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• Gradient Descent

• Gradient descent vs Newton’s method 

• Limitations of Gradient Descent 

• Stochastic Gradient Descent 

• Adding momentum

• Using the second moment (RMS-Prop, ADAM)

• Autodifferentiation 

References: 1803.08823 (see also Goodfellow et al, Ch. 8)

Outline for today



• ML problems are mostly about minimizing a cost function. This 
can be a hard problem because:

• The function depends on many parameters, say  and 
hence the minimization is over a huge parameter space.

• It becomes numerically expensive to evaluate the cost function, 
its gradient and higher derivatives. 

• Non-convex loss function → multiple minima  

• Common method: gradient descent & variations.

𝒪(106)

Optimizers



Gradient Descent

• The “energy” we want to minimize is 
the cost function (loss function): 

can often be written as a sum over 
data points, e.g., mean-square error 
or cross-entropy (classification).

• Idea: adjust parameters in the 
direction where the gradient of  
is large and negative. Gradually 
shifting towards a local minimum.  

E(θ)
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Fig. 7. Gradient descent exhibits three qualitatively different regimes as a function of the learning rate. Result of gradient descent on surface
z = x2 + y2 � 1 for learning rate of ⌘ = 0.1, 0.5, 1.01. Notice that the trajectory converges to the global minima in multiple steps for small learning
rates (⌘ = 0.1). Increasing the learning rate further (⌘ = 0.5) causes the trajectory to oscillate around the global minima before converging. For
even larger learning rates (⌘ = 1.01) the trajectory diverges from the minima. See corresponding notebook for details.

parameters we wish to fit is often enormous (millions of parameters and examples). The goal of this chapter is to explain
how gradient descent methods can be used to train machine learning algorithms even in these difficult settings.

This chapter seeks to both introduce commonly used methods and give intuition for why they work. We also include
some practical tips for improving the performance of stochastic gradient descent (Bottou, 2012; LeCun et al., 1998b). To
help the reader gain more intuition about gradient descent and its variants, we have developed a Jupyter notebook that
allows the reader to visualize how these algorithms perform on two dimensional surfaces. The reader is encouraged
to experiment with the accompanying notebook whenever a new method is introduced (especially to explore how
changing hyper-parameters can affect performance). The reader may also wish to consult useful reviews that cover these
topics (Ruder, 2016) and this blog http://ruder.io/optimizing-gradient-descent/.

4.1. Gradient descent and Newton’s method

We begin by introducing a simple first-order gradient descent method and comparing and contrasting it with another
algorithm, Newton’s method. Newton’s method is intimately related to many algorithms (conjugate gradient, quasi-
Newton methods) commonly used in physics for optimization problems. Denote the function we wish to minimize by
E(✓).

In the context of machine learning, E(✓) is just the cost function E(✓) = C(X, g(✓)). As we shall see for linear and logistic
regression in Sections 6, 7, this energy function can almost always be written as a sum over n data points,

E(✓) =

nX

i=1

ei(xi, ✓). (10)

For example, for linear regression ei is just the mean square-error for data point i; for logistic regression, it is the
cross-entropy. To make analogy with physical systems, we will often refer to this function as the ‘‘energy’’.

In the simplest gradient descent (GD) algorithm, we update the parameters as follows. Initialize the parameters to
some value ✓0 and iteratively update the parameters according to the equation

vt = ⌘tr✓E(✓t ),
✓t+1 = ✓t � vt (11)

where r✓E(✓) is the gradient of E(✓) w.r.t. ✓ and we have introduced a learning rate, ⌘t , that controls how big a step we
should take in the direction of the gradient at time step t . It is clear that for sufficiently small choice of the learning rate ⌘t
this methods will converge to a local minimum (in all directions) of the cost function. However, choosing a small ⌘t comes
at a huge computational cost. The smaller ⌘t , the more steps we have to take to reach the local minimum. In contrast, if
⌘t is too large, we can overshoot the minimum and the algorithm becomes unstable (it either oscillates or even moves
away from the minimum). This is shown in Fig. 7. In practice, one usually specifies a ‘‘schedule’’ that decreases ⌘t at long
times. Common schedules include power law and exponential decay in time.

To better understand this behavior and highlight some of the shortcomings of GD, it is useful to contrast GD with
Newton’s method which is the inspiration for many widely employed optimization methods. In Newton’s method, we
choose the step v for the parameters in such a way as to minimize a second-order Taylor expansion to the energy function

E(✓ + v) ⇡ E(✓) + r✓E(✓)v +
1
2
vTH(✓)v,

where H(✓) is the Hessian matrix of second derivatives. Differentiating this equation respect to v and noting that for the
optimal value vopt we expect r✓E(✓ + vopt) = 0, yields the following equation

0 = r✓E(✓) + H(✓)vopt. (12)
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Newton’s Method

• Inspiration for many widely used optimization methods.

• Choose the step  for the parameter  to minimize a 2nd order 
Taylor expansion: 

where  is the Hessian. Differentiate w.r.t. , noting that for 
the optimal value , :

v θ

H(θ) v
vopt ∇vE(θ + v) |v=vopt

= 0
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Fig. 8. Effect of learning rate on convergence. For a one dimensional quadratic potential, one can show that there exists four different qualitative
behaviors for gradient descent (GD) as a function of the learning rate ⌘ depending on the relationship between ⌘ and ⌘opt = [@2

✓ E(✓ )]
�1. (a) For

⌘ < ⌘opt, GD converges to the minimum. (b) For ⌘ = ⌘opt, GD converges in a single step. (c) For ⌘opt < ⌘ < 2⌘opt, GD oscillates around the minima
and eventually converges. (d) For ⌘ > 2⌘opt, GD moves away from the minima.
Source: This figure is adapted from (LeCun et al., 1998b).

Rearranging this expression results in the desired update rules for Newton’s method

vt = H�1(✓t )r✓E(✓t ) (13)
✓t+1 = ✓t � vt . (14)

Since we have no guarantee that the Hessian is well conditioned, in almost all applications of Newton’s method, one
replaces the inverse of the Hessian H�1(✓t ) by some suitably regularized pseudo-inverse such as [H(✓t ) + ✏I]�1 with ✏ a
small parameter (Battiti, 1992).

For the purposes of machine learning, Newton’s method is not practical for two interrelated reasons. First, calculating
a Hessian is an extremely expensive numerical computation. Second, even if we employ first-order approximation
methods to approximate the Hessian (commonly called quasi-Newton methods), we must store and invert a matrix
with n2 entries, where n is the number of parameters. For models with millions of parameters such as those commonly
employed in the neural network literature, this is close to impossible with present-day computational power. Despite
these practical shortcomings, Newton’s method gives many important intuitions about how to modify GD algorithms to
improve their performance. Notice that, unlike in GD where the learning rate is the same for all parameters, Newton’s
method automatically ‘‘adapts’’ the learning rate of different parameters depending on the Hessian matrix. Since the
Hessian encodes the curvature of the surface we are trying to find the minimum of – more specifically, the singular
values of the Hessian are inversely proportional to the squares of the local curvatures of the surface – Newton’s method
automatically adjusts the step size so that one takes larger steps in flat directions with small curvature and smaller steps
in steep directions with large curvature.

Our derivation of Newton’s method also allows us to develop intuition about the role of the learning rate in GD. Let
us first consider the special case of using GD to find the minimum of a quadratic energy function of a single parameter
✓ (LeCun et al., 1998b). Given the current value of our parameter ✓ , we can ask what is the optimal choice of the learning
rate ⌘opt, where ⌘opt is defined as the value of ⌘ that allows us to reach the minimum of the quadratic energy function
in a single step (see Fig. 8). To find ⌘opt, we expand the energy function to second order around the current value

E(✓ + v) = E(✓c) + @✓E(✓ )v +
1
2
@2
✓ E(✓ )v

2. (15)

Differentiating with respect to v and setting ✓min = ✓ � v yields

✓min = ✓ � [@2
✓ E(✓ )]

�1@✓E(✓ ). (16)

Comparing with (11) gives,

⌘opt = [@2
✓ E(✓ )]

�1. (17)
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methods to approximate the Hessian (commonly called quasi-Newton methods), we must store and invert a matrix
with n2 entries, where n is the number of parameters. For models with millions of parameters such as those commonly
employed in the neural network literature, this is close to impossible with present-day computational power. Despite
these practical shortcomings, Newton’s method gives many important intuitions about how to modify GD algorithms to
improve their performance. Notice that, unlike in GD where the learning rate is the same for all parameters, Newton’s
method automatically ‘‘adapts’’ the learning rate of different parameters depending on the Hessian matrix. Since the
Hessian encodes the curvature of the surface we are trying to find the minimum of – more specifically, the singular
values of the Hessian are inversely proportional to the squares of the local curvatures of the surface – Newton’s method
automatically adjusts the step size so that one takes larger steps in flat directions with small curvature and smaller steps
in steep directions with large curvature.

Our derivation of Newton’s method also allows us to develop intuition about the role of the learning rate in GD. Let
us first consider the special case of using GD to find the minimum of a quadratic energy function of a single parameter
✓ (LeCun et al., 1998b). Given the current value of our parameter ✓ , we can ask what is the optimal choice of the learning
rate ⌘opt, where ⌘opt is defined as the value of ⌘ that allows us to reach the minimum of the quadratic energy function
in a single step (see Fig. 8). To find ⌘opt, we expand the energy function to second order around the current value
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• Newton’s method requires knowledge of 2nd derivatives (n2 
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• Calculating inverse of the Hessian is expensive especially for 
millions of parameters (common in neural network applications).

⇒ Newton’s method unfeasible for typical ML systems.

• However, useful to get intuition how to choose the learning rate:

• Newton’s method automatically adjusts the learning rate: takes 
larger steps in flat directions and smaller steps in steep directions.
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Fig. 8. Effect of learning rate on convergence. For a one dimensional quadratic potential, one can show that there exists four different qualitative
behaviors for gradient descent (GD) as a function of the learning rate ⌘ depending on the relationship between ⌘ and ⌘opt = [@2

✓ E(✓ )]
�1. (a) For

⌘ < ⌘opt, GD converges to the minimum. (b) For ⌘ = ⌘opt, GD converges in a single step. (c) For ⌘opt < ⌘ < 2⌘opt, GD oscillates around the minima
and eventually converges. (d) For ⌘ > 2⌘opt, GD moves away from the minima.
Source: This figure is adapted from (LeCun et al., 1998b).
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Convergence in Higher Dimensions

• Natural generalization of   is the Hessian.

• Perform a singular value decomposition of the Hessian matrix:

where U and V are orthogonal matrices and D is diagonal with 
eigenvalues .

• Convergence of gradient descent requires:

• If , convergence is slow in the  direction. 
Convergence time scale scales with .

∂2
θE(θ)

{λmin, …, λmax}

λmin ≪ λmax λmin
κ = λmax /λmin
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This means that for any t � 0 and solution ŵRidge in Eq. (44), there exists a value � � 0 such that ŵRidge solves Eq. (43),
and vice versa.4 With this equivalence, it is obvious that by adding a regularization term �||w||22, to our least squares loss
function, we are effectively constraining the magnitude of the parameter vector learned from the data.

To see this, let us solve Eq. (43) explicitly. Differentiating w.r.t. w, we obtain,

ŵRidge(�) = (XTX + �Ip⇥p)�1XTy. (45)

In fact, when X is orthogonal, one can simplify this expression further:

ŵRidge(�) =
ŵLS

1 + �
, for orthogonal X, (46)

where ŵLS is the least squares solution given by Eq. (39). This implies that the ridge estimate is merely the least squares
estimate scaled by a factor (1 + �)�1.

Can we derive a similar relation between the fitted vector ŷ = XŵRidge and the prediction made by least squares linear
regression? To answer this, let us do a singular value decomposition (SVD) on X . Recall that the SVD of an n ⇥ p matrix
X has the form

X = UDV T, (47)

where U 2 Rn⇥p and V 2 Rp⇥p are orthogonal matrices such that the columns of U span the column space of X
while the columns of V span the row space of X . D 2 Rp⇥p =diag(d1, d2, . . . , dp) is a diagonal matrix with entries
d1 � d2 � · · · dp � 0 called the singular values of X . Note that X is singular if there is at least one dj = 0. By writing X
in terms of its SVD, one can recast the Ridge estimator Eq. (45) as

ŵRidge = V (D2
+ �I)�1DU Ty, (48)

which implies that the Ridge predictor satisfies

ŷRidge = XŵRidge

= UD(D2
+ �I)�1DU Ty

=

pX

j=1

U :,j
d2j

d2j + �
U T

:jy (49)

 UU Ty (50)
= Xŷ ⌘ ŷLS, (51)

where U :,j are the columns of U . Note that in the inequality step we assumed � � 0 and used SVD to simplify Eq. (39).
By comparing Eq. (49) with Eq. (51), it is clear that in order to compute the fitted vector ŷ, both Ridge and least squares
linear regression have to project y to the column space of X . The only difference is that Ridge regression further shrinks
each basis component j by a factor d2j /(d

2
j + �). We encourage the reader to do the exercises in Notebook 3 to develop

further intuition about how Ridge regression works.

6.3. LASSO And sparse regression

In this section, we study the effects of adding an L1 regularization penalty, conventionally called LASSO, which stands
for ‘‘least absolute shrinkage and selection operator’’. Concretely, LASSO in the penalized form is defined by the following
regularized regression problem:

ŵLASSO(�) = argmin
w2Rp

||Xw � y||
2
2+�||w||1. (52)

As in Ridge regression, there is another formulation for LASSO based on constrained optimization, namely,

ŵLASSO(t) = argmin
w2Rp: ||w||1t

||Xw � y||
2
2. (53)

The equivalence interpretation is the same as in Ridge regression, namely, for any t � 0 and solution ŵLASSO in Eq. (53),
there is a value � � 0 such that ŵLASSO solves Eq. (52), and vice versa. However, to get the analytic solution of LASSO, we
cannot simply take the gradient of Eq. (52) with respect to w, since the L1-regularizer is not everywhere differentiable, in
particular at any point where wj = 0 (see Fig. 13). Nonetheless, LASSO is a convex problem. Therefore, we can invoke the

4 Note that the equivalence between the penalized and the constrained (regularized) form of least square optimization does not always hold. It
holds for Ridge and LASSO (introduced later), but not for best subset selection which is defined by choosing a L0 norm: �||w||0. In this case, for
every � > 0 and any ŵBS that solves the penalized form of best subset selection, there is a value t � 0 such that ŵBS also solves that constrained
form of best subset selection, but the converse is not true.
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One can show that there are four qualitatively different regimes possible (see Fig. 8) (LeCun et al., 1998b). If ⌘ < ⌘opt,
then GD will take multiple small steps to reach the bottom of the potential. For ⌘ = ⌘opt, GD reaches the bottom of the
potential in a single step. If ⌘opt < ⌘ < 2⌘opt, then the GD algorithm will oscillate across both sides of the potential before
eventually converging to the minimum. However, when ⌘ > 2⌘opt, the algorithm actually diverges!

It is straightforward to generalize this to the multidimensional case. The natural multidimensional generalization of
the second derivative is the Hessian H(✓ ). We can always perform a singular value decomposition (i.e. a rotation by an
orthogonal matrix for quadratic minima where the Hessian is symmetric, see Section 6.2 for a brief introduction to SVD)
and consider the singular values {�} of the Hessian. If we use a single learning rate for all parameters, in analogy with
(17), convergence requires that

⌘ <
2

�max
, (18)

where �max is the largest singular value of the Hessian. If the minimum eigenvalue �min differs significantly from the largest
value �max, then convergence in the �min-direction will be extremely slow! One can actually show that the convergence
time scales with the condition number  = �max/�min (LeCun et al., 1998b).

4.2. Limitations of the simplest gradient descent algorithm

The last section hints at some of the major shortcomings of the simple GD algorithm described in (11). Before
proceeding, we briefly summarize these limitations and discuss general strategies for modifying GD to overcome these
deficiencies.

• GD finds local minima of the cost function. Since the GD algorithm is deterministic, if it converges, it will converge to
a local minimum of our energy function. Because in ML we are often dealing with extremely rugged landscapes with
many local minima, this can lead to poor performance. A similar problem is encountered in physics. To overcome this,
physicists often use methods like simulated annealing that introduce a fictitious ‘‘temperature’’ which is eventually
taken to zero. The ‘‘temperature’’ term introduces stochasticity in the form of thermal fluctuations that allow the
algorithm to thermally tunnel over energy barriers. This suggests that, in the context of ML, we should modify GD
to include stochasticity.

• Gradients are computationally expensive to calculate for large datasets. In many cases in statistics and ML, the energy
function is a sum of terms, with one term for each data point. For example, in linear regression, E /

Pn
i=1(yi�wT ·xi)2;

for logistic regression, the square error is replaced by the cross entropy, see Sections 6, 7. Thus, to calculate the
gradient we have to sum over all n data points. Doing this at every GD step becomes extremely computationally
expensive. An ingenious solution to this, discussed below, is to calculate the gradients using small subsets of the
data called ‘‘mini batches’’. This has the added benefit of introducing stochasticity into our algorithm.

• GD is very sensitive to choices of the learning rates. As discussed above, GD is extremely sensitive to the choice of
learning rates. If the learning rate is very small, the training process takes an extremely long time. For larger learning
rates, GD can diverge and give poor results. Furthermore, depending on what the local landscape looks like, we have
to modify the learning rates to ensure convergence. Ideally, we would ‘‘adaptively’’ choose the learning rates to
match the landscape.

• GD treats all directions in parameter space uniformly. Another major drawback of GD is that unlike Newton’s method,
the learning rate for GD is the same in all directions in parameter space. For this reason, the maximum learning rate
is set by the behavior of the steepest direction and this can significantly slow down training. Ideally, we would like
to take large steps in flat directions and small steps in steep directions. Since we are exploring rugged landscapes
where curvatures change, this requires us to keep track of not only the gradient but second derivatives of the energy
function (note as discussed above, the ideal scenario would be to calculate the Hessian but this proves to be too
computationally expensive).

• GD is sensitive to initial conditions. One consequence of the local nature of GD is that initial conditions matter.
Depending on where one starts, one will end up at a different local minimum. Therefore, it is very important to
think about how one initializes the training process. This is true for GD as well as more complicated variants of GD
introduced below.

• GD can take exponential time to escape saddle points, even with random initialization. As we mentioned, GD is extremely
sensitive to the initial condition since it determines the particular local minimum GD would eventually reach.
However, even with a good initialization scheme, through randomness (to be introduced later), GD can still take
exponential time to escape saddle points, which are prevalent in high-dimensional spaces, even for non-pathological
objective functions (Du et al., 2017). Indeed, there are modified GD methods developed recently to accelerate the
escape. The details of these boosted method are beyond the scope of this review, and we refer avid readers to (Jin
et al., 2017) for details.

In the next few subsections, we will introduce variants of GD that address many of these shortcomings. These
generalized gradient descent methods form the backbone of much of modern deep learning and neural networks, see
Section 9. For this reason, the reader is encouraged to really experiment with different methods in landscapes of varying
complexity using the accompanying notebook.



Gradient Descent — Limitations

• Finds local minima: simulated 
annealing introduces a 
“temperature” (stochasticity) to 
tunnel over energy barriers. 

• Sensitive to initial conditions 
(which local minimum depends on 
starting point)

→ important to consider sensible 
initialization of training process.

• Gradients computationally 
expensive for large datasets

→ calculate gradient using small 
subset of data:                          
“mini-batches” (gives stochasticity)

Stochastic Gradient Descent (SGD) 



Gradient Descent — Limitations

• Sensitive to choice of learning rates (too small would take a long 
time to train, too large would diverge from minima).

→ Furthermore need to adaptively choose learning rate.

• Treats all directions uniformly 

→ ideally large steps in flat directions, small steps in steep directions

→ second derivatives needed to account for “curvature effects”.

• Takes exponential amount of time to escape a saddle point.

You are encouraged to experiment with gradient descent and its 
variants using the Juypter notebook on:

https://physics.bu.edu/%7Epankajm/MLnotebooks.html



SGD with Mini-batches

• Stochasticity by approximating gradient on subset of data, so-called 
mini-batches, denoted as Bk (size varies ~10-100):

• Speed up gradient computation:

• Perform gradient descent:

• Cycle through mini-batches. One entire cycle is known as an epoch.

• Bonus: works effectively as a natural regularizer that prevents overfitting 
in deep, isolated minima (Bishop 1995).

D → B1, B2, …, Bn
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4.3. Stochastic Gradient Descent (SGD) with mini-batches

One of the most widely-applied variants of the gradient descent algorithm is stochastic gradient descent (SGD) (Bottou,
2012; Williams and Hinton, 1986). As the name suggests, unlike ordinary GD, the algorithm is stochastic. Stochasticity is
incorporated by approximating the gradient on a subset of the data called a minibatch.2 The size of the minibatches is
almost always much smaller than the total number of data points n, with typical minibatch sizes ranging from ten to a
few hundred data points. If there are n points in total, and the mini-batch size is M , there will be n/M minibatches. Let
us denote these minibatches by Bk where k = 1, . . . , n/M . Thus, in SGD, at each gradient descent step we approximate
the gradient using a single minibatch Bk,

r✓E(✓) =

nX

i=1

r✓ei(xi, ✓) �!

X

i2Bk

r✓ei(xi, ✓). (19)

We then cycle over all k = 1, . . . , n/M minibatches one at a time, and use the mini-batch approximation to the gradient to
update the parameters ✓ at every step k. A full iteration over all n data points – in other words using all n/M minibatches
– is called an epoch. For notational convenience, we will denote the mini-batch approximation to the gradient by

r✓EMB(✓) =

X

i2Bk

r✓ei(xi, ✓). (20)

With this notation, we can rewrite the SGD algorithm as

vt = ⌘tr✓EMB(✓),
✓t+1 = ✓t � vt . (21)

Thus, in SGD, we replace the actual gradient over the full data at each gradient descent step by an approximation to
the gradient computed using a minibatch. This has two important benefits. First, it introduces stochasticity and decreases
the chance that our fitting algorithm gets stuck in isolated local minima. Second, it significantly speeds up the calculation
as one does not have to use all n data points to approximate the gradient. Empirical and theoretical work suggests that
SGD has additional benefits. Chief among these is that introducing stochasticity is thought to act as a natural regularizer
that prevents overfitting in deep, isolated minima (Bishop, 1995b; Keskar et al., 2016).

4.4. Adding momentum

In practice, SGD is almost always used with a ‘‘momentum’’ or inertia term that serves as a memory of the direction
we are moving in parameter space. This is typically implemented as follows

vt = � vt�1 + ⌘tr✓E(✓t )
✓t+1 = ✓t � vt , (22)

where we have introduced a momentum parameter � , with 0  �  1, and for brevity we dropped the explicit notation
to indicate the gradient is to be taken over a different mini-batch at each step. We call this algorithm gradient descent
with momentum (GDM). From these equations, it is clear that vt is a running average of recently encountered gradients
and (1 � � )�1 sets the characteristic time scale for the memory used in the averaging procedure. Consistent with this,
when � = 0, this just reduces down to ordinary SGD as described in Eq. (21). An equivalent way of writing the updates
is

�✓t+1 = ��✓t � ⌘tr✓E(✓t ), (23)

where we have defined �✓t = ✓t � ✓t�1. In what should be a familiar scenario to many physicists, momentum based
methods were first introduced in old, largely forgotten (until recently) Soviet papers (Nesterov, 1983; Polyak, 1964).

Before proceeding further, let us try to get more intuition from these equations. It is helpful to consider a simple
physical analogy with a particle of mass m moving in a viscous medium with viscous damping coefficient µ and potential
E(w) (Qian, 1999). If we denote the particle’s position by w, then its motion is described by

m
d2w
dt2

+ µ
dw
dt

= �rwE(w). (24)

We can discretize this equation in the usual way to get

m
wt+�t � 2wt + wt��t

(�t)2
+ µ

wt+�t � wt

�t
= �rwE(w). (25)

2 Traditionally, SGD was reserved for the case where you train on a single example — in other words minibatches of size 1. However, we will
use SGD to mean any approximation to the gradient on a subset of the data.
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4.3. Stochastic Gradient Descent (SGD) with mini-batches

One of the most widely-applied variants of the gradient descent algorithm is stochastic gradient descent (SGD) (Bottou,
2012; Williams and Hinton, 1986). As the name suggests, unlike ordinary GD, the algorithm is stochastic. Stochasticity is
incorporated by approximating the gradient on a subset of the data called a minibatch.2 The size of the minibatches is
almost always much smaller than the total number of data points n, with typical minibatch sizes ranging from ten to a
few hundred data points. If there are n points in total, and the mini-batch size is M , there will be n/M minibatches. Let
us denote these minibatches by Bk where k = 1, . . . , n/M . Thus, in SGD, at each gradient descent step we approximate
the gradient using a single minibatch Bk,

r✓E(✓) =

nX

i=1

r✓ei(xi, ✓) �!

X

i2Bk

r✓ei(xi, ✓). (19)

We then cycle over all k = 1, . . . , n/M minibatches one at a time, and use the mini-batch approximation to the gradient to
update the parameters ✓ at every step k. A full iteration over all n data points – in other words using all n/M minibatches
– is called an epoch. For notational convenience, we will denote the mini-batch approximation to the gradient by

r✓EMB(✓) =

X

i2Bk

r✓ei(xi, ✓). (20)

With this notation, we can rewrite the SGD algorithm as

vt = ⌘tr✓EMB(✓),
✓t+1 = ✓t � vt . (21)

Thus, in SGD, we replace the actual gradient over the full data at each gradient descent step by an approximation to
the gradient computed using a minibatch. This has two important benefits. First, it introduces stochasticity and decreases
the chance that our fitting algorithm gets stuck in isolated local minima. Second, it significantly speeds up the calculation
as one does not have to use all n data points to approximate the gradient. Empirical and theoretical work suggests that
SGD has additional benefits. Chief among these is that introducing stochasticity is thought to act as a natural regularizer
that prevents overfitting in deep, isolated minima (Bishop, 1995b; Keskar et al., 2016).

4.4. Adding momentum

In practice, SGD is almost always used with a ‘‘momentum’’ or inertia term that serves as a memory of the direction
we are moving in parameter space. This is typically implemented as follows

vt = � vt�1 + ⌘tr✓E(✓t )
✓t+1 = ✓t � vt , (22)

where we have introduced a momentum parameter � , with 0  �  1, and for brevity we dropped the explicit notation
to indicate the gradient is to be taken over a different mini-batch at each step. We call this algorithm gradient descent
with momentum (GDM). From these equations, it is clear that vt is a running average of recently encountered gradients
and (1 � � )�1 sets the characteristic time scale for the memory used in the averaging procedure. Consistent with this,
when � = 0, this just reduces down to ordinary SGD as described in Eq. (21). An equivalent way of writing the updates
is

�✓t+1 = ��✓t � ⌘tr✓E(✓t ), (23)

where we have defined �✓t = ✓t � ✓t�1. In what should be a familiar scenario to many physicists, momentum based
methods were first introduced in old, largely forgotten (until recently) Soviet papers (Nesterov, 1983; Polyak, 1964).

Before proceeding further, let us try to get more intuition from these equations. It is helpful to consider a simple
physical analogy with a particle of mass m moving in a viscous medium with viscous damping coefficient µ and potential
E(w) (Qian, 1999). If we denote the particle’s position by w, then its motion is described by

m
d2w
dt2

+ µ
dw
dt

= �rwE(w). (24)

We can discretize this equation in the usual way to get

m
wt+�t � 2wt + wt��t

(�t)2
+ µ

wt+�t � wt

�t
= �rwE(w). (25)

2 Traditionally, SGD was reserved for the case where you train on a single example — in other words minibatches of size 1. However, we will
use SGD to mean any approximation to the gradient on a subset of the data.
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Rearranging this equation, we can rewrite this as

�wt+�t = �
(�t)2

m + µ�t
rwE(w) +

m
m + µ�t

�wt . (26)

Notice that this equation is identical to Eq. (23) if we identify the position of the particle, w, with the parameters ✓. This
allows us to identify the momentum parameter and learning rate with the mass of the particle and the viscous damping
as:

� =
m

m + µ�t
, ⌘ =

(�t)2

m + µ�t
. (27)

Thus, as the name suggests, the momentum parameter is proportional to the mass of the particle and effectively provides
inertia. Furthermore, in the large viscosity/small learning rate limit, our memory time scales as (1 � � )�1 ⇡ m/(µ�t).

Why is momentum useful? SGD momentum helps the gradient descent algorithm gain speed in directions with
persistent but small gradients even in the presence of stochasticity, while suppressing oscillations in high-curvature
directions. This becomes especially important in situations where the landscape is shallow and flat in some directions
and narrow and steep in others. It has been argued that first-order methods (with appropriate initial conditions) can
perform comparable to more expensive second order methods, especially in the context of complex deep learning
models (Sutskever et al., 2013). Empirical studies suggest that the benefits of including momentum are especially
pronounced in complex models in the initial ‘‘transient phase’’ of training, rather than during a subsequent fine-tuning
of a coarse minimum. The reason for this is that, in this transient phase, correlations in the gradient persist across many
gradient descent steps, accentuating the role of inertia and memory.

These beneficial properties of momentum can sometimes become even more pronounced by using a slight modification
of the classical momentum algorithm called Nesterov Accelerated Gradient (NAG) (Nesterov, 1983; Sutskever et al., 2013).
In the NAG algorithm, rather than calculating the gradient at the current parameters, r✓E(✓t ), one calculates the gradient
at the expected value of the parameters given our current momentum, r✓E(✓t + � vt�1). This yields the NAG update rule

vt = � vt�1 + ⌘tr✓E(✓t + � vt�1)
✓t+1 = ✓t � vt . (28)

One of the major advantages of NAG is that it allows for the use of a larger learning rate than GDM for the same choice
of � .

4.5. Methods that use the second moment of the gradient

In stochastic gradient descent, with and without momentum, we still have to specify a ‘‘schedule’’ for tuning the
learning rate ⌘t as a function of time. As discussed in the context of Newton’s method, this presents a number of
dilemmas. The learning rate is limited by the steepest direction which can change depending on the current position
in the landscape. To circumvent this problem, ideally our algorithm would keep track of curvature and take large steps in
shallow, flat directions and small steps in steep, narrow directions. Second-order methods accomplish this by calculating
or approximating the Hessian and normalizing the learning rate by the curvature. However, this is very computationally
expensive for models with extremely large number of parameters. Ideally, we would like to be able to adaptively change
the step size to match the landscape without paying the steep computational price of calculating or approximating
Hessians.

Recently, a number of methods have been introduced that accomplish this by tracking not only the gradient, but
also the second moment of the gradient. These methods include AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
RMSprop (Tieleman and Hinton, 2012), and ADAM (Kingma and Ba, 2014). Here, we discuss the last two as representatives
of this class of algorithms.

In RMSprop, in addition to keeping a running average of the first moment of the gradient, we also keep track of the
second moment denoted by st = E[g2

t ]. The update rule for RMSprop is given by

gt = r✓E(✓) (29)
st = �st�1 + (1 � �)g2

t

✓t+1 = ✓t � ⌘t
gt

p
st + ✏

,

where � controls the averaging time of the second moment and is typically taken to be about � = 0.9, ⌘t is a learning
rate typically chosen to be 10�3, and ✏ ⇠ 10�8 is a small regularization constant to prevent divergences. Multiplication
and division by vectors is understood as an element-wise operation. It is clear from this formula that the learning rate is
reduced in directions where the gradient is consistently large. This greatly speeds up the convergence by allowing us to
use a larger learning rate for flat directions.

A related algorithm is the ADAM optimizer. In ADAM, we keep a running average of both the first and second moment
of the gradient and use this information to adaptively change the learning rate for different parameters. In addition to
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pronounced in complex models in the initial ‘‘transient phase’’ of training, rather than during a subsequent fine-tuning
of a coarse minimum. The reason for this is that, in this transient phase, correlations in the gradient persist across many
gradient descent steps, accentuating the role of inertia and memory.

These beneficial properties of momentum can sometimes become even more pronounced by using a slight modification
of the classical momentum algorithm called Nesterov Accelerated Gradient (NAG) (Nesterov, 1983; Sutskever et al., 2013).
In the NAG algorithm, rather than calculating the gradient at the current parameters, r✓E(✓t ), one calculates the gradient
at the expected value of the parameters given our current momentum, r✓E(✓t + � vt�1). This yields the NAG update rule

vt = � vt�1 + ⌘tr✓E(✓t + � vt�1)
✓t+1 = ✓t � vt . (28)

One of the major advantages of NAG is that it allows for the use of a larger learning rate than GDM for the same choice
of � .

4.5. Methods that use the second moment of the gradient

In stochastic gradient descent, with and without momentum, we still have to specify a ‘‘schedule’’ for tuning the
learning rate ⌘t as a function of time. As discussed in the context of Newton’s method, this presents a number of
dilemmas. The learning rate is limited by the steepest direction which can change depending on the current position
in the landscape. To circumvent this problem, ideally our algorithm would keep track of curvature and take large steps in
shallow, flat directions and small steps in steep, narrow directions. Second-order methods accomplish this by calculating
or approximating the Hessian and normalizing the learning rate by the curvature. However, this is very computationally
expensive for models with extremely large number of parameters. Ideally, we would like to be able to adaptively change
the step size to match the landscape without paying the steep computational price of calculating or approximating
Hessians.

Recently, a number of methods have been introduced that accomplish this by tracking not only the gradient, but
also the second moment of the gradient. These methods include AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
RMSprop (Tieleman and Hinton, 2012), and ADAM (Kingma and Ba, 2014). Here, we discuss the last two as representatives
of this class of algorithms.

In RMSprop, in addition to keeping a running average of the first moment of the gradient, we also keep track of the
second moment denoted by st = E[g2

t ]. The update rule for RMSprop is given by

gt = r✓E(✓) (29)
st = �st�1 + (1 � �)g2

t

✓t+1 = ✓t � ⌘t
gt

p
st + ✏

,

where � controls the averaging time of the second moment and is typically taken to be about � = 0.9, ⌘t is a learning
rate typically chosen to be 10�3, and ✏ ⇠ 10�8 is a small regularization constant to prevent divergences. Multiplication
and division by vectors is understood as an element-wise operation. It is clear from this formula that the learning rate is
reduced in directions where the gradient is consistently large. This greatly speeds up the convergence by allowing us to
use a larger learning rate for flat directions.

A related algorithm is the ADAM optimizer. In ADAM, we keep a running average of both the first and second moment
of the gradient and use this information to adaptively change the learning rate for different parameters. In addition to



RMS-Prop

• RMS-Prop update rules:

• Learning rate is reduced in directions where the norm of the gradient 
is consistently large. 

• Speeds up convergence by allowing us to use a larger learning rate 
for flat directions. 
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Rearranging this equation, we can rewrite this as

�wt+�t = �
(�t)2

m + µ�t
rwE(w) +

m
m + µ�t

�wt . (26)

Notice that this equation is identical to Eq. (23) if we identify the position of the particle, w, with the parameters ✓. This
allows us to identify the momentum parameter and learning rate with the mass of the particle and the viscous damping
as:

� =
m

m + µ�t
, ⌘ =

(�t)2

m + µ�t
. (27)

Thus, as the name suggests, the momentum parameter is proportional to the mass of the particle and effectively provides
inertia. Furthermore, in the large viscosity/small learning rate limit, our memory time scales as (1 � � )�1 ⇡ m/(µ�t).

Why is momentum useful? SGD momentum helps the gradient descent algorithm gain speed in directions with
persistent but small gradients even in the presence of stochasticity, while suppressing oscillations in high-curvature
directions. This becomes especially important in situations where the landscape is shallow and flat in some directions
and narrow and steep in others. It has been argued that first-order methods (with appropriate initial conditions) can
perform comparable to more expensive second order methods, especially in the context of complex deep learning
models (Sutskever et al., 2013). Empirical studies suggest that the benefits of including momentum are especially
pronounced in complex models in the initial ‘‘transient phase’’ of training, rather than during a subsequent fine-tuning
of a coarse minimum. The reason for this is that, in this transient phase, correlations in the gradient persist across many
gradient descent steps, accentuating the role of inertia and memory.

These beneficial properties of momentum can sometimes become even more pronounced by using a slight modification
of the classical momentum algorithm called Nesterov Accelerated Gradient (NAG) (Nesterov, 1983; Sutskever et al., 2013).
In the NAG algorithm, rather than calculating the gradient at the current parameters, r✓E(✓t ), one calculates the gradient
at the expected value of the parameters given our current momentum, r✓E(✓t + � vt�1). This yields the NAG update rule

vt = � vt�1 + ⌘tr✓E(✓t + � vt�1)
✓t+1 = ✓t � vt . (28)

One of the major advantages of NAG is that it allows for the use of a larger learning rate than GDM for the same choice
of � .

4.5. Methods that use the second moment of the gradient

In stochastic gradient descent, with and without momentum, we still have to specify a ‘‘schedule’’ for tuning the
learning rate ⌘t as a function of time. As discussed in the context of Newton’s method, this presents a number of
dilemmas. The learning rate is limited by the steepest direction which can change depending on the current position
in the landscape. To circumvent this problem, ideally our algorithm would keep track of curvature and take large steps in
shallow, flat directions and small steps in steep, narrow directions. Second-order methods accomplish this by calculating
or approximating the Hessian and normalizing the learning rate by the curvature. However, this is very computationally
expensive for models with extremely large number of parameters. Ideally, we would like to be able to adaptively change
the step size to match the landscape without paying the steep computational price of calculating or approximating
Hessians.

Recently, a number of methods have been introduced that accomplish this by tracking not only the gradient, but
also the second moment of the gradient. These methods include AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
RMSprop (Tieleman and Hinton, 2012), and ADAM (Kingma and Ba, 2014). Here, we discuss the last two as representatives
of this class of algorithms.

In RMSprop, in addition to keeping a running average of the first moment of the gradient, we also keep track of the
second moment denoted by st = E[g2

t ]. The update rule for RMSprop is given by

gt = r✓E(✓) (29)
st = �st�1 + (1 � �)g2

t

✓t+1 = ✓t � ⌘t
gt

p
st + ✏

,

where � controls the averaging time of the second moment and is typically taken to be about � = 0.9, ⌘t is a learning
rate typically chosen to be 10�3, and ✏ ⇠ 10�8 is a small regularization constant to prevent divergences. Multiplication
and division by vectors is understood as an element-wise operation. It is clear from this formula that the learning rate is
reduced in directions where the gradient is consistently large. This greatly speeds up the convergence by allowing us to
use a larger learning rate for flat directions.

A related algorithm is the ADAM optimizer. In ADAM, we keep a running average of both the first and second moment
of the gradient and use this information to adaptively change the learning rate for different parameters. In addition to

 controls the averaging 

time of the 2nd moment

β ≈ 0.9

 regularizes divergencesϵ ≈ 10−8



ADAM

• Using a running average of both the 1st and 2nd moments:

• Memory lifetimes of the 1st and 2nd moment are typically:
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keeping a running average of the first and second moments of the gradient (i.e. mt = E[gt ] and st = E[g2
t ], respectively),

ADAM performs an additional bias correction to account for the fact that we are estimating the first two moments of the
gradient using a running average (denoted by the hats in the update rule below). The update rule for ADAM is given by
(where multiplication and division are once again understood to be element-wise operations)

gt = r✓E(✓) (30)
mt = �1mt�1 + (1 � �1)gt

st = �2st�1 + (1 � �2)g2
t

m̂t =
mt

1 � (�1)t

ŝt =
st

1 � (�2)t

✓t+1 = ✓t � ⌘t
m̂tp
ŝt + ✏

, (31)

where �1 and �2 set the memory lifetime of the first and second moment and are typically taken to be 0.9 and 0.99
respectively, and (�j)t denotes �j to the power t . The parameters ⌘ and ✏ have the same role as in RMSprop.

Like in RMSprop, the effective step size of a parameter depends on the magnitude of its gradient squared. To understand
this better, let us rewrite this expression in terms of the variance �2

t = ŝt � (m̂t )2. Consider a single parameter ✓t . The
update rule for this parameter is given by

�✓t+1 = �⌘t
m̂tp

� 2
t + m̂2

t + ✏
. (32)

We now examine different limiting cases of this expression. Assume that our gradient estimates are consistent so that
the variance is small. In this case our update rule tends to �✓t+1 ! �⌘t (here we have assumed that m̂t � ✏). This
is equivalent to cutting off large persistent gradients at 1 and limiting the maximum step size in steep directions. On
the other hand, imagine that the gradient is widely fluctuating between gradient descent steps. In this case � 2 � m̂2

t
so that our update becomes �✓t+1 ! �⌘t m̂t/�t . In other words, we adapt our learning rate so that it is proportional to
the signal-to-noise ratio (i.e. the mean in units of the standard deviation). From a physics standpoint, this is extremely
desirable: the standard deviation serves as a natural adaptive scale for deciding whether a gradient is large or small. Thus,
ADAM has the beneficial effects of (i) adapting our step size so that we cut off large gradient directions (and hence prevent
oscillations and divergences), and (ii) measuring gradients in terms of a natural length scale, the standard deviation �t .
The discussion above also explains empirical observations showing that the performance of both ADAM and RMSprop is
drastically reduced if the square root is omitted in the update rule. It is also worth noting that recent studies have shown
adaptive methods like RMSProp, ADAM, and AdaGrad to generalize worse than SGD in classification tasks, though they
achieve smaller training error. Such discussion is beyond the scope of this review so we refer readers to (Wilson et al.,
2017) for more details.

4.6. Comparison of various methods

To better understand these methods, it is helpful to visualize the performance of the five methods discussed above
— gradient descent (GD), gradient descent with momentum (GDM), NAG, ADAM, and RMSprop. To do so, we will use
Beale’s function:

f (x, y) = (1.5 � x + xy)2 (33)
+ (2.25 � x + xy2)2 + (2.625 � x + xy3)2.

This function has a global minimum at (x, y) = (3, 0.5) and an interesting structure that can be seen in Fig. 9. The figure
shows the results of using all five methods for Nsteps = 104 steps for three different initial conditions. In the figure, the
learning rate for GD, GDM, and NAG are set to ⌘ = 10�6 whereas RMSprop and ADAM have a learning rate of ⌘ = 10�3.
The learning rates for RMSprop and ADAM can be set significantly higher than the other methods due to their adaptive step
sizes. For this reason, ADAM and RMSprop tend to be much quicker at navigating the landscape than simple momentum
based methods (see Fig. 9). Notice that in some cases (e.g. initial condition of (�1, 4)), the trajectories do not find the
global minimum but instead follow the deep, narrow ravine that occurs along y = 1. This kind of landscape structure is
generic in high-dimensional spaces where saddle points proliferate. Once again, the adaptive step size and momentum
of ADAM and RMSprop allows these methods to traverse the landscape faster than the simpler first-order methods. The
reader is encouraged to consult the corresponding Jupyter notebook and experiment with changing initial conditions, the
cost function surface being minimized, and hyper-parameters to gain more intuition about all these methods.

β1 = 0.9, β2 = 0.99

mt = 𝔼[gt]



ADAM

• Understanding the update rule a bit further. Consider limits of
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keeping a running average of the first and second moments of the gradient (i.e. mt = E[gt ] and st = E[g2
t ], respectively),

ADAM performs an additional bias correction to account for the fact that we are estimating the first two moments of the
gradient using a running average (denoted by the hats in the update rule below). The update rule for ADAM is given by
(where multiplication and division are once again understood to be element-wise operations)

gt = r✓E(✓) (30)
mt = �1mt�1 + (1 � �1)gt

st = �2st�1 + (1 � �2)g2
t

m̂t =
mt

1 � (�1)t

ŝt =
st

1 � (�2)t

✓t+1 = ✓t � ⌘t
m̂tp
ŝt + ✏

, (31)

where �1 and �2 set the memory lifetime of the first and second moment and are typically taken to be 0.9 and 0.99
respectively, and (�j)t denotes �j to the power t . The parameters ⌘ and ✏ have the same role as in RMSprop.

Like in RMSprop, the effective step size of a parameter depends on the magnitude of its gradient squared. To understand
this better, let us rewrite this expression in terms of the variance �2

t = ŝt � (m̂t )2. Consider a single parameter ✓t . The
update rule for this parameter is given by

�✓t+1 = �⌘t
m̂tp

� 2
t + m̂2

t + ✏
. (32)

We now examine different limiting cases of this expression. Assume that our gradient estimates are consistent so that
the variance is small. In this case our update rule tends to �✓t+1 ! �⌘t (here we have assumed that m̂t � ✏). This
is equivalent to cutting off large persistent gradients at 1 and limiting the maximum step size in steep directions. On
the other hand, imagine that the gradient is widely fluctuating between gradient descent steps. In this case � 2 � m̂2

t
so that our update becomes �✓t+1 ! �⌘t m̂t/�t . In other words, we adapt our learning rate so that it is proportional to
the signal-to-noise ratio (i.e. the mean in units of the standard deviation). From a physics standpoint, this is extremely
desirable: the standard deviation serves as a natural adaptive scale for deciding whether a gradient is large or small. Thus,
ADAM has the beneficial effects of (i) adapting our step size so that we cut off large gradient directions (and hence prevent
oscillations and divergences), and (ii) measuring gradients in terms of a natural length scale, the standard deviation �t .
The discussion above also explains empirical observations showing that the performance of both ADAM and RMSprop is
drastically reduced if the square root is omitted in the update rule. It is also worth noting that recent studies have shown
adaptive methods like RMSProp, ADAM, and AdaGrad to generalize worse than SGD in classification tasks, though they
achieve smaller training error. Such discussion is beyond the scope of this review so we refer readers to (Wilson et al.,
2017) for more details.

4.6. Comparison of various methods

To better understand these methods, it is helpful to visualize the performance of the five methods discussed above
— gradient descent (GD), gradient descent with momentum (GDM), NAG, ADAM, and RMSprop. To do so, we will use
Beale’s function:

f (x, y) = (1.5 � x + xy)2 (33)
+ (2.25 � x + xy2)2 + (2.625 � x + xy3)2.

This function has a global minimum at (x, y) = (3, 0.5) and an interesting structure that can be seen in Fig. 9. The figure
shows the results of using all five methods for Nsteps = 104 steps for three different initial conditions. In the figure, the
learning rate for GD, GDM, and NAG are set to ⌘ = 10�6 whereas RMSprop and ADAM have a learning rate of ⌘ = 10�3.
The learning rates for RMSprop and ADAM can be set significantly higher than the other methods due to their adaptive step
sizes. For this reason, ADAM and RMSprop tend to be much quicker at navigating the landscape than simple momentum
based methods (see Fig. 9). Notice that in some cases (e.g. initial condition of (�1, 4)), the trajectories do not find the
global minimum but instead follow the deep, narrow ravine that occurs along y = 1. This kind of landscape structure is
generic in high-dimensional spaces where saddle points proliferate. Once again, the adaptive step size and momentum
of ADAM and RMSprop allows these methods to traverse the landscape faster than the simpler first-order methods. The
reader is encouraged to consult the corresponding Jupyter notebook and experiment with changing initial conditions, the
cost function surface being minimized, and hyper-parameters to gain more intuition about all these methods.
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keeping a running average of the first and second moments of the gradient (i.e. mt = E[gt ] and st = E[g2
t ], respectively),

ADAM performs an additional bias correction to account for the fact that we are estimating the first two moments of the
gradient using a running average (denoted by the hats in the update rule below). The update rule for ADAM is given by
(where multiplication and division are once again understood to be element-wise operations)

gt = r✓E(✓) (30)
mt = �1mt�1 + (1 � �1)gt

st = �2st�1 + (1 � �2)g2
t

m̂t =
mt

1 � (�1)t

ŝt =
st

1 � (�2)t

✓t+1 = ✓t � ⌘t
m̂tp
ŝt + ✏

, (31)

where �1 and �2 set the memory lifetime of the first and second moment and are typically taken to be 0.9 and 0.99
respectively, and (�j)t denotes �j to the power t . The parameters ⌘ and ✏ have the same role as in RMSprop.

Like in RMSprop, the effective step size of a parameter depends on the magnitude of its gradient squared. To understand
this better, let us rewrite this expression in terms of the variance �2

t = ŝt � (m̂t )2. Consider a single parameter ✓t . The
update rule for this parameter is given by

�✓t+1 = �⌘t
m̂tp

� 2
t + m̂2

t + ✏
. (32)

We now examine different limiting cases of this expression. Assume that our gradient estimates are consistent so that
the variance is small. In this case our update rule tends to �✓t+1 ! �⌘t (here we have assumed that m̂t � ✏). This
is equivalent to cutting off large persistent gradients at 1 and limiting the maximum step size in steep directions. On
the other hand, imagine that the gradient is widely fluctuating between gradient descent steps. In this case � 2 � m̂2

t
so that our update becomes �✓t+1 ! �⌘t m̂t/�t . In other words, we adapt our learning rate so that it is proportional to
the signal-to-noise ratio (i.e. the mean in units of the standard deviation). From a physics standpoint, this is extremely
desirable: the standard deviation serves as a natural adaptive scale for deciding whether a gradient is large or small. Thus,
ADAM has the beneficial effects of (i) adapting our step size so that we cut off large gradient directions (and hence prevent
oscillations and divergences), and (ii) measuring gradients in terms of a natural length scale, the standard deviation �t .
The discussion above also explains empirical observations showing that the performance of both ADAM and RMSprop is
drastically reduced if the square root is omitted in the update rule. It is also worth noting that recent studies have shown
adaptive methods like RMSProp, ADAM, and AdaGrad to generalize worse than SGD in classification tasks, though they
achieve smaller training error. Such discussion is beyond the scope of this review so we refer readers to (Wilson et al.,
2017) for more details.

4.6. Comparison of various methods

To better understand these methods, it is helpful to visualize the performance of the five methods discussed above
— gradient descent (GD), gradient descent with momentum (GDM), NAG, ADAM, and RMSprop. To do so, we will use
Beale’s function:

f (x, y) = (1.5 � x + xy)2 (33)
+ (2.25 � x + xy2)2 + (2.625 � x + xy3)2.

This function has a global minimum at (x, y) = (3, 0.5) and an interesting structure that can be seen in Fig. 9. The figure
shows the results of using all five methods for Nsteps = 104 steps for three different initial conditions. In the figure, the
learning rate for GD, GDM, and NAG are set to ⌘ = 10�6 whereas RMSprop and ADAM have a learning rate of ⌘ = 10�3.
The learning rates for RMSprop and ADAM can be set significantly higher than the other methods due to their adaptive step
sizes. For this reason, ADAM and RMSprop tend to be much quicker at navigating the landscape than simple momentum
based methods (see Fig. 9). Notice that in some cases (e.g. initial condition of (�1, 4)), the trajectories do not find the
global minimum but instead follow the deep, narrow ravine that occurs along y = 1. This kind of landscape structure is
generic in high-dimensional spaces where saddle points proliferate. Once again, the adaptive step size and momentum
of ADAM and RMSprop allows these methods to traverse the landscape faster than the simpler first-order methods. The
reader is encouraged to consult the corresponding Jupyter notebook and experiment with changing initial conditions, the
cost function surface being minimized, and hyper-parameters to gain more intuition about all these methods.

variance

Case 1:  σ2
t ≪ m2

t

Δθt+1 = − ηt

Case 2:  σ2
t ≫ m2

t

Cutting off large persistent 
gradients at 1 (limiting step size)
→ prevents oscillations and
divergences

Δθt+1 = − ηt
mt

σt

Learning rate adapted to 
signal-to-noise (natural unit)



Practical Tips

• There is no absolute superior optimizer; one should experiment 
which optimizer and which hyperparameters are suitable for the 
problem at hand.

• Standard tools: mini-batches, momentum, randomize your batches, 
transform input to get uniform loss landscape 

• Use your physical understanding to find a good method. Analyze the 
performance difference, find out why something is not working, adapt 
your method (examples: variants of gradient descent)... 



Autodifferentiation
• Key to any of these optimizers is differentiation (of complicated non-

linear function of many parameters) . How to do this efficiently? 

• Symbolic differentiation: 

• Compute the derivatives analytically and write a program based on 
the resulting formula.

• Inefficient and insufficiently general, e.g. consider  or  

(think NN), involves a lot of symbols and not generalizable.

•  Finite difference:

• Rounding error. Consider . If , need to keep 16 
digits precision.

f(xi) = ∏
i

xi det(M)

f(x) = 1010 + x2 ϵ = 10−3

and then write a program based on the resulting formula. This won’t work because it’s ine�cient
and insu�ciently general. To see why it’s ine�cient, consider f(xi) =

Q
i xi. The gradient of this

function is very simple conceptually, but if you write it out symbolically (without some insight), it
actually involves a ton of symbols. For an even worse example, think about what you’d do with the
determinant of a matrix!

The second naive approach is finite di↵erences like

f
0(x) =

f(x+ ✏)� f(x)

✏
(1.4.1)

In general, this is a very problematic due to finite precision and the presence of order ✏
2 terms.

For example, consider the function f(x) = 1010 + x
2, and say we want to compute its derivative

at x = 10/9 = 1.111 · · · . Whatever we choose for ✏, we will end up with horrendous rounding or
truncation errors. For instance if ✏ = 10�3 and we have 16 digits of precision, we’ll compute

(1010 + 10
2

92
+ 2⇥ 10

9
10�3 + 10

2

92
10�6)� 1010 � 10

2

92

10�3
! 2.2234 (1.4.2)

So we only end up with 5 digits of precision, and even at that level we get the wrong answer!

Algorithmic Di↵erentiation

Fortunately, there’s a third way, which is referred to as Algorithmic Di↵erentiation
1 or sometimes

Automatic Di↵erentiation... either way it’s AD. It’s what’s used by NN libraries like Pytorch and
Tensorflow, though it’s also used in a wide variety of other contexts.

The idea of algorithmic dfi↵erentiation is quite simple. Given that a computer is literally
computing some function f : X ! Y , it must be possible to decompose the function f into a
number of very elementary steps. Each of these building blocks can be di↵erentiated explicitly (ie
analytically), with the result evaluated numerically. This fact plus the chain rule means that given
any program for evaluating f , we can break it down into constituent pieces and use the chain rule
to obtain the full derivative, without any approximations that will blow up the numerical error.

Typically in general and also in codes like tensorflow, the decomposition of a function into more
or less elementary pieces is referred to as the computational graph.

Backprop

By the way, you’ve probably heard of the backpropagation algorithm. It’s really just a re-statement
of the chain rule. That is if our function is

f(gi(✓j)) (1.4.3)

then we can compute the derivative as

r✓jf =
X

i

@f

@gi
⇥ @gi

@✓j
(1.4.4)

1For an extensive discussion see the book by Griewank and Walter on ‘Evaluating Derivatives’.
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Autodifferentiation
• Autodifferentiation (aka automatic differentiation, or algorithmic 

differentiation (see e.g., Griewank & Walter, Evaluating Derivative, 
https://epubs.siam.org/doi/book/10.1137/1.9780898717761):

• Used in NN libraries e.g. PyTorch and Tensorflow

• Decompose the function  into a number of very 
elementary steps (building blocks). 

• Each of these building blocks can be differentiated analytically and 
the result evaluated numerically. Then use chain rule to evaluate 
the full derivative, without any approximations that blow up error.

• The decomposition of a function into elementary pieces is known 
as the computational graph.

f : X → Y

https://epubs.siam.org/doi/book/10.1137/1.9780898717761


Energy-Conserving Optimizer



Summary

• What is Gradient Descent? 

• Comparing gradient descent vs Newton’s method 

• Limitations of Gradient Descent 

• Stochastic Gradient Descent 

• How can it be modified? E.g. adding momentum 

• Second order methods (RMSProp and ADAM)

• Autodifferentiation


