PHY 835: Machine Learning in Physics Lecture 8: Shallow Neural Network February 15, 2024

Gary Shiu

Linear Regression

 We have discussed linear regression in Lecture 4 which describes the input/output relationship as a line. A famous physics example is the Hubble-Lemaitre Law:

The linear relation between distance and recession velocity of galaxies, previously known as the Hubble law, has been renamed to the Hubble-Lemaitre Law:

https://www.iau.org/news/pressreleases/detail/iau1812/

Learning a function

- A NN is a parametrization of "big" (multivariate, non-linear) functions.
- Shallow NNs parametrize **piecewise linear functions** and are already expressive enough to approximate arbitrarily complex relationships between multi-dimensional inputs and outputs.

Figure from Simon Prince "Understanding Deep Learning"

Shallow Neural Networks

- Shallow neural networks are functions $\mathbf{y} = f(\mathbf{x}, \phi)$ with parameters ϕ that map multivariate inputs \mathbf{x} to multivariate outputs \mathbf{y} .
- As a warmup, consider $f(x, \phi)$ that maps a scalar input x to a scalar output y and has ten parameters $\phi = \{\phi_0, \phi_1, \phi_2, \phi_3, \theta_{10}, \theta_{11}, \theta_{20}, \theta_{21}, \theta_{30}, \theta_{31}\}$:

$$y = f[x, \phi]$$

= $\phi_0 + \phi_1 a[\theta_{10} + \theta_{11}x] + \phi_2 a[\theta_{20} + \theta_{21}x] + \phi_3 a[\theta_{30} + \theta_{31}x].$

- $a[\cdot]$ is known as the activation function. It cannot be a linear function in order for the NN to go beyond linear regression.
- Given a training dataset $\{x_i, y_i\}_{i=1}^{I}$, we can define a least squares loss function $L[\phi]$ to measure how effectively the model describes this dataset. To train the model, we find $\hat{\phi}$ that minimizes $L[\phi]$.

Activation Function

 For illustrative purpose, we consider the most common choice known as the rectified linear unit or ReLU:

$$\mathbf{a}[z] = \operatorname{ReLU}[z] = \begin{cases} 0 & z < 0\\ z & z \ge 0 \end{cases}.$$

• Perceptron: derivative is either vanishing or infinite. Sigmoid & tanh: differentiable but have vanishing derivatives away from the origin.

 In the ten-parameter example, we model the dataset with a family of continuous piecewise linear functions with up to 4 linear regions.

• To see why, we define the intermediate quantities as hidden units:

$$h_1 = a[\theta_{10} + \theta_{11}x]$$

$$h_2 = a[\theta_{20} + \theta_{21}x]$$

$$h_3 = a[\theta_{30} + \theta_{31}x],$$

• The output is given by combining the hidden units w/ a linear function:

$$y = \phi_0 + \phi_1 h_1 + \phi_2 h_2 + \phi_3 h_3.$$

Activation Pattern

Depicting Neural Networks

 The intercepts (known as biases) are usually not shown in the NN architecture, the NN is simplified to the picture on the right.

Universal Approximation Theorem

 \boldsymbol{D}

• Generalizing to *D* hidden units:

$$h_d = a[\theta_{d0} + \theta_{d1}x], \qquad y = \phi_0 + \sum_{d=1}^{D} \phi_d h_d.$$

- D = network capacity; there are D joints and D + 1 linear regions.
- Universal approximation theorem: ∀ continuous function, ∃ a shallow network that can approximate it to any specified precision; holds for networks that map multivariate inputs to multivariate outputs.

• For example, $\mathbf{y} = [y_1, y_2]^T$:

• The joints are the same but the slopes of the linear regions and the vertical offsets can differ: $y_1 = \phi_{10} + \phi_{11}h_1 + \phi_{12}h_2 + \phi_{13}h_3 + \phi_{14}h_4$ (x_2) (x_2) (y_2) (y_2) (y_3) (y_2) (y_3) (y_2) (y_3) (y_2) (y_3) (y_2) (y_3) (y_3) (y_2) (y_3) (y_3)

Multivariate Inputs

The hidden units depend on both inputs

$$h_{1} = a[\theta_{10} + \theta_{11}x_{1} + \theta_{12}x_{2}]$$

$$h_{2} = a[\theta_{20} + \theta_{21}x_{1} + \theta_{22}x_{2}]$$

$$h_{3} = a[\theta_{30} + \theta_{31}x_{1} + \theta_{32}x_{2}],$$

They create a continuous piecewise linear surface consisting of convex polygonal regions, each with a different activation patten.

Generalizable to more than 2 inputs but difficult to visualize such cases.

More linear regions

• If $D = D_i = \#$ input dimensions, can align the hyperplanes with the coordinate axes and show that there are 2^{D_i} orthants:

• Shallow neural networks usually have more hidden units than input dimensions, so they typically create more than 2^{D_i} linear regions.

using $\mathbf{h} \in \mathbb{R}^{D}$ hidden units:

$$h_d = a \left[\theta_{d0} + \sum_{i=1}^{D_i} \theta_{di} x_i \right], \qquad \qquad y_j = \phi_{j0} + \sum_{d=1}^{D} \phi_{jd} h_d,$$

• Graphically, a shallow NN is depicted as e.g.

Terminology

- Any NN with at least one hidden layer is called a multi-layer perceptron, or MLP.
- NNs with one hidden layer are called shallow NNs. NNs with multiple hidden layers are called deep NNs.
- NNs with connections form an acyclic graph (a graph w/0 loops) are feedforward NNs.
- Every element in one layer connects to every element in the next: fully connected NNs.