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Why going deep?

• A shallow NN with only a single hidden layer can already approximate any 
continuous function to a specific precision, using piecewise linear 
functions.

• However, the network capacity (# hidden units) may be impractically large. 
A deep NN can produce more linear regions for a given # parameters.

30 3 Shallow neural networks

Figure 3.5 Approximation of a 1D function (dashed line) by a piecewise linear
model. a–c) As the number of regions increases, the model becomes closer and
closer to the continuous function. A neural network with a scalar input creates
one extra linear region per hidden unit. The universal approximation theorem
proves that, with enough hidden units, there exists a shallow neural network that
can describe any given continuous function defined on a compact subset of RDi

to arbitrary precision.

3.3 Multivariate inputs and outputs

In the above example, the network has a single scalar input x and a single scalar output y.
However, the universal approximation theorem also holds for the more general case
where the network maps multivariate inputs x = [x1, x2, . . . , xDi ]

T to multivariate output
predictions y = [y1, y2, . . . , yDo ]

T . We first explore how to extend the model to predict
multivariate outputs. Then we consider multivariate inputs. Finally, in section 3.4, we
present a general definition of a shallow neural network.

3.3.1 Visualizing multivariate outputs

To extend the network to multivariate outputs y, we simply use a different linear function
of the hidden units for each output. So, a network with a scalar input x, four hidden
units h1, h2, h3, and h4, and a 2D multivariate output y = [y1, y2]T would be defined as:

h1 = a[θ10 + θ11x]

h2 = a[θ20 + θ21x]

h3 = a[θ30 + θ31x]

h4 = a[θ40 + θ41x], (3.7)

and
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Figure from Simon Prince “Understanding Deep Learning"
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Figure 4.1 Composing two single-layer networks with three hidden units each. a)
The output y of the first network constitutes the input to the second network. b)
The first network maps inputs x ∈ [−1, 1] to outputs y ∈ [−1, 1] using a function
comprising three linear regions that are chosen so that they alternate the sign
of their slope (fourth linear region is outside range of graph). Multiple inputs x
(gray circles) now map to the same output y (cyan circle). c) The second network
defines a function comprising three linear regions that takes y and returns y′ (i.e.,
the cyan circle is mapped to the brown circle). d) The combined effect of these
two functions when composed is that (i) three different inputs x are mapped to
any given value of y by the first network and (ii) are processed in the same way by
the second network; the result is that the function defined by the second network
in panel (c) is duplicated three times, variously flipped and rescaled according to
the slope of the regions of panel (b).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

• As we will see, compositions of NN are special cases of Deep NNs which are even 
more expressive. 

• Generate piecewise linear functions. However, # linear regions is more than a single 
layer with 6 hidden units. To understand why, see next page.

Chapter 4

Deep neural networks

The last chapter described shallow neural networks, which have a single hidden layer.
This chapter introduces deep neural networks, which have more than one hidden layer.
With ReLU activation functions, both shallow and deep networks describe piecewise
linear mappings from input to output.

As the number of hidden units increases, shallow neural networks improve their
descriptive power. Indeed, with enough hidden units, shallow networks can describe
arbitrarily complex functions in high dimensions. However, it turns out that for some
functions, the required number of hidden units is impractically large. Deep networks can
produce many more linear regions than shallow networks for a given number of parame-
ters. Hence, from a practical standpoint, they can be used to describe a broader family
of functions.

4.1 Composing neural networks

To gain insight into the behavior of deep neural networks, we first consider composing
two shallow networks so the output of the first becomes the input of the second. Consider
two shallow networks with three hidden units each (figure 4.1a). The first network takes
an input x and returns output y and is defined by:

h1 = a[θ10 + θ11x]

h2 = a[θ20 + θ21x]

h3 = a[θ30 + θ31x], (4.1)

and

y = φ0 + φ1h1 + φ2h2 + φ3h3. (4.2)

The second network takes y as input and returns y′ and is defined by:
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h′
1 = a[θ′10 + θ′11y]

h′
2 = a[θ′20 + θ′21y]

h′
3 = a[θ′30 + θ′31y], (4.3)

and

y′ = φ′0 + φ′1h
′
1 + φ′2h

′
2 + φ′3h

′
3. (4.4)

With ReLU activations, this model also describes a family of piecewise linear functions.
However, the number of linear regions is potentially greater than for a shallow network
with six hidden units. To see this, consider choosing the first network to produce three Problem 4.1alternating regions of positive and negative slope (figure 4.1b). This means that three
different ranges of x are mapped to the same output range y ∈ [−1, 1], and the subsequent
mapping from this range of y to y′ is applied three times. The overall effect is that the Notebook 4.1

Composing
networks

function defined by the second network is duplicated three times to create nine linear
regions. The same principle applies in higher dimensions (figure 4.2).

A different way to think about composing networks is that the first network “folds”
the input space x back onto itself so that multiple inputs generate the same output.
Then the second network applies a function, which is replicated at all points that were
folded on top of one another (figure 4.3).

4.2 From composing networks to deep networks

The previous section showed that we could create complex functions by passing the
output of one shallow neural network into a second network. We now show that this is
a special case of a deep network with two hidden layers.

The output of the first network (y = φ0 + φ1h1 + φ2h2 + φ3h3) is a linear combina-
tion of the activations at the hidden units. The first operations of the second network
(equation 4.3 in which we calculate θ′10 + θ′11y, θ′20 + θ′21y, and θ′30 + θ′31y) are linear in
the output of the first network. Applying one linear function to another yields another
linear function. Substituting the expression for y into equation 4.3 gives:

h′
1 = a[θ′10 + θ′11y] = a[θ′10 + θ′11φ0 + θ′11φ1h1 + θ′11φ2h2 + θ′11φ3h3]

h′
2 = a[θ′20 + θ′21y] = a[θ′20 + θ′21φ0 + θ′21φ1h1 + θ′21φ2h2 + θ′21φ3h3]

h′
3 = a[θ′30 + θ′31y] = a[θ′30 + θ′31φ0 + θ′31φ1h1 + θ′31φ2h2 + θ′31φ3h3], (4.5)

which we can rewrite as:

h′
1 = a[ψ10 + ψ11h1 + ψ12h2 + ψ13h3]

h′
2 = a[ψ20 + ψ21h1 + ψ22h2 + ψ23h3]

h′
3 = a[ψ30 + ψ31h1 + ψ32h2 + ψ33h3], (4.6)
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Mapping multiple inputs to the same output
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Figure 4.1 Composing two single-layer networks with three hidden units each. a)
The output y of the first network constitutes the input to the second network. b)
The first network maps inputs x ∈ [−1, 1] to outputs y ∈ [−1, 1] using a function
comprising three linear regions that are chosen so that they alternate the sign
of their slope (fourth linear region is outside range of graph). Multiple inputs x
(gray circles) now map to the same output y (cyan circle). c) The second network
defines a function comprising three linear regions that takes y and returns y′ (i.e.,
the cyan circle is mapped to the brown circle). d) The combined effect of these
two functions when composed is that (i) three different inputs x are mapped to
any given value of y by the first network and (ii) are processed in the same way by
the second network; the result is that the function defined by the second network
in panel (c) is duplicated three times, variously flipped and rescaled according to
the slope of the regions of panel (b).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Three different ranges of  are mapped to the same output range  and the 
subsequent mapping from this range of  to  is applied three times. 

The composition creates nine linear regions.

x y ∈ [−1,1]
y y′￼



Folding Input Space
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Figure 4.2 Composing neural networks with a 2D input. a) The first network
(from figure 3.8) has three hidden units and takes two inputs x1 and x2 and returns
a scalar output y. This is passed into a second network with two hidden units to
produce y′. b) The first network produces a function consisting of seven linear
regions, one of which is flat. c) The second network defines a function comprising
two linear regions in y ∈ [−1, 1]. d) When these networks are composed, each of
the six non-flat regions from the first network is divided into two new regions by
the second network to create a total of 13 linear regions.

Figure 4.3 Deep networks as folding input space. a) One way to think about
the first network from figure 4.1 is that it “folds” the input space back on top
of itself. b) The second network applies its function to the folded space. c) The
final output is revealed by “unfolding” again.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

The first network “folds” the input space  back onto itself so that multiple inputs 
generate the same output. Then the second network applies a function, which is 

replicated at all points that were folded on top of one another.

x



Deep Neural Networks
• The composition of 2 shallow networks results in a 2-layer network:

• This is because we can eliminate the “mediator” :

• However, a 2-layer network is more general since there are 9 
unconstrained slope parameters instead of 6:

y
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h′
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′
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networks

function defined by the second network is duplicated three times to create nine linear
regions. The same principle applies in higher dimensions (figure 4.2).

A different way to think about composing networks is that the first network “folds”
the input space x back onto itself so that multiple inputs generate the same output.
Then the second network applies a function, which is replicated at all points that were
folded on top of one another (figure 4.3).

4.2 From composing networks to deep networks

The previous section showed that we could create complex functions by passing the
output of one shallow neural network into a second network. We now show that this is
a special case of a deep network with two hidden layers.

The output of the first network (y = φ0 + φ1h1 + φ2h2 + φ3h3) is a linear combina-
tion of the activations at the hidden units. The first operations of the second network
(equation 4.3 in which we calculate θ′10 + θ′11y, θ′20 + θ′21y, and θ′30 + θ′31y) are linear in
the output of the first network. Applying one linear function to another yields another
linear function. Substituting the expression for y into equation 4.3 gives:

h′
1 = a[θ′10 + θ′11y] = a[θ′10 + θ′11φ0 + θ′11φ1h1 + θ′11φ2h2 + θ′11φ3h3]

h′
2 = a[θ′20 + θ′21y] = a[θ′20 + θ′21φ0 + θ′21φ1h1 + θ′21φ2h2 + θ′21φ3h3]

h′
3 = a[θ′30 + θ′31y] = a[θ′30 + θ′31φ0 + θ′31φ1h1 + θ′31φ2h2 + θ′31φ3h3], (4.5)

which we can rewrite as:

h′
1 = a[ψ10 + ψ11h1 + ψ12h2 + ψ13h3]

h′
2 = a[ψ20 + ψ21h1 + ψ22h2 + ψ23h3]

h′
3 = a[ψ30 + ψ31h1 + ψ32h2 + ψ33h3], (4.6)
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Figure 4.4 Neural network with one input, one output, and two hidden layers,
each containing three hidden units.

where ψ10 = θ′10 + θ′11φ0,ψ11 = θ′11φ1,ψ12 = θ′11φ2 and so on. The result is a network
with two hidden layers (figure 4.4).

It follows that a network with two layers can represent the family of functions created
by passing the output of one single-layer network into another. In fact, it represents a
broader family because in equation 4.6, the nine slope parameters ψ11,ψ21, . . . ,ψ33 can
take arbitrary values, whereas, in equation 4.5, these parameters are constrained to be
the outer product [θ′11, θ

′
21, θ

′
31]

T [φ1,φ2,φ3].

4.3 Deep neural networks

In the previous section, we showed that composing two shallow networks yields a special
case of a deep network with two hidden layers. Now we consider the general case of a
deep network with two hidden layers, each containing three hidden units (figure 4.4).
The first layer is defined by:

h1 = a[θ10 + θ11x]

h2 = a[θ20 + θ21x]

h3 = a[θ30 + θ31x], (4.7)

the second layer by:

h′
1 = a[ψ10 + ψ11h1 + ψ12h2 + ψ13h3]

h′
2 = a[ψ20 + ψ21h1 + ψ22h2 + ψ23h3]

h′
3 = a[ψ30 + ψ31h1 + ψ32h2 + ψ33h3], (4.8)

and the output by:

y′ = φ′0 + φ′1h
′
1 + φ′2h

′
2 + φ′3h

′
3. (4.9)
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Figure 4.5 Computation for the deep network in figure 4.4. a–c) The inputs
to the second hidden layer (i.e., the pre-activations) are three piecewise linear
functions where the “joints” between the linear regions are at the same places
(see figure 3.6). d–f) Each piecewise linear function is clipped to zero by the
ReLU activation function. g–i) These clipped functions are then weighted with
parameters φ′

1,φ
′
2, and φ′

3, respectively. j) Finally, the clipped and weighted
functions are summed and an offset φ′

0 that controls the overall height is added.

Draft: please send errata to udlbookmail@gmail.com.
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Figure 4.6 Matrix notation for network with Di = 3-dimensional input x, Do = 2-
dimensional output y, and K = 3 hidden layers h1,h2, and h3 of dimensions
D1 = 4, D2 = 2, and D3 = 3 respectively. The weights are stored in matrices
Ωk that pre-multiply the activations from the preceding layer to create the pre-
activations at the subsequent layer. For example, the weight matrix Ω1 that
computes the pre-activations at h2 from the activations at h1 has dimension
2× 4. It is applied to the four hidden units in layer one and creates the inputs to
the two hidden units at layer two. The biases are stored in vectors βk and have
the dimension of the layer into which they feed. For example, the bias vector β2
is length three because layer h3 contains three hidden units.

4.4 Matrix notation

We have seen that a deep neural network consists of linear transformations alternatingAppendix B.3
Matrices with activation functions. We could equivalently describe equations 4.7–4.9 in matrix

notation as:



h1

h2

h3



 = a








θ10
θ20
θ30



+




θ11
θ21
θ31



x



 , (4.11)




h′
1

h′
2

h′
3



 = a








ψ10

ψ20

ψ30



+




ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33








h1

h2

h3







 , (4.12)

and

y′ = φ′0 +
[
φ′1 φ′2 φ′3

]



h′
1

h′
2

h′
3



 , (4.13)
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• Modern deep NNs might have  layers with  of hidden units in each layer.

• The number of layers  = depth, & the number of hidden units in each layer (=width)  
 are hyperparameters. The network capacity = # number of hidden units.

• For fixed hyperparameters, the model describes a family of functions, and the parameters 
 (known as weights) determine a specific function.

≳ 𝒪(102) 𝒪(103)
K

D1, D2, …, DK

θ



General Formulation
• We can express the above 2-layer network in matrix notation:

• More generally, a -layer network:K
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or even more compactly in matrix notation as:

h = a [θ0 + θx]

h′ = a [ψ0 +Ψh]

y′ = φ′0 + φ
′h′, (4.14)

where, in each case, the function a[•] applies the activation function separately to every
element of its vector input.

4.4.1 General formulation

This notation becomes cumbersome for networks with many layers. Hence, from now
on, we will describe the vector of hidden units at layer k as hk, the vector of biases
(intercepts) that contribute to hidden layer k+1 as βk, and the weights (slopes) that
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Chapter 3 discussed shallow networks (with a single hidden layer), and here we have
described deep networks (with multiple hidden layers). We now compare these models.

Draft: please send errata to udlbookmail@gmail.com.

4.5 Shallow vs. deep neural networks 49

or even more compactly in matrix notation as:

h = a [θ0 + θx]

h′ = a [ψ0 +Ψh]

y′ = φ′0 + φ
′h′, (4.14)

where, in each case, the function a[•] applies the activation function separately to every
element of its vector input.

4.4.1 General formulation

This notation becomes cumbersome for networks with many layers. Hence, from now
on, we will describe the vector of hidden units at layer k as hk, the vector of biases
(intercepts) that contribute to hidden layer k+1 as βk, and the weights (slopes) that
are applied to the kth layer and contribute to the (k+1)th layer as Ωk. A general deep
network y = f[x,φ] with K layers can now be written as:

h1 = a[β0 +Ω0x]

h2 = a[β1 +Ω1h1]

h3 = a[β2 +Ω2h2]

...
hK = a[βK−1 +ΩK−1hK−1]

y = βK +ΩKhK . (4.15)

The parameters φ of this model comprise all of these weight matrices and bias vectors
φ = {βk,Ωk}Kk=0.

If the kth layer has Dk hidden units, then the bias vector βk−1 will be of size Dk.
The last bias vector βK has the size Do of the output. The first weight matrix Ω0 has Notebook 4.3

Deep networkssize D1 ×Di where Di is the size of the input. The last weight matrix ΩK is Do ×DK ,
and the remaining matrices Ωk are Dk+1 ×Dk (figure 4.6).

We can equivalently write the network as a single function: Problems 4.3–4.6

y = βK +ΩKa
[
βK−1 +ΩK−1a [. . .β2 +Ω2a [β1 +Ω1a [β0 +Ω0x]] . . .]

]
.

(4.16)

4.5 Shallow vs. deep neural networks

Chapter 3 discussed shallow networks (with a single hidden layer), and here we have
described deep networks (with multiple hidden layers). We now compare these models.

Draft: please send errata to udlbookmail@gmail.com.

Parameters: biases and weights

4.5 Shallow vs. deep neural networks 49

or even more compactly in matrix notation as:

h = a [θ0 + θx]

h′ = a [ψ0 +Ψh]

y′ = φ′0 + φ
′h′, (4.14)

where, in each case, the function a[•] applies the activation function separately to every
element of its vector input.

4.4.1 General formulation

This notation becomes cumbersome for networks with many layers. Hence, from now
on, we will describe the vector of hidden units at layer k as hk, the vector of biases
(intercepts) that contribute to hidden layer k+1 as βk, and the weights (slopes) that
are applied to the kth layer and contribute to the (k+1)th layer as Ωk. A general deep
network y = f[x,φ] with K layers can now be written as:

h1 = a[β0 +Ω0x]

h2 = a[β1 +Ω1h1]

h3 = a[β2 +Ω2h2]

...
hK = a[βK−1 +ΩK−1hK−1]

y = βK +ΩKhK . (4.15)

The parameters φ of this model comprise all of these weight matrices and bias vectors
φ = {βk,Ωk}Kk=0.

If the kth layer has Dk hidden units, then the bias vector βk−1 will be of size Dk.
The last bias vector βK has the size Do of the output. The first weight matrix Ω0 has Notebook 4.3

Deep networkssize D1 ×Di where Di is the size of the input. The last weight matrix ΩK is Do ×DK ,
and the remaining matrices Ωk are Dk+1 ×Dk (figure 4.6).

We can equivalently write the network as a single function: Problems 4.3–4.6

y = βK +ΩKa
[
βK−1 +ΩK−1a [. . .β2 +Ω2a [β1 +Ω1a [β0 +Ω0x]] . . .]

]
.

(4.16)

4.5 Shallow vs. deep neural networks

Chapter 3 discussed shallow networks (with a single hidden layer), and here we have
described deep networks (with multiple hidden layers). We now compare these models.

Draft: please send errata to udlbookmail@gmail.com.

Hyperparameters:

K, D1, D2, …, DK

What are the sizes of the biases & 
weights in terms of the hyperparameters?



Shallow vs Deep
• Universal approximation theorem: deep NNs can approximate 

any continuous function arbitrarily closely given sufficient capacity.

We can reproduce a shallow network if all but one layer is the 
identity function. Since we showed that a shallow NN can 
approximate any continuous function, deep NNs also work.

• More expressive (more linear regions per parameter): 

A shallow NN with 1 input, 1 output,  hidden units can 
create up to  linear regions using  parameters.

A deep NN with 1 input, 1 output,  hidden units can create 
up to  linear regions using  
parameters (more next page).

This exponential growth in linear regions is what makes deep NN 
more expressive.

D > 2
D + 1 3D + 1

D > 2
(D + 1)K 3D + 1 + (K − 1)D(D + 1)



Shallow vs Deep

• The counting of parameters for shallow NNs goes as follows: 

There are D hidden units, each has two parameters (bias, 
weight). The output layer has D weights and one bias. # 
parameter=2D+D+1.

• The counting of parameters for deep NNs goes as follows:

There are  weights between the input and the first hidden 
layer,  lots of  inputs between adjacent hidden 
layers, and  weights between the last hidden layer and the 
output. There are  biases at each of the  hidden layers and 1 
bias for the output. This gives  

 parameters.

D
K − 1 D × D

D
D K

D + (K − 1)D2 + D + KD + 1 =
3D + (K − 1)D2 + (K − 1)D + 1



Shallow vs Deep
• Deep NNs create much more linear regions for a fixed parameter 

budget, but they contain complex dependence and symmetries.

• The greater number of regions is an advantage if:

1. there are similar symmetries in the function to approximate; 

2. the input output map is a composition of simpler functions.

• Depth efficiency refers to the phenomenon that a shallow NN 
needs exponentially more hidden units to achieve an equivalent 
approximation to that of a deep NN.

→
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Figure 4.2 Composing neural networks with a 2D input. a) The first network
(from figure 3.8) has three hidden units and takes two inputs x1 and x2 and returns
a scalar output y. This is passed into a second network with two hidden units to
produce y′. b) The first network produces a function consisting of seven linear
regions, one of which is flat. c) The second network defines a function comprising
two linear regions in y ∈ [−1, 1]. d) When these networks are composed, each of
the six non-flat regions from the first network is divided into two new regions by
the second network to create a total of 13 linear regions.

Figure 4.3 Deep networks as folding input space. a) One way to think about
the first network from figure 4.1 is that it “folds” the input space back on top
of itself. b) The second network applies its function to the folded space. c) The
final output is revealed by “unfolding” again.
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Shallow vs Deep
• Large, structured inputs: We have discussed fully connected 

networks where every element of each layer contributes to every 
element of the subsequent one.

• CNN (which we will discuss later): process local image regions in 
parallel and integrate information from increasing large regions. 
Difficult to do this local-to-global processing with a single layer.

not practical for large structured 
inputs like images  pixels

no point in independently learning 
to recognize the same object at 
every position in the image.

∼ 106



Shallow vs Deep

• Training and generalization: It is easier to train moderately deep 
networks than to train shallow ones.

• Deep NNs also seem to generalize to new data better than 
shallow ones.

• Empirically, one finds best results for most tasks using networks 
with tens to hundreds of layers.

404 20 Why does deep learning work?

Figure 20.2 MNIST-1D training. Four
fully connected networks were fit to 4000
MNIST-1D examples with random labels
using full batch gradient descent, He ini-
tialization, no momentum or regulariza-
tion, and learning rate 0.0025. Mod-
els with 1,2,3,4 layers had 298, 100, 75,
and 63 hidden units per layer and 15208,
15210, 15235, and 15139 parameters, re-
spectively. All models train successfully,
but deeper models require fewer epochs.

datasets (including CIFAR-100 and MNIST) almost perfectly with very large batches of
5000-6000 images. This eliminates most of the randomness but training still succeeds.

Figure 20.2 shows training results for four fully connected models fitted to 4000Notebook 20.2
Full batch

gradient descent
MNIST-1D examples with randomized labels using full-batch (i.e., non-stochastic) gra-
dient descent. There was no explicit regularization, and the learning rate was set to a
small constant value of 0.0025 to minimize implicit regularization. Here, the true map-

Problem 20.3 ping from data to labels has no structure, the training is deterministic, and there is no
regularization, and yet the training error still decreases to zero. This suggests that these
loss functions may genuinely have no local minima.

20.2.4 Overparameterization

Overparameterization almost certainly is an important factor that contributes to ease
of training. It implies that there is a large family of degenerate solutions, so there may
always be a direction in which the parameters can be modified to decrease the loss.
Sejnowski (2020) suggests that “. . . the degeneracy of solutions changes the nature of
the problem from finding a needle in a haystack to a haystack of needles.”

In practice, networks are frequently overparameterized by one or two orders of mag-
nitude (figure 20.3). However, data augmentation makes it difficult to make precise
statements. Augmentation may increase the data by several orders of magnitude, but
these are manipulations of existing examples rather than independent new data points.
Moreover, figure 8.10 shows that neural networks can sometimes fit the training data
well when there are the same number or fewer parameters than data points. This is
presumably due to redundancy in training examples from the same underlying function.

Several theoretical convergence results show that, under certain circumstances, SGD
converges to a global minimum when the network is sufficiently overparameterized. For
example, Du et al. (2019b) show that randomly initialized SGD converges to a global
minimum for shallow fully connected ReLU networks with a least squares loss with
enough hidden units. Similarly, Du et al. (2019a) consider deep, residual, and convolu-
tional networks when the activation function is smooth and Lipschitz. Zou et al. (2020)
analyzed the convergence of gradient descent on deep, fully connected networks using a
hinge loss. Allen-Zhu et al. (2019) considered deep networks with ReLU functions.

If a neural network is sufficiently overparameterized so that it can memorize any
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