
Moritz Münchmeyer

Physics 361 - Machine Learning in
Physics

Lecture 10 – CNN and Field-to-Field

Feb. 20th 2025

Convolutional Neural
Networks
Residual networks (ResNets)
Cont.

Going deeper
• Image classification performance improved as the depth of convolutional networks

was extended from eight layers (AlexNet) to nineteen layers (VGG). This led to
experimentation with even deeper networks. However, performance decreased
again when many more layers were added.

• A novel idea to overcome this problem are residual blocks. Here, each network layer
computes an additive change to the current representation instead of transforming it
directly.

• Residual blocks allow much deeper networks to be trained, and these networks
improve performance across a variety of tasks.

CIFAR Image classification for deeper
networks

Regular network:

Residual network (2016):

Order of operations is important

Batch normalization (in ResNets and other NN)

• Residual blocks employ batch normalization, which re-centers and rescales the
activations (the output after applying the activation function) at each layer. This
makes training more stable and solves the “exploding gradient problem”.

• Batch normalization or BatchNorm shifts and rescales each activation h so that its
mean and variance across the batch B become values that are learned during training.

• During training, the batch statistics (mean and variance) are computed dynamically.
During inference, a running estimate of mean and variance is maintained and used
instead.

Resnet Block

https://arxiv.org/abs/1512.03385 Deep Residual Learning for Image Recognition
(250000 citations)

https://arxiv.org/abs/1512.03385

Resnet 200 (2016)

Resnet 200 (2016)

Convolutional Neural
Networks
Object detection and
semantic segmentation

Objects Detection: You Only Look Once
(YOLO)

• Network similar to VGG (448x448 input)

• 7×7 grid of locations

• Predict class at each location

• Predict 2 bounding boxes at each location
• Five parameters –x,y, height, width, and confidence

• Momentum, weight decay, dropout, and data augmentation

• Heuristic at the end to threshold and decide final boxes

Object detection (YOLO)

Results

Semantic Segmentation with Encoder-
Decoder architecture (2015)

Encoder Decoder

This is the first time we encounter an encoder-decoder architecture, which
will become more common in later lectures.

Recall: Transposed convolutions
(Deconvolutions)

Normal Convolution Transposed convolution

Transposed convolution in 1D. a) Downsampling with kernel size three, stride two, and zero-padding.
Each output is a weighted sum of three inputs (arrows indicate weights). b) This can be expressed by a
weight matrix (same color indicates shared weight). c) In transposed convolution, each input contributes
three values to the output layer, which has twice as many outputs as inputs. d) The associated weight
matrix is the transpose of that in panel (b).

Semantic segmentation results

Symmetries beyond
translation invariance

Convolutional Neural
Networks

Learning with Symmetries

• Locality: features that define a “cat’’ are local in the picture:
whiskers, tail, paws, …

• Translational invariance: Cats can be anywhere in the image.

• Rotational invariance: Relative position of features must be
respected (e.g. whiskers and tail should appear on opposite
sides)

• Our classifier should exhibit all these high-level structures.

Locality and Symmetries

• Locality & Symmetries: basic principles underlying physical laws.

• Physics is governed by local interactions. Think about QFT,
relativity, and statistical physics:

Phases of the 2D Ising Model

• The Hamiltonian for the 2D Ising Model:

• 2D lattice of L x L spins.

• Periodic boundary conditions.

• Onsager’s exact solution: a phase transition in the thermodynamic
limit at the critical temperature:

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 33

Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 33

Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 33

Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

nearest neighbors

Phases of the 2D Ising Model

• The Hamiltonian for the 2D Ising Model:

• 2D lattice of L x L spins.

• Periodic boundary conditions.

• Onsager’s exact solution: a phase transition in the thermodynamic
limit at the critical temperature:

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 33

Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 33

Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 33

Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

nearest neighbors

Vision tasks: local features
matters, e.g.. whiskers,

edge of a table, …

Locality and Symmetries

• Symmetries are at the heart of physics. For example, translation
invariance allows to work in momentum space→less parameters

• In relativity and quantum field theory, Poincare-symmetry
(translations, rotations, boosts) is essential.

• Gauge symmetries are ubiquitous in QFT and gravity. Equivariant
CNNs (Cohen, Welling 2016).

• is equivariant if we change the input in a particular way as
, the output changes in the same way: :

f(x)
x′￼ = g ⋅ x f(g ⋅ x) = g ⋅ f(x)

How to make rotationally invariant CNN

Convolutional Neural
Networks

Fully Convolutional NN

Dropping the fully connected layer
• A fully convolutional neural network (FCNN) is a type of neural network designed so

that all layers are convolutional, without any fully connected layers. This architecture
allows FCNNs to efficiently process inputs of varying sizes and is particularly well-
suited for tasks like image segmentation and other field-to-field learning tasks.

• Features

• Convolutional Layers Only: Unlike traditional CNNs, which often have fully
connected layers at the end, FCNNs replace those layers with convolutional layers.

• Spatial Preservation: FCNNs maintain spatial information throughout the
network, which is crucial for pixel-level predictions.

• Efficient and Flexible: They can take inputs of arbitrary sizes and produce outputs
of corresponding dimensions.

• Famous paper: https://arxiv.org/abs/1411.4038 Fully Convolutional Networks for
Semantic Segmentation (54000 citations)

https://arxiv.org/abs/1411.4038

Example FCNN architecture

A convolutional network that does not have
any fully connected weight layer. Instead, the
last convolutional layer outputs one feature
map per class. The model learns a map of
how likely each class is to occur at each
spatial location. Averaging a feature map
down to a single value provides the argument
to the softmax classifier at the top.

Image credit: https://towardsai.net/

Example from my research

Receptive field of
CNN

Example use from my research

https://arxiv.org/pdf/2205.12964

10°26 £ 10°3 2 £ 10°2 3 £ 10°2

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

b º

bmodel
º |fNL=250

bmodel
º |fNL=0

bdata
º |fNL=250

bdata
º |fNL=0

10°26 £ 10°3 2 £ 10°2 3 £ 10°2

k [h Mpc°1]

250

500

750

1000

N
º
º

Ndata
ºº

Nmodel
ºº

Boundary conditions and FCNNs
• The FCNN output will have the same size as the input if we use zero padding or

periodic (“wrap around”, “circular”) boundary conditions.

• Periodic boundary conditions are common in physics simulations, but less common in
every day life.

• If we want to use “valid” convolutions, and we want large receptive fields, the output
image would be much smaller, e.g we could only segment the center of the image.

The U-Net architecture
• The U-Net is an encoder-decoder architecture where the earlier representations are

concatenated to the later ones.

• The U-Net’s encoder-decoder structure with skip connections is great for capturing both global
context and fine-grained local details, making it ideal for segmentation or reconstruction tasks.

• Note that the U-Net is completely convolutional, so after training, it can be run on an image of
any size.

https://arxiv.org/pdf/1505.04597
U-Net: Convolutional Networks for Biomedical

Image Segmentation (100000 citations)

https://arxiv.org/pdf/1505.04597

The U-Net architecture

U-Nets and V-Nets in cosmology
Example: https://arxiv.org/abs/2408.07699 Field-level Emulation of Cosmic Structure
Formation with Cosmology and Redshift Dependence

https://arxiv.org/abs/2408.07699

Convolutional Neural
Networks

Data Normalization

Before training we normalize the data
Normalizing data for a machine learning task is essential to ensure faster and more stable training.

Convolutional Neural
Networks

Using pre-trained models

Fine-tuning pre-trained models
• For many tasks it is better not to train a CNN from scratch, but to fine-tune

parameters from a pertained model.

• Finetuning a pre-trained CNN is a powerful technique to leverage existing knowledge
from large datasets (like ImageNet) and apply it to your specific task.

• This involves the following steps:

• Choose a Pre-trained Mode

l

• Modify the Output Layer for your target (e.g. regression)

• Freeze Some Layers (optional, reduces computation time)

• Usually we freeze lower level layers and fine tune higher level ones

• Train the model parameters on your data set

Convolutional Neural
Networks
Our CNN project: CAMELS
simulations

CAMELS Multi-field dataset
• We will use a real research dataset to explore both regression and field-to-field learning with

CNNs.

• The dataset comes from here:

• https://www.camel-simulations.org/

• https://arxiv.org/abs/2201.01300 The CAMELS project: public data release
• The Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project was developed to combine cosmology

with astrophysics through thousands of cosmological hydrodynamic simulations and machine learning. CAMELS contains 4,233
cosmological simulations, 2,049 N-body and 2,184 state-of-the-art hydrodynamic simulations that sample a vast volume in
parameter space. In this paper we present the CAMELS public data release, describing the characteristics of the CAMELS
simulations and a variety of data products generated from them, including halo, subhalo, galaxy, and void catalogues, power
spectra, bispectra, Lyman-α spectra, probability distribution functions, halo radial profiles, and X-rays photon lists. We also
release over one thousand catalogues that contain billions of galaxies from CAMELS-SAM: a large collection of N-body
simulations that have been combined with the Santa Cruz Semi-Analytic Model. We release all the data, comprising more than
350 terabytes and containing 143,922 snapshots, millions of halos, galaxies and summary statistics.

• We will use the CAMELS multi field dataset

• https://arxiv.org/abs/2109.10915 The CAMELS Multifield Dataset: Learning the
Universe's Fundamental Parameters with Artificial Intelligence

• We present the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) Multifield Dataset, CMD, a collection
of hundreds of thousands of 2D maps and 3D grids containing many different properties of cosmic gas, dark matter, and stars
from 2,000 distinct simulated universes at several cosmic times. The 2D maps and 3D grids represent cosmic regions that
span ∼100 million light years and have been generated from thousands of state-of-the-art hydrodynamic and gravity-only N-
body simulations from the CAMELS project. Designed to train machine learning models, CMD is the largest dataset of its kind
containing more than 70 Terabytes of data. In this paper we describe CMD in detail and outline a few of its applications. We
focus our attention on one such task, parameter inference, formulating the problems we face as a challenge to the community.

https://www.camel-simulations.org/
https://arxiv.org/abs/2201.01300
https://arxiv.org/abs/2109.10915

Colab
• The rest of this lecture will be using a Colab notebook, prepared by our TA Yurii

Kvasiuk.

• Reading for this lecture:
• https://udlbook.github.io/udlbook/ (Simon Prince - Understanding Deep Learning)

• deeplearningbook.com

Course logistics

https://udlbook.github.io/udlbook/
http://deeplearningbook.com

