PHY 835: Machine Learning in Physics
Lecture 7: Optimization
February 13, 2024

Al
N
Universe

Gary Shiu

Outline for today

e Gradient Descent

e (Gradient descent vs Newton’s method

e Limitations of Gradient Descent

e Stochastic Gradient Descent

e Adding momentum

e Using the second moment (RMS-Prop, ADAM)
e Autodifferentiation

References: 1803.08823 (see also Goodfellow et al, Ch. 8)

Optimizers

ML problems are mostly about minimizing a cost function. This
can be a hard problem because:

. The function depends on many parameters, say 0(10°) and
hence the minimization is over a huge parameter space.

* |t becomes numerically expensive to evaluate the cost function,
its gradient and higher derivatives.

* Non-convex loss function = multiple minima

Convex Non-Convex

Saddl€e point

\‘/ Local min

Minimizer

Global min

e Common method: gradient descent & variations.

Gradient Descent

>

* The “energy” we want to minimize is
the cost function (loss function): Weight

Cost \ 'I//
n Incremental I/
E(0) =) ei(xi, 6). ’
i=1 "I
!
]

/
Can Often be ertten aS a. Sum Over / kK/ - Minimum Cost
data points, e.g., mean-square error e R
or cross-entropy (classification). R
_ _ learning rate
e |dea: adjust parameters in the /
direction where the gradient of £(0) v, = 1:VgE(0,),

is large and negative. Gradually
shifting towards a local minimum.

0t+1 0; — v,

Gradien

Newton’s Method

e Inspiration for many widely used optimization methods.

e Choose the step v for the parameter 8 to minimize a 2nd order
Taylor expansion:

E(0 + v) ~ E(0) + VyE(0)v + %VTH(H)V,

where H(0) is the Hessian. Differentiate w.r.t. v, noting that for
the optimal value v,,,,, V. E(@+ V)| _. =0:

opr — Topt

E(O)
N=Nopt
Vi = H_1(0t)V9E(0t)
Or1 =0 — V.

min

Newton’s Method

e Inspiration for many widely used optimization methods.

e Choose the step v for the parameter 8 to minimize a 2nd order
Taylor expansion:

E(0 + v) ~ E(0) + VyE(0)v + %VTH(H)V,

where H(0) is the Hessian. Differentiate w.r.t. v, noting that for
the optimal value v,,,,, V. E(@+ V)| _. =0:

P
[H(O,) + el]™!

N=Nopt /

Vi = H_1(0t)V9E(0t)
Or1 =0 — V.

opt’

E(O)

min

Gradient Descent vs Newton’s Method

Newton’s method requires knowledge of 2nd derivatives (n2
component Hessian) which is computationally expensive.

Calculating inverse of the Hessian is expensive especially for
millions of parameters (common in neural network applications).

= Newton’s method unfeasible for typical ML systems.

However, useful to get intuition how to choose the learning rate:
) —1
Nopt = 10 E(0)] (1-dim)

Newton’s method automatically adjusts the learning rate: takes
larger steps in flat directions and smaller steps in steep directions.

Regimes of Learning Rate

A E(O) ® | E0O)
N<Nopt N=Nopt
multiple \ single
small steps \ step
| 6 | e
. | I@ |
¢ Eg M D oEw)
N>1g0t N>2Mopt
oscillate across \ \ diverges
both sides — ’
L
0 . 0

0 . emin

min

Convergence in Higher Dimensions

Natural generalization of 6§E(6’) is the Hessian.

Perform a singular value decomposition of the Hessian matrix:

X =UDV'

where U and V are orthogonal matrices and D is diagonal with

eigenvalues {4, ..., 4, .}

Convergence of gradient descent requires:

2
n <
)Lmax
fA,, <K /Imax: convergence is slow in the ... direction.
Convergence time scale scales withk =4, /4 ..

Gradient Descent — Limitations

Starting

* Finds local minima: simulated R Configuration
annealing introduces a 4
“temperature” (stochasticity) to
tunnel over energy barriers.

Perturb
(Hill Climbing)

Perturb
(Hill Climbing)

e Sensitive to initial conditions
(which local minimum depends on
starting point)

Objective Function f(X)

— important to consider sensible
initialization of training process.

Variable X

e Gradients computationally
expensive for large datasets

— calculate gradient using small Stochastic Gradient Descent (SGD)

subset of data:
“mini-batches” (gives stochasticity)

Gradient Descent — Limitations

e Sensitive to choice of learning rates (too small would take a long
time to train, too large would diverge from minima).

— Furthermore need to adaptively choose learning rate.

* Treats all directions uniformly

— ideally large steps in flat directions, small steps in steep directions
— second derivatives needed to account for “curvature effects”.

e Takes exponential amount of time to escape a saddle point.

You are encouraged to experiment with gradient descent and its
variants using the Juypter notebook on:

https://physics.bu.edu/%7Epankajm/MLnotebooks.html

SGD with Mini-batches

Stochasticity by approximating gradient on subset of data, so-called
mini-batches, denoted as Bk (size varies ~10-100):

D—-B.,b,,....B,
Speed up gradient computation:

VoE(0) = Y " Viei(xi, 0) — Y Voei(x;, 0)
i=1

i€By,
Perform gradient descent:

Vt — T]tVQEMB(O)a
01 =0 — ;.

Cycle through mini-batches. One entire cycle is known as an epoch.

Bonus: works effectively as a natural regularizer that prevents overfitting
In deep, isolated minima

GD with Momentum (GDM)

* |dea: add memory of the direction we move in parameter space

Vi = YVi_1 + 1 VoE(0;)
Or11 = 0 — v,

by introducing a momentum parameter y, with O <y <1

e The step taken v is a running average of recently encountered
gradients with the characteristic time scale for the memory set by y.

* To get some physics intuition, consider a massive particle in viscous
medium with viscous damping coefficient u, and potential E(6):

GD with Momentum (GDM)

e Discrete version of this EOM:

Weiar — 2We + Wi p MWt+At — W _ _V,E(w).
(At)? At
* Bringing it to a form of a GDM:
A = — (Aty V,E(w) + m AW
Wepar = m+ WAL w m+ At t-

* The momentum parameter and the learning rate are then identified:

m (At)?

y:m—l—,uAt’ n:m—l—,u,At'

GD with Momentum (GDM)

Gain speed in directions with persistent but small gradient, while
suppressing oscillations in high curvature directions.

Especially useful when E(6) is shallow and flat in some directions,
and narrow and steep in others.

More useful during the transient phase than the fine-tuning phase.

Slight modification: Nesterov accelerated gradient (NAG) descent
(update at expected value of parameters with current momentum):

Vi = YVi—1 + 1 VoE(Or + yVi_q)
Orr1 = 0 — ;.

Using the 2nd Moment

|deally calculate/approximate Hessian and normalize learning rates
accordingly.

In addition to keeping a running average of the first moment of the
gradient (momentum), we also keep track of the second moment:

St — _[gtz]

Methods include: AdaGrad (2011), AdaDelta (2012), RMS-Prop
(2012), ADAM (2014).

RMS-Prop update rules: 8 = VoE(0)
St = BSi—1 + (1 — ﬁ)g?
g
0r1 = 0 — 1 t ;

RMS-Prop

e RMS-Prop update rules:
f ~ 0.9 controls the averaging
time of the 2nd moment

g = VyE(0)
St = BSi—1+(1— ,B)gf
g
Or1 = 0 — 1 t

\/St +e e~1078 regularizes divergences

e Learning rate is reduced in directions where the norm of the gradient
IS consistently large.

e Speeds up convergence by allowing us to use a larger learning rate
for flat directions.

ADAM

* Using a running average of both the 1st and 2nd moments:

8 — V@E(o)
m; = gim;_q1 +(1— B1)g: m, = [E[gt]
St = BaSe—1+(1— ﬂz)g?
. nm;
m;, —
1—(B1)
. St
St =
1—(B2)

A

my
01 = 0 — 1 - ;
\/;t+e

* Memory lifetimes of the 1st and 2nd moment are typically:

ADAM

* Understanding the update rule a bit further. Consider limits of

m;

\/O't2+ﬁ1%_|_€.

Abr1 = —n;

o; =5 — (M)’ yariance

Case 1: atz < mt2 Case 2: atz > mt2
i
Al = — 1, Al = — ”t;
5
Cutting off large persistent Learning rate adapted to
gradients at 1 (limiting step size) signal-to-noise (natural unit)

— prevents oscillations and
divergences

Practical Tips

e There is no absolute superior optimizer; one should experiment
which optimizer and which hyperparameters are suitable for the

problem at hand.

e Standard tools: mini-batches, momentum, randomize your batches,
transform input to get uniform loss landscape

* Use your physical understanding to find a good method. Analyze the
performance difference, find out why something is not working, adapt
your method (examples: variants of gradient descent)...

Autodifferentiation

e Key to any of these optimizers is differentiation (of complicated non-
linear function of many parameters) . How to do this efficiently?

e Symbolic differentiation:

 Compute the derivatives analytically and write a program based on
the resulting formula.

Inefficient and insufficiently general, e.g. consider f(x,) = Hx,. or det(M)

(think NN), involves a lot of symbols and not generalizable.

flz+e€) — f(z)

* Finite difference: f/(z)=

* Rounding error. Consider f(x) = 10'° + x2. If e = 1073, need to keep 16
digits precision.

Autodifferentiation

* Autodifferentiation (aka automatic differentiation, or algorithmic
differentiation (see e.g., Griewank & Walter, Evaluating Derivative,
https://epubs.siam.org/doi/book/10.1137/1.9780898717761):

e Used in NN libraries e.g. PyTorch and Tensorflow

o Decompose the function f : X — Y into a number of very
elementary steps (building blocks).

e Each of these building blocks can be differentiated analytically and
the result evaluated numerically. Then use chain rule to evaluate
the full derivative, without any approximations that blow up error.

 The decomposition of a function into elementary pieces is known
as the computational graph.

https://epubs.siam.org/doi/book/10.1137/1.9780898717761

Energy-Conserving Optimizer

Improving Energy Conserving Descent for Machine Learning: Theory and
Practice

G. Bruno De Luca, Alice Gatti, Eva Silverstein (Jun 1, 2023)
e-Print: 2306.00352 [cs.LG]

pdf [= cite [@ reference search 5) 2 citations

Microcanonical Hamiltonian Monte Carlo

Jakob Robnik, G. Bruno De Luca, Eva Silverstein, Uros Seljak (Dec 16, 2022)
e-Print: 2212.08549 [stat.CO]

pdf [= cite @ reference search) 5 citations

Born-Infeld (BIl) for Al: Energy-Conserving Descent (ECD) for Optimization

G. Bruno De Luca (Stanford U., ITP), Eva Silverstein (Stanford U., ITP) (Jan 26, 2022)
Published in: PMLR 162 (2022) 4918 - e-Print: 2201.11137 [cs.LG]

pdf [= cite [reference search 5) 5 citations

Summary

What is Gradient Descent?

Comparing gradient descent vs Newton’s method
Limitations of Gradient Descent

Stochastic Gradient Descent

How can it be modified? E.g. adding momentum
Second order methods (RMSProp and ADAM)

Autodifferentiation

