of 2.6 million
training examples and 100,000 validation examples. Due to
computational costs, this optimization was not thorough, but
included combinations of the pre-training methods, network
architectures, initial learning rates and regularization methods
shown in Supplementary Table 3. We selected a five-layer neural
network with 300 hidden units in each layer, a learning rate of
0.05, and a weight decay coefficient of 1# 10$ 5. Pre-training,
extra hidden units and additional hidden layers significantly
increased training time without noticeably increasing perfor-
mance. To facilitate comparison, shallow neural networks were
trained with the same hyper-parameters and the same number of

units per hidden layer. Additional training details are provided in
the Methods section below.

The hyper-parameter optimization was performed using the
full set of HIGGS features. To investigate whether the neural
networks were able to learn the discriminative information
contained in the high-level features, we trained separate classifiers
for each of the three feature sets described above: low-level, high-
level and combined feature sets. For the SUSY benchmark, the
networks were trained with the same hyper-parameters chosen
for the HIGGS, as the data sets have similar characteristics and
the hyper-parameter search is computationally expensive.

Performance. Classifiers were tested on 500,000 simulated
examples generated from the same Monte Carlo procedures as
the training sets. We produced receiver operating characteristic
curves to illustrate the performance of the classifiers. Our primary
metric for comparison is the area under the receiver operating
characteristic curve (AUC), with larger AUC values indicating
higher classification accuracy across a range of threshold choices.

This metric is insightful, as it is directly connected to
classification accuracy, which is the quantity optimized for in
training. In practice, physicists may be interested in other metrics,
such as signal efficiency at some fixed background rejection or
discovery significance as calculated by P-value in the null
hypothesis. We choose AUC as it is a standard in machine
learning, and is closely correlated with the other metrics.
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Figure 5 | Low-level input features for SUSY benchmark. Distribution of
low-level features in simulated samples for the SUSY signal (black) and
background (red) benchmark processes.
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Figure 4 | Diagrams for SUSY benchmark. Example diagrams describing

the signal process involving hypothetical supersymmetric particles w% and

w0 along with charged leptons c% and neutrinos n (a) and the background
process involving W bosons (b). In both cases, the resulting observed
particles are two charged leptons, as neutrinos and w0 escape undetected.
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Physics Background



The rest of this section will be presented in Colab. I will upload the Colab notebook on the 
course page, and you can download it from there, upload it to Colab, and run it yourself.



• Reading for this lecture:  
• For example: Deeplearningbook.org chapter 6. 

• Problem set: First problem set to appear tomorrow. 

Course logistics


