PHY 835: Machine Learning in Physics
Lecture 8: Shallow Neural Network
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Linear Regression

 We have discussed linear regression in Lecture 4 which describes
the input/output relationship as a line. A famous physics example
Is the Hubble-Lemaitre Law:
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The linear relation between distance and recession velocity 1800:F
of galaxies, previously known as the Hubble law,
has been renamed to the Hubble-Lemaitre Law:

https://www.iau.org/news/pressreleases/detail/iau1812/
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Learning a function

* A NN is a parametrization of “big” (multivariate, non-linear) functions.

e Shallow NNs parametrize piecewise linear functions and are
already expressive enough to approximate arbitrarily complex
relationships between multi-dimensional inputs and outputs.
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Shallow Neural Networks

Shallow neural networks are functions y = f(X, ¢») with parameters ¢
that map multivariate inputs X to multivariate outputs y.

As a warmup, consider f(x, ¢) that maps a scalar input x to a scalar
output y and has ten parameters ¢ = {@, ¢y, 2, ¢3, 019, 011> 0, 051, O3, 031 }:
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al - | is known as the activation function. It cannot be a linear
function in order for the NN to go beyond linear regression.

Given a training dataset {x;, y. le, we can define a least squares
loss function L[¢] to measure how effectively the model describes
this dataset. To train the model, we find ¢ that minimizes L[¢].



Activation Function
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e For illustrative purpose, we consider the most common choice known
as the rectified linear unit or RelLU:

/

0 z <0

alz] = ReLU|z| = « .
2 z >0

* Perceptron: derivative is either vanishing or infinite. Sigmoid & tanh:
differentiable but have vanishing derivatives away from the origin.



NN Intuition

* In the ten-parameter example, we model the dataset with a family of
continuous piecewise linear functions with up to 4 linear regions.
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* To see why, we define the intermediate quantities as hidden units:

hl = a:910 + 911$:
ho = alfao + 0217
hs = alls30 + 0317],

* The output is given by combining the hidden units w/ a linear function:

Y = Qo + ¢1h1 + @2he + P3hs.



Activation Pattern
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Depicting Neural Networks
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* The intercepts (known as biases) are usually not shown in the NN
architecture, the NN is simplified to the picture on the right.



Universal Approximation Theorem

e Generalizing to D hidden units:
D
hgy = a[@do -+ lex‘], Yy = ¢g + Z dahg.
d=1

o D = network capacity; there are D joints and D + 1 linear regions.

o Universal approximation theorem: V continuous function, d a
shallow network that can approximate it to any specified precision;
holds for networks that map multivariate inputs to multivariate outputs.
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Multivariate Outputs

. For example, y = [y, y,]":

1020
Input,

 The hidden units for both outputs are the same: h = a0+ 6112]
ho = al|lyg + 0211
hs = a|f39+ 0312]
he = albio + Oszl,

* The joints are the same but the slopes of the linear regions and the
vertical offsets can differ:  y, = ¢,0+ d11h1 + d1ohs + G13hs + drahy

Y2 = Q20+ P21h1 + Pacha + @az3hs + P2ahy.



Multivariate Inputs
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The hidden units depend on both inputs

hi = albig+ 601121 + 01022
ho = alfyg + 02121 + O2029
hs = allsg+ 03171 + 03222,

They create a continuous piecewise
linear surface consisting of convex
polygonal regions, each with a
different activation patten.

Generalizable to more than 2 inputs
but difficult to visualize such cases.



More linear regions

o If D = D; = #input dimensions, can align the hyperplanes with the
coordinate axes and show that there are 2" orthants:

a) b) To c) T

e Shallow neural networks usually have more hidden units than input
dimensions, so they typically create more than 2Di linear regions.



(General Case

 In general, a shallow NN is a function y = f(X, ¢) that maps a multi-
dimensional input X € RP to a multi-dimensional outputy € RDo
using h € R hidden units:

hd:a

D; D
Oao + Z Qdixi:| ) Yj = Pjo + Z Pjdahd,
d=1

1=1

e Graphically, a shallow NN is depicted as e.g.




Terminology

Hidden layer
Input layer Output layer

Neuron or
: .: ¥.."---.--‘ ® °
Weight hidden unit

Any NN with at least one hidden layer is called a multi-layer perceptron, or MLP.

NNs with one hidden layer are called shallow NNs. NNs with multiple hidden layers
are called deep NNs.

NNs with connections form an acyclic graph (a graph w/0 loops) are feedforward NNs.

Every element in one layer connects to every element in the next: fully connected
NNSs.



