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Instructors

Lecturer: Prof. Moritz Munchmeyer
 Computational and theoretical Cosmologist

My research: http://munchmeyer.physics.wisc.edu/

* Office: 6205

 Email: muenchmeyer@wisc.edu

TA: Yuril Kvasiuk

 Computational and theoretical Cosmologist


http://munchmeyer.physics.wisc.edu/
mailto:muenchmeyer@wisc.edu
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Tell us about your experience

 We have a very mixed class in terms of preparation of students.

 We want to adjust the level of the course to make it appropriate
for the majority of students.

e |Let’s gauge your your experience with:
 Programming (python)
 Machine learning
* Physics

e Math



Course logistics



Course Canvas Page

The schedule and all lectures and exercises will be uploaded on the course canvas
page https://canvas.wisc.edu/courses/450587
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Welcome to Physics 361 - Machine Learning in Physics

This course will give an overview of how Machine Learning is used in Physics, and how the two fields are interrelated with each other. Machine Learning
is becoming increasingly important in many fields of science, but its relation to physics is particularly interesting. Physics provides a data domain that is
described by mathematical laws, with know statistical and symmetry properties. This makes it a powerful domain to develop and apply new machine
learning algorithms. In the other direction, tools from physics can be used to understand the properties of neural networks.

This is a fast moving field, and we will cover both fundamentals and some selected recent developments. While we discuss general machine learning

techniques, we will emphasize their applications to physics.

Instructors

We will have two instructors this semester. We will teach in blocks of several weeks.

Lecturer: Prof. Moritz Miinchmeyer (Website)

TA: Yurii Kvasiuk (Website)

Logistics

Lecture times and room number

Course schedule and content

Please see the Modules page which will include the material for all lectures, exercises and a brief overview of the course content.

This is a tentative schedule which can change over the semester.

If you are comfortable with it please upload a profile picture of you to canvas to help us
learn your names.


https://canvas.wisc.edu/courses/450587

Grading

* Problem sets
* There will be approximately 8 to 10 problem sets. Download
and upload on Canvas. Late submission requires prior
permission.

* Final project:

* Apply some of the techniques we learn to a concrete project of
your choice. Write a course paper.

e Final grade will be made out of problem sets and final project.
Tentative weighting: 50/50 problem sets and final project.



Text books and Reviews

* We won’t follow a single textbook closely. However these references can be used to supplement the
course notes:

e Classics on General ML
« Bishop: Pattern Recognition and Machine Learning (classic)

 MacKay: Information Theory, Inference, and Learning Algorithms, CUP (free online version)

» Goodfellow, Bengio, Courville: Deep Learning, MIT Press: deeplearningbook.com

 Recent popular textbooks on General ML.:

e https://udlbook.github.io/udibook/ Understanding Deep Learning

» https://d2l.ai/ Dive into Deep Learning (fully online and with code)

ML in Physics

 Mehta, Bukov, Wang, Day, Richardson, Fisher, Schwab: A high-bias, low-variance
introduction to Machine Learning for physicists (1803.08823)

e Carleo, Cirac, Cranmer, Daudet, Schuld, Tishby, Vogt-Maranto, Zdeborova: Machine Learning
and the Physical Sciences 1903.10563

« Kaplan: Notes on Contemporary Machine Learning for Physicists

* Acquaviva: Machine Learning for Physics and Astronomy


http://deeplearningbook.com
https://udlbook.github.io/udlbook/
https://d2l.ai/

Learning tools

 We will be using Piazza for questions and answers.

e You are encouraged to ask your questions on Piazza, rather
than e.g. by email to your instructors, so that everybody can
discuss, answer, and learn from the answers.

* You can post questions and answers anonymously if you prefer.

« Computational tools:

* We will use Jupiter or Google Colab.

 The programming language will be Python.

| will upload a basic tutorial for python which you can work

through. But if you have not worked with python you will need
to do some self study. This is well invested time.



Planned schedule of topics

» We will cover the following units, each with application to physics:

Probability theory and Information theory background

Basics of Machine Learning
« Optimization and Regularization

 Basic Architectures

Generative models: Diffusion, Normalizing Flows, Flow Matching

Simulation-based inference & Uncertainty Quantification

Learning on graphs and other data structures

Transformers, LLMs, Foundation Models, Reasoning

Solving Inverse Problems and PDEs with NN
* These are a lot of topics so we will cover them somewhat briefly.

* Since this is a new class, the list of topics may evolve over the semester.



Why a class on Machine Learning in Physics?

* At the very least, Machine Learning is a tool, like Likelihoods and MCMC, of which
every physicist needs to know the basics now.

* However “Black box” applications of Machine Learning in Physics without insights
from domain experts usually don’t work. We need to understand how to use
domain knowledge.

* Physics provides a data domain that is described by mathematical laws, with
know statistical and symmetry properties. This means that we can often combine
analytic methods with machine learning.

* There are many ingenious uses of machine learning in physics, that go far beyond
training standard ML models on physics simulations.

« Sometimes it is possible to solve previously intractable real world problems.
* There are also theoretical connections between physics and machine learning.

* In the future, we may have “Al physicists” that can do science independently, but
we still seem far away from that. This course: Understand the state of the art.



Broad Overview of
Machine Learning




Categories of Machine Learning

Supervised Machine Learning

 Labelled data
* Direct feedback

* Predict label (regression or classification)

Unsupervised learning
* No labels/targets
* Find hidden structure of the data

* Includes clustering and generative models

Reinforcement learning
* Decide on actions to take

* Rewards and environment change with time

The lines between these can be blurred. For example there is weakly supervised learning (with
partial or noisy labels).



Supervised Learning: Classification Supervised Learning: Regression
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Measure an (often real valued)
parameter from the data. E.g.
given a picture of a car estimate
its value.

Find what class a data vector
belongs to, e.g. classify pictures
into cat, dog, car etc.

Plots: sebastianraschka.com



Unsupervised Learning
-- Dimensionality Reduction

Unsupervised Learning -- Clustering

Unsupervised learning — Reinforcement Learning
Generative modelling

Reward
State

4 4 Action
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Generative vs discriminative models

Informally:
 Generative models can generate new data instances.

 Discriminative models discriminate between different kinds of data
Instances.

* A generative model could generate new photos of animals that look like
real animals, while a discriminative model could tell a dog from a cat.

More formally, given a set of data instances X and a set of labels Y:

 Generative models capture the joint probability p(X, Y), or just p(X) if there
are no labels.

* Discriminative models capture the conditional probability p(Y | X).
There are many types of generative models, including GANs, VAE, diffusion

models and normalizing flows.

https://developers.google.com/machine-learning/gan/generative



Examples of neural network architectures

© 2020 DeepMind Technologies Limited

Convolutional Networks Cﬁ CE CE O ﬂ) Recurrent Networks

(e.g. computer vision) SR SR SR (e.g. language)

e data in regular grid e data in ordered sequence
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Graph Networks (e.g. recommender Attention Module (e.g. language)
systems or molecules) ()—O e data in unordered set
e data in fixed graph structure O_<> <>_O ¢ information flow dynamically controlled
e information flow along fixed edges > @ by the network (via keys and queries)

We will meet all of these architectures later in the course.



Some Examples of ML
In the Physical Sciences



Where to see recent work?

* To get an overview, check out for example this yearly NeurlPS physics workshop:

« https://ml4physicalsciences.qgithub.io/2023/ (yearly workshop)

Machme Leammg and the Physm:a[ Saences

Workshop atthe 37th conference on Neural Information ProcessmgSystems (NeurIPS)
' Decembenl5, 2023 « © ¢l e v .

* At the end of the semester | hope you will be able to understand what many of these
papers are about, at at superficial level.

e Other workshops that are relevant:

 https://aidsciencecommunity.github.io/neurips23.html Al for Science: from Theory to
Practice

* A few others: https://neurips.cc/virtual/2023/events/workshop

* I’ll mention other conferences and specific papers later on.


https://ml4physicalsciences.github.io/2023/
https://ai4sciencecommunity.github.io/neurips23.html
https://neurips.cc/virtual/2023/events/workshop

Classifying Events and Objects

 Examples:

* LHC particle collisions. ML has a long history in particle physics, reaching back
several decades.

e Y

Energy [GeV]
Energy [GeV]

Arxiv: 1807.11916
End-to-End Physics Event
Classification with CMS Open
Data
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Figure 1: e/ showers averaged over 50k showers. The e shower is slightly more spread
out in ¢-in addition to being slightly asymmetric-due to bremsstrahlung effects.

* lce cube particle shower classification. E.g. 2209.03042

* Galaxy type classification. In the past, different galaxy types were classified by
researchers by eye. Not possible with millions of galaxies.



Measuring physical parameters

|t is often not clear how to measure a parameter from a collection of data.

* If we have reliable simulations, we can train a neural network to perform the
measurement, using supervised learning.

 Example: Measuring cosmological parameters (age of the universe, amount of dark
matter etc.) from a galaxy survey

SimBig project 2211.00723  CMASS SGC
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 Main challenge: Reliability of training data.



Simulation-based Inference

 When we measure parameters, we also need error bars (or better the full
posterior).

* Simulation-based inference is the process of finding parameters of a
simulator from observations, probabilistically.

* In “traditional” data analysis in physics we often make analytical assumptions of
the statistics of an observable, most commonly that it is Gaussian distributed.

* With machine learning one can learn the probability distribution of observables
from simulations. In a Bayesian analysis, the likelihood or the posterior can be
learned from simulations.

* This is usually done using a Neural Density Estimator, such as a Normalizing
flow.

* See e.g. arxiv:1911.01429 The frontier of simulation-based inference



Generating Simulations / Emulators

* Neural networks can be used as surrogate models to replace computationally
expensive simulations. These are often called Emulators.

 Once trained on data or simulations, an emulator can make new “simulations” much
faster.

* Example from my own research:

e Generating 3d simulations of the matter
distribution of the universe using a
diffusion model. (Arxiv: 2311.05217)

 Machine Learning is often used to speed up classical methods.



Auto-differentiation without ML

* To train neural networks, computational techniques were developed that can train
models with billions of free parameters. This is done with auto-differentiation
libraries such as

 PyTorch
o JAX
* Tensorflow
* This software is useful in physics even if you don’t use any machine learning.

* Physicists re-write their codes in auto differentiable language, which allows

efficient optimization with respect to any parameters. Some examples from my
field:

 Cosmodax, a differentiable cosmology library

* Differentiable cosmology simulations, e.g. pmwd




Clustering and Anomaly detection

« How can we organize a large data set of events or objects into classes of similar
objects? Clustering and dimensionality reduction algorithms.

e Classic k-means is still very useful! E.g. stellar populations.
» Clustering can also happen in the “latent space” of a generative model.
» Data visualization, e.g. t-SNE

« How can we find something “new” without knowing what to look for? Anomaly
detection!

 Humans are pretty good at anomaly detection by eye, but data sets are too large to
be inspected that way and the anomaly may only be visible in the right data
representation.

 Anomalies have been found in archival data, long after the data was taken (example:
Fast Radio Bursts). Perhaps there is something exciting hidden in existing data.

* Unsupervised learning can be used to classify existing events or objects. If an object
IS not close to any known class, it is flagged as an anomaly.



Solving PDEs and Inverse Problems

 Many problems in physics amount to solving a complicated set of partial
differential equations (PDE). There are various ways to use NN for that.

 Examples (from the PDEBench data set):

Data

* |In Inverse Problems, one wants to find the input data that produced a specific
output. That can mean removing noise or undoing a non-linear evolution. Often

they are ill-conditioned and need to be regularized.

* Neural Networks are being trained to solve such problems approximately.



Symbolic methods

* Theoretical insight in physics come in the form of symbolic expressions. Naturally,
combining machine learning and symbolic expressions is an exciting direction.

* Machine learning can be used to improve symbolic regression, the process of
finding mathematical expressions that describe data.

 Example: 2006.11287

Dataset Model with Extract to
Graph Neural Network Symbolic Equation
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* Machine learning can come up with novel proofs and novel solutions. A large-
language model can make “educated guesses” (proposed solutions) that are then

verified with a systematic evaluator. e.g. https://www.nature.com/articles/
s41586-023-06924-6



https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6

Course logistics

e Reading:
e Familiarize yourself with the course canvas page.
e Check out some of the textbooks and reviews on
slide 7.

* Problem set: No problem set in the first week



