
PHY 835: Machine Learning in Physics
Lecture 8: Shallow Neural Network

February 15, 2024

Moritz Münchmeyer

Physics 361 - Machine Learning
in Physics

Lecture 1 – Introduction

Jan. 23rd 2024

Gary Shiu

• We have discussed linear regression in Lecture 4 which describes
the input/output relationship as a line. A famous physics example
is the Hubble-Lemaitre Law:

Linear Regression

The linear relation between distance and recession velocity
of galaxies, previously known as the Hubble law,
has been renamed to the Hubble-Lemaitre Law:

https://www.iau.org/news/pressreleases/detail/iau1812/

Learning a function

• A NN is a parametrization of “big” (multivariate, non-linear) functions.

• Shallow NNs parametrize piecewise linear functions and are
already expressive enough to approximate arbitrarily complex
relationships between multi-dimensional inputs and outputs.

30 3 Shallow neural networks

Figure 3.5 Approximation of a 1D function (dashed line) by a piecewise linear
model. a–c) As the number of regions increases, the model becomes closer and
closer to the continuous function. A neural network with a scalar input creates
one extra linear region per hidden unit. The universal approximation theorem
proves that, with enough hidden units, there exists a shallow neural network that
can describe any given continuous function defined on a compact subset of RDi

to arbitrary precision.

3.3 Multivariate inputs and outputs

In the above example, the network has a single scalar input x and a single scalar output y.
However, the universal approximation theorem also holds for the more general case
where the network maps multivariate inputs x = [x1, x2, . . . , xDi]

T to multivariate output
predictions y = [y1, y2, . . . , yDo]

T . We first explore how to extend the model to predict
multivariate outputs. Then we consider multivariate inputs. Finally, in section 3.4, we
present a general definition of a shallow neural network.

3.3.1 Visualizing multivariate outputs

To extend the network to multivariate outputs y, we simply use a different linear function
of the hidden units for each output. So, a network with a scalar input x, four hidden
units h1, h2, h3, and h4, and a 2D multivariate output y = [y1, y2]T would be defined as:

h1 = a[θ10 + θ11x]

h2 = a[θ20 + θ21x]

h3 = a[θ30 + θ31x]

h4 = a[θ40 + θ41x], (3.7)

and

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Figure from Simon Prince “Understanding Deep Learning"

Shallow Neural Networks
• Shallow neural networks are functions with parameters

that map multivariate inputs to multivariate outputs .

• As a warmup, consider that maps a scalar input to a scalar
output and has ten parameters :

• is known as the activation function. It cannot be a linear
function in order for the NN to go beyond linear regression.

• Given a training dataset , we can define a least squares
loss function to measure how effectively the model describes
this dataset. To train the model, we find that minimizes .

y = f(x, ϕ) ϕ
x y

f(x, ϕ) x
y ϕ = {ϕ0, ϕ1, ϕ2, ϕ3, θ10, θ11, θ20, θ21, θ30, θ31}

a[⋅]

{xi, yi}I
i=1

L[ϕ]
̂ϕ L[ϕ]

Chapter 3

Shallow neural networks

Chapter 2 introduced supervised learning using 1D linear regression. However, this model
can only describe the input/output relationship as a line. This chapter introduces shallow
neural networks. These describe piecewise linear functions and are expressive enough
to approximate arbitrarily complex relationships between multi-dimensional inputs and
outputs.

3.1 Neural network example

Shallow neural networks are functions y = f[x,φ] with parameters φ that map multivari-
ate inputs x to multivariate outputs y. We defer a full definition until section 3.4 and
introduce the main ideas using an example network f[x,φ] that maps a scalar input x to
a scalar output y and has ten parameters φ = {φ0,φ1,φ2,φ3, θ10, θ11, θ20, θ21, θ30, θ31}:

y = f[x,φ]
= φ0 + φ1a[θ10 + θ11x] + φ2a[θ20 + θ21x] + φ3a[θ30 + θ31x]. (3.1)

We can break down this calculation into three parts: first, we compute three linear
functions of the input data (θ10 + θ11x, θ20 + θ21x, and θ30 + θ31x). Second, we pass the
three results through an activation function a[•]. Finally, we weight the three resulting
activations with φ1,φ2, and φ3, sum them, and add an offset φ0.

To complete the description, we must define the activation function a[•]. There are
many possibilities, but the most common choice is the rectified linear unit or ReLU:

a[z] = ReLU[z] =

{
0 z < 0

z z ≥ 0
. (3.2)

This returns the input when it is positive and zero otherwise (figure 3.1).
It is probably not obvious which family of input/output relations is represented by

equation 3.1. Nonetheless, the ideas from the previous chapter are all applicable. Equa-
tion 3.1 represents a family of functions where the particular member of the family

Draft: please send errata to udlbookmail@gmail.com.

Activation Function

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 51

Fig. 35. Basic architecture of neural networks. (A) The basic components of a neural network are stylized neurons consisting of a linear transformation
that weights the importance of various inputs, followed by a non-linear activation function. (b) Neurons are arranged into layers with the output
of one layer serving as the input to the next layer.

Fig. 36. Possible non-linear activation functions for neurons. In modern DNNs, it has become common to use non-linear functions that do not
saturate for large inputs (bottom row) rather than saturating functions (top row).

Historically in the neural network literature, common choices of nonlinearities included step-functions (perceptrons),
sigmoids (i.e. Fermi functions), and the hyperbolic tangent. More recently, it has become more common to use rectified
linear units (ReLUs), leaky rectified linear units (leaky ReLUs), and exponential linear units (ELUs) (see Fig. 36). Different
choices of non-linearities lead to different computational and training properties for neurons. The underlying reason for
this is that we train neural nets using gradient descent based methods, see Section 4, that require us to take derivatives
of the neural input–output function with respect to the weights w(i) and the bias b(i).

Notice that the derivatives of the aforementioned non-linearities � (z) have very different properties. The derivative
of the perceptron is zero everywhere except where the input is zero. This discontinuous behavior makes it impossible to
train perceptrons using gradient descent. For this reason, until recently the most popular choice of non-linearity was the
tanh function or a sigmoid/Fermi function. However, this choice of non-linearity has a major drawback. When the input
weights become large, as they often do in training, the activation function saturates and the derivative of the output with
respect to the weights tends to zero since @�/@z ! 0 for z � 1. Such ‘‘vanishing gradients’’ are a feature of any saturating
activation function (top row of Fig. 36), making it harder to train deep networks. In contrast, for a non-saturating activation
function such as ReLUs or ELUs, the gradients stay finite even for large inputs.

9.1.2. Layering neurons to build deep networks: network architecture
The basic idea of all neural networks is to layer neurons in a hierarchical fashion, the general structure of which is

known as the network architecture (see Fig. 35). In the simplest feed-forward networks, each neuron in the input layer
of the neurons takes the inputs x and produces an output ai(x) that depends on its current weights, see Eq. (118). The

Exponential Linear Unit

• For illustrative purpose, we consider the most common choice known
as the rectified linear unit or ReLU:

• Perceptron: derivative is either vanishing or infinite. Sigmoid & tanh:
differentiable but have vanishing derivatives away from the origin.

Chapter 3

Shallow neural networks

Chapter 2 introduced supervised learning using 1D linear regression. However, this model
can only describe the input/output relationship as a line. This chapter introduces shallow
neural networks. These describe piecewise linear functions and are expressive enough
to approximate arbitrarily complex relationships between multi-dimensional inputs and
outputs.

3.1 Neural network example

Shallow neural networks are functions y = f[x,φ] with parameters φ that map multivari-
ate inputs x to multivariate outputs y. We defer a full definition until section 3.4 and
introduce the main ideas using an example network f[x,φ] that maps a scalar input x to
a scalar output y and has ten parameters φ = {φ0,φ1,φ2,φ3, θ10, θ11, θ20, θ21, θ30, θ31}:

y = f[x,φ]
= φ0 + φ1a[θ10 + θ11x] + φ2a[θ20 + θ21x] + φ3a[θ30 + θ31x]. (3.1)

We can break down this calculation into three parts: first, we compute three linear
functions of the input data (θ10 + θ11x, θ20 + θ21x, and θ30 + θ31x). Second, we pass the
three results through an activation function a[•]. Finally, we weight the three resulting
activations with φ1,φ2, and φ3, sum them, and add an offset φ0.

To complete the description, we must define the activation function a[•]. There are
many possibilities, but the most common choice is the rectified linear unit or ReLU:

a[z] = ReLU[z] =

{
0 z < 0

z z ≥ 0
. (3.2)

This returns the input when it is positive and zero otherwise (figure 3.1).
It is probably not obvious which family of input/output relations is represented by

equation 3.1. Nonetheless, the ideas from the previous chapter are all applicable. Equa-
tion 3.1 represents a family of functions where the particular member of the family

Draft: please send errata to udlbookmail@gmail.com.

NN Intuition
• In the ten-parameter example, we model the dataset with a family of

continuous piecewise linear functions with up to 4 linear regions.

• To see why, we define the intermediate quantities as hidden units:

• The output is given by combining the hidden units w/ a linear function:

26 3 Shallow neural networks

Figure 3.1 Rectified linear unit (ReLU).
This activation function returns zero if
the input is less than zero and returns
the input unchanged otherwise. In other
words, it clips negative values to zero.
Note that there are many other possi-
ble choices for the activation function
(see figure 3.13), but the ReLU is the
most commonly used and the easiest to
understand.

Figure 3.2 Family of functions defined by equation 3.1. a–c) Functions for three
different choices of the ten parameters φ. In each case, the input/output relation
is piecewise linear. However, the positions of the joints, the slopes of the linear
regions between them, and the overall height vary.

depends on the ten parameters in φ. If we know these parameters, we can perform
inference (predict y) by evaluating the equation for a given input x. Given a training
dataset {xi, yi}Ii=1, we can define a least squares loss function L[φ] and use this to mea-
sure how effectively the model describes this dataset for any given parameter values φ.
To train the model, we search for the values φ̂ that minimize this loss.

3.1.1 Neural network intuition

In fact, equation 3.1 represents a family of continuous piecewise linear functions (fig-
ure 3.2) with up to four linear regions. We now break down equation 3.1 and show why
it describes this family. To make this easier to understand, we split the function into
two parts. First, we introduce the intermediate quantities:

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

3.1 Neural network example 27

h1 = a[θ10 + θ11x]

h2 = a[θ20 + θ21x]

h3 = a[θ30 + θ31x], (3.3)

where we refer to h1, h2, and h3 as hidden units. Second, we compute the output by
combining these hidden units with a linear function:1

y = φ0 + φ1h1 + φ2h2 + φ3h3. (3.4)

Figure 3.3 shows the flow of computation that creates the function in figure 3.2a.
Each hidden unit contains a linear function θ•0 + θ•1x of the input, and that line is
clipped by the ReLU function a[•] below zero. The positions where the three lines cross
zero become the three “joints” in the final output. The three clipped lines are then
weighted by φ1, φ2, and φ3, respectively. Finally, the offset φ0 is added, which controls
the overall height of the final function. Problems 3.1–3.8

Each linear region in figure 3.3j corresponds to a different activation pattern in the
hidden units. When a unit is clipped, we refer to it as inactive, and when it is not
clipped, we refer to it as active. For example, the shaded region receives contributions
from h1 and h3 (which are active) but not from h2 (which is inactive). The slope of
each linear region is determined by (i) the original slopes θ•1 of the active inputs for this
region and (ii) the weights φ• that were subsequently applied. For example, the slope in
the shaded region (see problem 3.3) is θ11φ1 + θ31φ3, where the first term is the slope in
panel (g) and the second term is the slope in panel (i).

Each hidden unit contributes one “joint” to the function, so with three hidden units, Notebook 3.1
Shallow networks Ithere can be four linear regions. However, only three of the slopes of these regions are

independent; the fourth is either zero (if all the hidden units are inactive in this region)
Problem 3.9or is a sum of slopes from the other regions.

3.1.2 Depicting neural networks

We have been discussing a neural network with one input, one output, and three hidden
units. We visualize this network in figure 3.4a. The input is on the left, the hidden units
are in the middle, and the output is on the right. Each connection represents one of the
ten parameters. To simplify this representation, we do not typically draw the intercept
parameters, so this network is usually depicted as in figure 3.4b.

1For the purposes of this book, a linear function has the form z′ = φ0 +
∑

i φizi. Any other type of
function is nonlinear. For instance, the ReLU function (equation 3.2) and the example neural network
that contains it (equation 3.1) are both nonlinear. See notes at end of chapter for further clarification.

Draft: please send errata to udlbookmail@gmail.com.

3.1 Neural network example 27

h1 = a[θ10 + θ11x]

h2 = a[θ20 + θ21x]

h3 = a[θ30 + θ31x], (3.3)

where we refer to h1, h2, and h3 as hidden units. Second, we compute the output by
combining these hidden units with a linear function:1

y = φ0 + φ1h1 + φ2h2 + φ3h3. (3.4)

Figure 3.3 shows the flow of computation that creates the function in figure 3.2a.
Each hidden unit contains a linear function θ•0 + θ•1x of the input, and that line is
clipped by the ReLU function a[•] below zero. The positions where the three lines cross
zero become the three “joints” in the final output. The three clipped lines are then
weighted by φ1, φ2, and φ3, respectively. Finally, the offset φ0 is added, which controls
the overall height of the final function. Problems 3.1–3.8

Each linear region in figure 3.3j corresponds to a different activation pattern in the
hidden units. When a unit is clipped, we refer to it as inactive, and when it is not
clipped, we refer to it as active. For example, the shaded region receives contributions
from h1 and h3 (which are active) but not from h2 (which is inactive). The slope of
each linear region is determined by (i) the original slopes θ•1 of the active inputs for this
region and (ii) the weights φ• that were subsequently applied. For example, the slope in
the shaded region (see problem 3.3) is θ11φ1 + θ31φ3, where the first term is the slope in
panel (g) and the second term is the slope in panel (i).

Each hidden unit contributes one “joint” to the function, so with three hidden units, Notebook 3.1
Shallow networks Ithere can be four linear regions. However, only three of the slopes of these regions are

independent; the fourth is either zero (if all the hidden units are inactive in this region)
Problem 3.9or is a sum of slopes from the other regions.

3.1.2 Depicting neural networks

We have been discussing a neural network with one input, one output, and three hidden
units. We visualize this network in figure 3.4a. The input is on the left, the hidden units
are in the middle, and the output is on the right. Each connection represents one of the
ten parameters. To simplify this representation, we do not typically draw the intercept
parameters, so this network is usually depicted as in figure 3.4b.

1For the purposes of this book, a linear function has the form z′ = φ0 +
∑

i φizi. Any other type of
function is nonlinear. For instance, the ReLU function (equation 3.2) and the example neural network
that contains it (equation 3.1) are both nonlinear. See notes at end of chapter for further clarification.

Draft: please send errata to udlbookmail@gmail.com.

Activation Pattern28 3 Shallow neural networks

Figure 3.3 Computation for function in figure 3.2a. a–c) The input x is passed
through three linear functions, each with a different y-intercept θ•0 and slope θ•1.
d–f) Each line is passed through the ReLU activation function, which clips neg-
ative values to zero. g–i) The three clipped lines are then weighted (scaled) by
φ1,φ2, and φ3, respectively. j) Finally, the clipped and weighted functions are
summed, and an offset φ0 that controls the height is added. Each of the four
linear regions corresponds to a different activation pattern in the hidden units.
In the shaded region, h2 is inactive (clipped), but h1 and h3 are both active.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

clipped by ReLU

define locations
of the 3 joints
 4 linear regions

[Only 3 of the slopes
are independent; the

4-th is either zero
or sum of slopes from

the other regions.]

⇒

in the shaded region
 are active

 is inactive.
h1, h3
h2

Depicting Neural Networks
3.2 Universal approximation theorem 29

Figure 3.4 Depicting neural networks. a) The input x is on the left, the hidden
units h1, h2, and h3 in the center, and the output y on the right. Computation
flows from left to right. The input is used to compute the hidden units, which are
combined to create the output. Each of the ten arrows represents a parameter
(intercepts in orange and slopes in black). Each parameter multiplies its source
and adds the result to its target. For example, we multiply the parameter φ1

by source h1 and add it to y. We introduce additional nodes containing ones
(orange circles) to incorporate the offsets into this scheme, so we multiply φ0 by
one (with no effect) and add it to y. ReLU functions are applied at the hidden
units. b) More typically, the intercepts, ReLU functions, and parameter names
are omitted; this simpler depiction represents the same network.

3.2 Universal approximation theorem

In the previous section, we introduced an example neural network with one input, one
output, ReLU activation functions, and three hidden units. Let’s now generalize this
slightly and consider the case with D hidden units where the dth hidden unit is:

hd = a[θd0 + θd1x], (3.5)
and these are combined linearly to create the output:

y = φ0 +
D∑

d=1

φdhd. (3.6)

The number of hidden units in a shallow network is a measure of the network capacity.
With ReLU activation functions, the output of a network with D hidden units has at Problem 3.10most D joints and so is a piecewise linear function with at most D+1 linear regions. As
we add more hidden units, the model can approximate more complex functions.

Indeed, with enough capacity (hidden units), a shallow network can describe any
continuous 1D function defined on a compact subset of the real line to arbitrary precision.
To see this, consider that every time we add a hidden unit, we add another linear region to
the function. As these regions become more numerous, they represent smaller sections
of the function, which are increasingly well approximated by a line (figure 3.5). The
universal approximation theorem proves that for any continuous function, there exists a
shallow network that can approximate this function to any specified precision.

Draft: please send errata to udlbookmail@gmail.com.

inputs hidden units outputs hidden units outputsinputs

• The intercepts (known as biases) are usually not shown in the NN
architecture, the NN is simplified to the picture on the right.

Universal Approximation Theorem

• Generalizing to hidden units:

• = network capacity; there are joints and linear regions.

• Universal approximation theorem: continuous function, a
shallow network that can approximate it to any specified precision;
holds for networks that map multivariate inputs to multivariate outputs.

D

D D D + 1
∀ ∃

3.2 Universal approximation theorem 29

Figure 3.4 Depicting neural networks. a) The input x is on the left, the hidden
units h1, h2, and h3 in the center, and the output y on the right. Computation
flows from left to right. The input is used to compute the hidden units, which are
combined to create the output. Each of the ten arrows represents a parameter
(intercepts in orange and slopes in black). Each parameter multiplies its source
and adds the result to its target. For example, we multiply the parameter φ1

by source h1 and add it to y. We introduce additional nodes containing ones
(orange circles) to incorporate the offsets into this scheme, so we multiply φ0 by
one (with no effect) and add it to y. ReLU functions are applied at the hidden
units. b) More typically, the intercepts, ReLU functions, and parameter names
are omitted; this simpler depiction represents the same network.

3.2 Universal approximation theorem

In the previous section, we introduced an example neural network with one input, one
output, ReLU activation functions, and three hidden units. Let’s now generalize this
slightly and consider the case with D hidden units where the dth hidden unit is:

hd = a[θd0 + θd1x], (3.5)
and these are combined linearly to create the output:

y = φ0 +
D∑

d=1

φdhd. (3.6)

The number of hidden units in a shallow network is a measure of the network capacity.
With ReLU activation functions, the output of a network with D hidden units has at Problem 3.10most D joints and so is a piecewise linear function with at most D+1 linear regions. As
we add more hidden units, the model can approximate more complex functions.

Indeed, with enough capacity (hidden units), a shallow network can describe any
continuous 1D function defined on a compact subset of the real line to arbitrary precision.
To see this, consider that every time we add a hidden unit, we add another linear region to
the function. As these regions become more numerous, they represent smaller sections
of the function, which are increasingly well approximated by a line (figure 3.5). The
universal approximation theorem proves that for any continuous function, there exists a
shallow network that can approximate this function to any specified precision.

Draft: please send errata to udlbookmail@gmail.com.

3.2 Universal approximation theorem 29

Figure 3.4 Depicting neural networks. a) The input x is on the left, the hidden
units h1, h2, and h3 in the center, and the output y on the right. Computation
flows from left to right. The input is used to compute the hidden units, which are
combined to create the output. Each of the ten arrows represents a parameter
(intercepts in orange and slopes in black). Each parameter multiplies its source
and adds the result to its target. For example, we multiply the parameter φ1

by source h1 and add it to y. We introduce additional nodes containing ones
(orange circles) to incorporate the offsets into this scheme, so we multiply φ0 by
one (with no effect) and add it to y. ReLU functions are applied at the hidden
units. b) More typically, the intercepts, ReLU functions, and parameter names
are omitted; this simpler depiction represents the same network.

3.2 Universal approximation theorem

In the previous section, we introduced an example neural network with one input, one
output, ReLU activation functions, and three hidden units. Let’s now generalize this
slightly and consider the case with D hidden units where the dth hidden unit is:

hd = a[θd0 + θd1x], (3.5)
and these are combined linearly to create the output:

y = φ0 +
D∑

d=1

φdhd. (3.6)

The number of hidden units in a shallow network is a measure of the network capacity.
With ReLU activation functions, the output of a network with D hidden units has at Problem 3.10most D joints and so is a piecewise linear function with at most D+1 linear regions. As
we add more hidden units, the model can approximate more complex functions.

Indeed, with enough capacity (hidden units), a shallow network can describe any
continuous 1D function defined on a compact subset of the real line to arbitrary precision.
To see this, consider that every time we add a hidden unit, we add another linear region to
the function. As these regions become more numerous, they represent smaller sections
of the function, which are increasingly well approximated by a line (figure 3.5). The
universal approximation theorem proves that for any continuous function, there exists a
shallow network that can approximate this function to any specified precision.

Draft: please send errata to udlbookmail@gmail.com.

30 3 Shallow neural networks

Figure 3.5 Approximation of a 1D function (dashed line) by a piecewise linear
model. a–c) As the number of regions increases, the model becomes closer and
closer to the continuous function. A neural network with a scalar input creates
one extra linear region per hidden unit. The universal approximation theorem
proves that, with enough hidden units, there exists a shallow neural network that
can describe any given continuous function defined on a compact subset of RDi

to arbitrary precision.

3.3 Multivariate inputs and outputs

In the above example, the network has a single scalar input x and a single scalar output y.
However, the universal approximation theorem also holds for the more general case
where the network maps multivariate inputs x = [x1, x2, . . . , xDi]

T to multivariate output
predictions y = [y1, y2, . . . , yDo]

T . We first explore how to extend the model to predict
multivariate outputs. Then we consider multivariate inputs. Finally, in section 3.4, we
present a general definition of a shallow neural network.

3.3.1 Visualizing multivariate outputs

To extend the network to multivariate outputs y, we simply use a different linear function
of the hidden units for each output. So, a network with a scalar input x, four hidden
units h1, h2, h3, and h4, and a 2D multivariate output y = [y1, y2]T would be defined as:

h1 = a[θ10 + θ11x]

h2 = a[θ20 + θ21x]

h3 = a[θ30 + θ31x]

h4 = a[θ40 + θ41x], (3.7)

and

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Multivariate Outputs
• For example, :

• The hidden units for both outputs are the same:

• The joints are the same but the slopes of the linear regions and the
vertical offsets can differ:

y = [y1, y2]T
3.3 Multivariate inputs and outputs 31

Figure 3.6 Network with one input, four hidden units, and two outputs. a)
Visualization of network structure. b) This network produces two piecewise linear
functions, y1[x] and y2[x]. The four “joints” of these functions (at vertical dotted
lines) are constrained to be in the same places since they share the same hidden
units, but the slopes and overall height may differ.

Figure 3.7 Visualization of neural net-
work with 2D multivariate input x =
[x1, x2]

T and scalar output y.

y1 = φ10 + φ11h1 + φ12h2 + φ13h3 + φ14h4

y2 = φ20 + φ21h1 + φ22h2 + φ23h3 + φ24h4. (3.8)

The two outputs are two different linear functions of the hidden units.
As we saw in figure 3.3, the “joints” in the piecewise functions depend on where the

initial linear functions θ•0 + θ•1x are clipped by the ReLU functions a[•] at the hidden
units. Since both outputs y1 and y2 are different linear functions of the same four hidden Problem 3.11units, the four “joints” in each must be in the same places. However, the slopes of the
linear regions and the overall vertical offset can differ (figure 3.6).

3.3.2 Visualizing multivariate inputs

To cope with multivariate inputs x, we extend the linear relations between the input
and the hidden units. So a network with two inputs x = [x1, x2]T and a scalar output y
(figure 3.7) might have three hidden units defined by:

Draft: please send errata to udlbookmail@gmail.com.

3.3 Multivariate inputs and outputs 31

Figure 3.6 Network with one input, four hidden units, and two outputs. a)
Visualization of network structure. b) This network produces two piecewise linear
functions, y1[x] and y2[x]. The four “joints” of these functions (at vertical dotted
lines) are constrained to be in the same places since they share the same hidden
units, but the slopes and overall height may differ.

Figure 3.7 Visualization of neural net-
work with 2D multivariate input x =
[x1, x2]

T and scalar output y.

y1 = φ10 + φ11h1 + φ12h2 + φ13h3 + φ14h4

y2 = φ20 + φ21h1 + φ22h2 + φ23h3 + φ24h4. (3.8)

The two outputs are two different linear functions of the hidden units.
As we saw in figure 3.3, the “joints” in the piecewise functions depend on where the

initial linear functions θ•0 + θ•1x are clipped by the ReLU functions a[•] at the hidden
units. Since both outputs y1 and y2 are different linear functions of the same four hidden Problem 3.11units, the four “joints” in each must be in the same places. However, the slopes of the
linear regions and the overall vertical offset can differ (figure 3.6).

3.3.2 Visualizing multivariate inputs

To cope with multivariate inputs x, we extend the linear relations between the input
and the hidden units. So a network with two inputs x = [x1, x2]T and a scalar output y
(figure 3.7) might have three hidden units defined by:

Draft: please send errata to udlbookmail@gmail.com.

30 3 Shallow neural networks

Figure 3.5 Approximation of a 1D function (dashed line) by a piecewise linear
model. a–c) As the number of regions increases, the model becomes closer and
closer to the continuous function. A neural network with a scalar input creates
one extra linear region per hidden unit. The universal approximation theorem
proves that, with enough hidden units, there exists a shallow neural network that
can describe any given continuous function defined on a compact subset of RDi

to arbitrary precision.

3.3 Multivariate inputs and outputs

In the above example, the network has a single scalar input x and a single scalar output y.
However, the universal approximation theorem also holds for the more general case
where the network maps multivariate inputs x = [x1, x2, . . . , xDi]

T to multivariate output
predictions y = [y1, y2, . . . , yDo]

T . We first explore how to extend the model to predict
multivariate outputs. Then we consider multivariate inputs. Finally, in section 3.4, we
present a general definition of a shallow neural network.

3.3.1 Visualizing multivariate outputs

To extend the network to multivariate outputs y, we simply use a different linear function
of the hidden units for each output. So, a network with a scalar input x, four hidden
units h1, h2, h3, and h4, and a 2D multivariate output y = [y1, y2]T would be defined as:

h1 = a[θ10 + θ11x]

h2 = a[θ20 + θ21x]

h3 = a[θ30 + θ31x]

h4 = a[θ40 + θ41x], (3.7)

and

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Multivariate Inputs
32 3 Shallow neural networks

Figure 3.8 Processing in network with two inputs x = [x1, x2]
T , three hidden

units h1, h2, h3, and one output y. a–c) The input to each hidden unit is a
linear function of the two inputs, which corresponds to an oriented plane. Bright-
ness indicates function output. For example, in panel (a), the brightness repre-
sents θ10 + θ11x1 + θ12x2. Thin lines are contours. d–f) Each plane is clipped by
the ReLU activation function (cyan lines are equivalent to “joints” in figures 3.3d–
f). g-i) The clipped planes are then weighted, and j) summed together with an
offset that determines the overall height of the surface. The result is a continuous
surface made up of convex piecewise linear polygonal regions.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

The hidden units depend on both inputs

3.4 Shallow neural networks: general case 33

h1 = a[θ10 + θ11x1 + θ12x2]

h2 = a[θ20 + θ21x1 + θ22x2]

h3 = a[θ30 + θ31x1 + θ32x2], (3.9)

where there is now one slope parameter for each input. The hidden units are combined
to form the output in the usual way:

y = φ0 + φ1h1 + φ2h2 + φ3h3. (3.10)

Figure 3.8 illustrates the processing of this network. Each hidden unit receives a linear Problems 3.12–3.13combination of the two inputs, which forms an oriented plane in the 3D input/output
Notebook 3.2

Shallow networks II
space. The activation function clips the negative values of these planes to zero. The
clipped planes are then recombined in a second linear function (equation 3.10) to create
a continuous piecewise linear surface consisting of convex polygonal regions (figure 3.8j).

Appendix B.1.2
Convex region

Each region corresponds to a different activation pattern. For example, in the central
triangular region, the first and third hidden units are active, and the second is inactive.

When there are more than two inputs to the model, it becomes difficult to visualize.
However, the interpretation is similar. The output will be a continuous piecewise linear
function of the input, where the linear regions are now convex polytopes in the multi-
dimensional input space.

Note that as the input dimensions grow, the number of linear regions increases rapidly
(figure 3.9). To get a feeling for how rapidly, consider that each hidden unit defines a
hyperplane that delineates the part of space where this unit is active from the part Notebook 3.3

Shallow network
regions

where it is not (cyan lines in 3.8d–f). If we had the same number of hidden units as
input dimensions Di, we could align each hyperplane with one of the coordinate axes
(figure 3.10). For two input dimensions, this would divide the space into four quadrants.
For three dimensions, this would create eight octants, and for Di dimensions, this would
create 2Di orthants. Shallow neural networks usually have more hidden units than input
dimensions, so they typically create more than 2Di linear regions.

3.4 Shallow neural networks: general case

We have described several example shallow networks to help develop intuition about how
they work. We now define a general equation for a shallow neural network y = f[x,φ]
that maps a multi-dimensional input x ∈ RDi to a multi-dimensional output y ∈ RDo

using h ∈ RD hidden units. Each hidden unit is computed as:

hd = a
[
θd0 +

Di∑

i=1

θdixi

]
, (3.11)

and these are combined linearly to create the output:

Draft: please send errata to udlbookmail@gmail.com.

They create a continuous piecewise
linear surface consisting of convex

polygonal regions, each with a
different activation patten.

Generalizable to more than 2 inputs
but difficult to visualize such cases.

More linear regions

• If # input dimensions, can align the hyperplanes with the
coordinate axes and show that there are orthants:

• Shallow neural networks usually have more hidden units than input
dimensions, so they typically create more than linear regions.

D = Di =
2Di

2Di

34 3 Shallow neural networks

Figure 3.9 Linear regions vs. hidden units. a) Maximum possible regions as a
function of the number of hidden units for five different input dimensions Di =
{1, 5, 10, 50, 100}. The number of regions increases rapidly in high dimensions;
with D = 500 units and input size Di = 100, there can be greater than 10107

regions (solid circle). b) The same data are plotted as a function of the number of
parameters. The solid circle represents the same model as in panel (a) with D =
500 hidden units. This network has 51, 001 parameters and would be considered
very small by modern standards.

Figure 3.10 Number of linear regions vs. input dimensions. a) With a single input
dimension, a model with one hidden unit creates one joint, which divides the axis
into two linear regions. b) With two input dimensions, a model with two hidden
units can divide the input space using two lines (here aligned with axes) to create
four regions. c) With three input dimensions, a model with three hidden units
can divide the input space using three planes (again aligned with axes) to create
eight regions. Continuing this argument, it follows that a model with Di input
dimensions and Di hidden units can divide the input space with Di hyperplanes
to create 2Di linear regions.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

General Case

• In general, a shallow NN is a function that maps a multi-
dimensional input to a multi-dimensional output
using hidden units:

• Graphically, a shallow NN is depicted as e.g.

y = f(x, ϕ)
x ∈ ℝDi y ∈ ℝD0

h ∈ ℝD

3.4 Shallow neural networks: general case 33

h1 = a[θ10 + θ11x1 + θ12x2]

h2 = a[θ20 + θ21x1 + θ22x2]

h3 = a[θ30 + θ31x1 + θ32x2], (3.9)

where there is now one slope parameter for each input. The hidden units are combined
to form the output in the usual way:

y = φ0 + φ1h1 + φ2h2 + φ3h3. (3.10)

Figure 3.8 illustrates the processing of this network. Each hidden unit receives a linear Problems 3.12–3.13combination of the two inputs, which forms an oriented plane in the 3D input/output
Notebook 3.2

Shallow networks II
space. The activation function clips the negative values of these planes to zero. The
clipped planes are then recombined in a second linear function (equation 3.10) to create
a continuous piecewise linear surface consisting of convex polygonal regions (figure 3.8j).

Appendix B.1.2
Convex region

Each region corresponds to a different activation pattern. For example, in the central
triangular region, the first and third hidden units are active, and the second is inactive.

When there are more than two inputs to the model, it becomes difficult to visualize.
However, the interpretation is similar. The output will be a continuous piecewise linear
function of the input, where the linear regions are now convex polytopes in the multi-
dimensional input space.

Note that as the input dimensions grow, the number of linear regions increases rapidly
(figure 3.9). To get a feeling for how rapidly, consider that each hidden unit defines a
hyperplane that delineates the part of space where this unit is active from the part Notebook 3.3

Shallow network
regions

where it is not (cyan lines in 3.8d–f). If we had the same number of hidden units as
input dimensions Di, we could align each hyperplane with one of the coordinate axes
(figure 3.10). For two input dimensions, this would divide the space into four quadrants.
For three dimensions, this would create eight octants, and for Di dimensions, this would
create 2Di orthants. Shallow neural networks usually have more hidden units than input
dimensions, so they typically create more than 2Di linear regions.

3.4 Shallow neural networks: general case

We have described several example shallow networks to help develop intuition about how
they work. We now define a general equation for a shallow neural network y = f[x,φ]
that maps a multi-dimensional input x ∈ RDi to a multi-dimensional output y ∈ RDo

using h ∈ RD hidden units. Each hidden unit is computed as:

hd = a
[
θd0 +

Di∑

i=1

θdixi

]
, (3.11)

and these are combined linearly to create the output:

Draft: please send errata to udlbookmail@gmail.com.

3.5 Terminology 35

Figure 3.11 Visualization of neural net-
work with three inputs and two out-
puts. This network has twenty param-
eters. There are fifteen slopes (indicated
by arrows) and five offsets (not shown).

yj = φj0 +
D∑

d=1

φjdhd, (3.12)

where a[•] is a nonlinear activation function. The model has parameters φ = {θ••,φ••}.
Figure 3.11 shows an example with three inputs, three hidden units, and two outputs. Problems 3.14–3.17

The activation function permits the model to describe nonlinear relations between
input and the output, and as such, it must be nonlinear itself; with no activation func-
tion, or a linear activation function, the overall mapping from input to output would
be restricted to be linear. Many different activation functions have been tried (see fig-
ure 3.13), but the most common choice is the ReLU (figure 3.1), which has the merit Notebook 3.4

Activation
functions

of being easily interpretable. With ReLU activations, the network divides the input
space into convex polytopes defined by the intersections of hyperplanes computed by
the “joints” in the ReLU functions. Each convex polytope contains a different linear
function. The polytopes are the same for each output, but the linear functions they
contain can differ.

3.5 Terminology

We conclude this chapter by introducing some terminology. Regrettably, neural networks
have a lot of associated jargon. They are often referred to in terms of layers. The left of
figure 3.12 is the input layer, the center is the hidden layer, and to the right is the output
layer. We would say that the network in figure 3.12 has one hidden layer containing
four hidden units. The hidden units themselves are sometimes referred to as neurons.
When we pass data through the network, the values of the inputs to the hidden layer
(i.e., before the ReLU functions are applied) are termed pre-activations. The values at
the hidden layer (i.e., after the ReLU functions) are termed activations.

For historical reasons, any neural network with at least one hidden layer is also called
a multi-layer perceptron, or MLP for short. Networks with one hidden layer (as described
in this chapter) are sometimes referred to as shallow neural networks. Networks with
multiple hidden layers (as described in the next chapter) are referred to as deep neural
networks. Neural networks in which the connections form an acyclic graph (i.e., a graph
with no loops, as in all the examples in this chapter) are referred to as feed-forward
networks. If every element in one layer connects to every element in the next (as in
all the examples in this chapter), the network is fully connected. These connections

Draft: please send errata to udlbookmail@gmail.com.

3.5 Terminology 35

Figure 3.11 Visualization of neural net-
work with three inputs and two out-
puts. This network has twenty param-
eters. There are fifteen slopes (indicated
by arrows) and five offsets (not shown).

yj = φj0 +
D∑

d=1

φjdhd, (3.12)

where a[•] is a nonlinear activation function. The model has parameters φ = {θ••,φ••}.
Figure 3.11 shows an example with three inputs, three hidden units, and two outputs. Problems 3.14–3.17

The activation function permits the model to describe nonlinear relations between
input and the output, and as such, it must be nonlinear itself; with no activation func-
tion, or a linear activation function, the overall mapping from input to output would
be restricted to be linear. Many different activation functions have been tried (see fig-
ure 3.13), but the most common choice is the ReLU (figure 3.1), which has the merit Notebook 3.4

Activation
functions

of being easily interpretable. With ReLU activations, the network divides the input
space into convex polytopes defined by the intersections of hyperplanes computed by
the “joints” in the ReLU functions. Each convex polytope contains a different linear
function. The polytopes are the same for each output, but the linear functions they
contain can differ.

3.5 Terminology

We conclude this chapter by introducing some terminology. Regrettably, neural networks
have a lot of associated jargon. They are often referred to in terms of layers. The left of
figure 3.12 is the input layer, the center is the hidden layer, and to the right is the output
layer. We would say that the network in figure 3.12 has one hidden layer containing
four hidden units. The hidden units themselves are sometimes referred to as neurons.
When we pass data through the network, the values of the inputs to the hidden layer
(i.e., before the ReLU functions are applied) are termed pre-activations. The values at
the hidden layer (i.e., after the ReLU functions) are termed activations.

For historical reasons, any neural network with at least one hidden layer is also called
a multi-layer perceptron, or MLP for short. Networks with one hidden layer (as described
in this chapter) are sometimes referred to as shallow neural networks. Networks with
multiple hidden layers (as described in the next chapter) are referred to as deep neural
networks. Neural networks in which the connections form an acyclic graph (i.e., a graph
with no loops, as in all the examples in this chapter) are referred to as feed-forward
networks. If every element in one layer connects to every element in the next (as in
all the examples in this chapter), the network is fully connected. These connections

Draft: please send errata to udlbookmail@gmail.com.

Terminology36 3 Shallow neural networks

Figure 3.12 Terminology. A shallow network consists of an input layer, a hidden
layer, and an output layer. Each layer is connected to the next by forward con-
nections (arrows). For this reason, these models are referred to as feed-forward
networks. When every variable in one layer connects to every variable in the
next, we call this a fully connected network. Each connection represents a slope
parameter in the underlying equation, and these parameters are termed weights.
The variables in the hidden layer are termed neurons or hidden units. The values
feeding into the hidden units are termed pre-activations, and the values at the
hidden units (i.e., after the ReLU function is applied) are termed activations.

represent slope parameters in the underlying equations and are referred to as network
weights. The offset parameters (not shown in figure 3.12) are called biases.

3.6 Summary

Shallow neural networks have one hidden layer. They (i) compute several linear functions
of the input, (ii) pass each result through an activation function, and then (iii) take a
linear combination of these activations to form the outputs. Shallow neural networks
make predictions y based on inputs x by dividing the input space into a continuous
surface of piecewise linear regions. With enough hidden units (neurons), shallow neural
networks can approximate any continuous function to arbitrary precision.

Chapter 4 discusses deep neural networks, which extend the models from this chapter
by adding more hidden layers. Chapters 5–7 describe how to train these models.

Notes

“Neural” networks: If the models in this chapter are just functions, why are they called
“neural networks”? The connection is, unfortunately, tenuous. Visualizations like figure 3.12
consist of nodes (inputs, hidden units, and outputs) that are densely connected to one another.
This bears a superficial similarity to neurons in the mammalian brain, which also have dense
connections. However, there is scant evidence that brain computation works in the same way
as neural networks, and it is unhelpful to think about biology going forward.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

• Any NN with at least one hidden layer is called a multi-layer perceptron, or MLP.

• NNs with one hidden layer are called shallow NNs. NNs with multiple hidden layers
are called deep NNs.

• NNs with connections form an acyclic graph (a graph w/0 loops) are feedforward NNs.

• Every element in one layer connects to every element in the next: fully connected
NNs.

