Physics 361 - Machine Learning in Physics

Lecture 6 – Basics of Machine Learning

Feb. 8th 2024

Moritz Münchmeyer

Unit 2: Machine Learning Basics

2.2 Neural Network Basics (Supervised Learning)

Supervised machine Learning We want to Learn a complicated non-lineau
function to map rapat \overrightarrow{x} to outpat \overrightarrow{y} . $\begin{array}{ccc}\n\swarrow & \longrightarrow & \begin{array}{ccc}\n\searrow & & \searrow & \\
\searrow & & \se$ We want to find the model parameters by
minimizing some Loss fanction on our training $da \nmid a$. $E. g. \qquad L^{\text{wSE}}$ $\begin{bmatrix} 1 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix}$ $\begin{bmatrix} y_i - f_{\theta}(\zeta_i) \\ 0 & \frac{1}{2} \end{bmatrix}^2$

A very simple neural nefwork • We need same way to specify the function f(x)
It tarns ont that avery simple parchitecture"
work very archite in practice: Lincar transformations combined
with element-wise non-Liniarities A Linear transformation / Linear Lager^{*} is
given by $\vec{y} = \vec{f}(\vec{x}) = W \vec{x} + b$ \vec{y} : Ndim
matrix Sbias
The most common nea-Linearty factivation fanction
is the ReLU prectified Linear anit! * fully connected Livia Laper

The combination of Roll and Linear Layer
\ncan be written as
\n
$$
f'(x) = max (0, W^{\prime} \times 7 + b^{\prime})
$$

\n $f'(x) = max (0, W^{\prime} \times 7 + b^{\prime})$
\n $ReLU$
\n $Q = max(1, x)$
\n $Q = max(1, x)$
\n $Q = max(1, x)$
\n $Q = max(0, W^{i}_{n-1})$
\n $U \circ U = max(0, W^{i}_{n-1})$
\n $U \circ U = max(0, W^{i}_{n-1})$
\n $U \circ U = max(1, X)$
\n

Loss for classification For classification we want the NN output to
be the probabilities of the various classes. x $\frac{1}{x}$ $\frac{1}{x$ A probability distribution need to have only
positive probabilities and they must sum to I. To achieve this we need the softmax function $P_j(y_j) = \frac{1}{\sum_{j=1}^{y_j} x^{y_j}}$

typical Loss function for classification $7he$ 19 p ¹
 f 4 n e 5 f 10 f f 1 k e 1 b 1 d 0 d = c 1055- c 1 d 1 d 0 p iS $L_{(0)} = - \sum_{i=1}^{N_{examples}}$ Nclasses
 $\sum_{j=1}^{N_{classes}} y'_j \cdot log(\overline{P_j(x_j)})$ $y = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ one -hot W, b $vecto\nearrow$
which is 1 40 14 $\overline{115}41$ class.

Optimization of the parameters oThe Last clement we need is the
"optimization procedure" to find good weights θ^* from minimzing the Loss function · Almost all algorithms used in practice
to do this are versions of stochastic gradient descent. gradient descent.
 $G_n = G_n - \sum_{\substack{n=1 \text{at } n \neq n}} L(G_n \times)$

new parameters current of gradient of

at step n+1 parameters carning the Less

tale function . stochastic weans we evaluate the gradient at
each strp asing only a subset of the fraining
data, called the winibatch!

Unit 2: Machine Learning Basics

2.4 Training our first model

Train an MLP on SUSY data

- We will use the simulated collider data. **The goal will be to discriminate SUSY (supersymmetry) events from non-SUSY events.** The data is from the paper **https://www.nature.com/articles/ncomms5308.**
- We use a modified version of the code from [https://physics.bu.edu/~pankajm/](https://physics.bu.edu/~pankajm/MLnotebooks.html) [MLnotebooks.html](https://physics.bu.edu/~pankajm/MLnotebooks.html) which was written for the review https://arxiv.org/abs/1803.08823 **A high-bias, low-variance introduction to Machine Learning for physicists.**
- We will use **python** with the **pytorch** framework (it does the auto-differentiation). Pytorch is the most widely used tool in ML research (followed probably by JAX now).
- We will use **Google Colab** to run the python code. Colab provides free computational resources, including GPUs, with a nice interface based on python's Jupyter.
- I **uploaded a basic python tutorial to canvas in files/python/python tutorial** (from a previous class, Physics 249). You will have to self study some python if you don't have prior experience.

\blacksquare **Physics Background**

- Using the dataset from the UC Irvine ML repository produced by MC simulations to contain events with 2 leptons (electrons or muons)
- These events with 2 leptons with large $p_T^{}$ can occur in SUSY models or within the SM.
- 18 kinematic variables ("features") are recorded for each event.
- We train a MLP classifier to classify the events into SUSY or SM background.

Figure 4 | Diagrams for SUSY benchmark. Example diagrams describing the signal process involving hypothetical supersymmetric particles χ^{\pm} and γ^0 along with charged leptons ℓ^{\pm} and neutrinos v (a) and the background process involving W bosons ($\mathbf b$). In both cases, the resulting observed particles are two charged leptons, as neutrinos and χ^0 escape undetected.

Baldi et al Nature Communications Baldi et al, Nature Communications, Volume 5, Arti@le number: 4308 (2014 minimum angle between T and a jet or lepton, E **Volume 5, Article number: 4308 (2014)**

The rest of this section will be presented in Colab. I will upload the Colab notebook on the course page, and you can download it from there, upload it to Colab, and run it yourself.

```
º= colab.research.google.com/drive/1RqCezhUxnGUuxMXObZEBwyX8-v8H... ☆
                                                                                                                Relaunch to update :
\leftarrowC
                                                                                       o
       ▲ DNN_susy_Pytorch_mod_for_361.ipynb ☆
                                                                                              ■ Comment
                                                                                                             \mathbf{r} Share
 PRO
       File Edit View Insert Runtime Tools Help All changes saved
                                                                                              V100
      + Code + Text
                                                                                                                 ම Colab Al
                                                                                         High-RAM Disk
這
      [23] import torch.nn as nn # construct NN
Q
            class model(nn.Module):
\{x\}def __init (self, high level feats=None):
                    # inherit attributes and methods of nn. Module
©≂
                    super(model, self). __init__()
                    # an affine operation: y = Wx + b▭
                    if high_level_feats is None:
                        self.fc1 = nn.Linear(18, 200) # all featureselif high_level_feats:
                        self.fc1 = nn.Linear(10, 200) # low-level onlyelse:
                        self.fc1 = nn.Linear(8, 200) # high-level onlyself.fc2 = nn.Linear(200, 100) # see forward function for dimensions
                    self.fc3 = nn.Linear(100, 2)def forward(self, x):
                    ""Defines the feed-forward function for the NN.
くゝ
                    A backward function is automatically defined using 'torch.autograd'
\equivParameters
                    x : autograd. Tensor
\suminput data
```
Course logistics

- **Reading for this lecture:**
	- **For example:** Deeplearningbook.org chapter 6.
- **Problem set**: First problem set to appear tomorrow.