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Convolutional Neural
Networks

Residual networks (ResNets)
Cont.



Going deeper

e Image classification performance improved as the depth of convolutional networks
was extended from eight layers (AlexNet) to nineteen layers (VGG). This led to
experimentation with even deeper networks. However, performance decreased
again when many more layers were added.

« A novel idea to overcome this problem are residual blocks. Here, each network layer
computes an additive change to the current representation instead of transforming it
directly.

« Residual blocks allow much deeper networks to be trained, and these networks
improve performance across a variety of tasks.



CIFAR Image classification for deeper
networks
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Regular network:

h, =[x, ¢]

hy; = f3[hy, ¢,

h; = f3|hs, ¢;]
y = f4|h3, @,

Residual network (2016):

hl = X + fl [Xa ¢1]
hy = h; + f3|hy, ¢
hs = hy + f3]hs, ¢4

y = hs + f4|hs, ¢,
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Order of operations iIs important

Figure 11.5 Order of operations in resid-

ual blocks. a) The usual order of linear
transformation or convolution followed
by a ReLLU nonlinearity means that each
residual block can only add non-negative
quantities. b) With the reverse order,
both positive and negative quantities can
be added. However, we must add a linear
transformation at the start of the net-
work in case the input is all negative. c)
In practice, it’s common for a residual
block to contain several network layers.




Batch normalization (in ResNets and other NN)

e Residual blocks employ batch normalization, which re-centers and rescales the
activations (the output after applying the activation function) at each layer. This
makes training more stable and solves the “exploding gradient problem”.

« Batch normalization or BatchNorm shifts and rescales each activation h so that its
mean and variance across the batch B become values that are learned during training.

« During training, the batch statistics (mean and variance) are computed dynamically.
During inference, a running estimate of mean and variance is maintained and used
instead.

Why Use Batch Normalization?

1. Faster Convergence: Reduces internal covariate shift, making training more stable and allowing

higher learning rates.

2. Regularization Effect: Reduces reliance on dropout by adding noise to the activations, acting as

a form of implicit regularization.

3. Reduces Vanishing/Exploding Gradients: Keeps activations in a stable range, improving

gradient flow.

4. Less Sensitivity to Initialization: Helps mitigate issues from poorly initialized weights.



Resnet Block
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https://arxiv.org/abs/1512.03385 Deep Residual Learning for Image Recognition
(250000 citations)



https://arxiv.org/abs/1512.03385

Resnet 200 (2016)
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Resnet 200 (201
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Convolutional Neural
Networks

Object detection and
semantic segmentation



Objects Detection: You Only Look Once
(YOLO)

e Network similar to VGG (448x448 input)

e 7x7 grid of locations

e Predict class at each location

e Predict 2 bounding boxes at each location
e Five parameters —x,y, height, width, and confidence

« Momentum, weight decay, dropout, and data augmentation

e Heuristic at the end to threshold and decide final boxes



Object detection (YOLO
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Results




Semantic Segmentation with Encoder-
Decoder architecture (2015)

00

_| 0 pUL B B
G e L T e e e
o o o o o
o W o Q‘&%eoo yf\%e@&""’oec'o o™ x

Encoder Decoder

This is the first time we encounter an encoder-decoder architecture, which
will become more common in later lectures.



Recall: Transposed convolutions
(Deconvolutions)

a) b) c)
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Normal Convolution Transposed convolution

Transposed convolution in 1D. a) Downsampling with kernel size three, stride two, and zero-padding.
Each output is a weighted sum of three inputs (arrows indicate weights). b) This can be expressed by a
weight matrix (same color indicates shared weight). c) In transposed convolution, each input contributes
three values to the output layer, which has twice as many outputs as inputs. d) The associated weight
matrix is the transpose of that in panel (b).



Semantic segmentation results

Ground truth




Convolutional Neural
Networks

Symmetries beyond
translation invariance



Learning with Symmetries

Locality: features that define a “cat” are local in the picture:
whiskers, tail, paws, ...

Translational invariance: Cats can be anywhere in the image.

Rotational invariance: Relative position of features must be
respected (e.g. whiskers and tail should appear on opposite
sides)

Our classifier should exhibit all these high-level structures.



Locality and Symmetries

 Locality & Symmetries: basic principles underlying physical laws.

* Physics is governed by local interactions. Think about QFT,
relativity, and statistical physics:

Vision tasks: local features
matters, e.g.. whiskers, e T,
edge of a table, ... Ry e




Locality and Symmetries

Symmetries are at the heart of physics. For example, translation
invariance allows to work in momentum space—less parameters

In relativity and quantum field theory, Poincare-symmetry
(translations, rotations, boosts) is essential.

Gauge symmetries are ubiquitous in QFT and gravity. Equivariant
CNNs (Cohen, Welling 2016).

f(x) is equivariant if we change the input in a particular way as
x' = g - x, the output changes in the same way: f(g - x) = g - f(x):

X >~ X
f !
Y Y
Y >~Y



How to make rotationally invariant CNN

1. Data Augmentation

» Rotation Augmentation: Rotating input images during training ensures the model learns to
recognize patterns regardless of orientation.

» Random Rotations: Applying random rotations within a specific range can improve
generalization.

2. Rotational Pooling

» Max-Pooling Over Rotations: Apply convolutional filters at different rotations and take the
maximum response (or average) across all rotations.

» Example: Oriented Response Networks (ORN) use rotation-equivariant convolutional layers
combined with rotation-invariant pooling.

3. Equivariant CNNs

* Group Equivariant CNNs (G-CNNs): Introduced by Cohen and Welling (2016), G-CNNs use
convolutional layers designed to be equivariant to transformations from groups like rotations and
translations.

« Example: G-CNNs with rotation groups (e.g., Cy, C5) learn filters that rotate in discrete steps,

maintaining equivariance and allowing for invariance through pooling.

4. Fourier Transform Approaches

» Harmonic Networks (H-Nets): These use the Fourier transform to capture rotational
symmetries, making the network inherently rotation-invariant.

» By leveraging the Fourier domain, rotations become phase shifts, which are easier to handle with
fewer parameters.



Convolutional Neural
Networks

Fully Convolutional NN



Dropping the fully connected layer

A fully convolutional neural network (FCNN) is a type of neural network designed so
that all layers are convolutional, without any fully connected layers. This architecture
allows FCNNs to efficiently process inputs of varying sizes and is particularly well-
suited for tasks like image segmentation and other field-to-field learning tasks.

e Features

« Convolutional Layers Only: Unlike traditional CNNs, which often have fully
connected layers at the end, FCNNs replace those layers with convolutional layers.

« Spatial Preservation: FCNNs maintain spatial information throughout the
network, which is crucial for pixel-level predictions.

« Efficient and Flexible: They can take inputs of arbitrary sizes and produce outputs
of corresponding dimensions.

« Famous paper: https://arxiv.org/abs/1411.4038 Fully Convolutional Networks for
Semantic Segmentation (54000 citations)



https://arxiv.org/abs/1411.4038

Example FCNN architecture

Output of softmax: .

1,000 class

probabilities -

Output of average

pooling: 1x1x1,000

Output of
convolution: A convolutional network that does not have
16x16x1,000 any fully connected weight layer. Instead, the
Owipat ol pooTmg last convolutional layer outputs one feature
with stride 4: map per class. The model learns a map of
16x16x64 how likely each class is to occur at each
S - spatial location. Averaging a feature map
utput o . .
convolution -+ ReLU: down to a single vall_J(? provides the argument
64x64x64 to the softmax classifier at the top.

Output of pooling
with stride 4:

64x64x64

Output ol
convolution+ ReLU:
256x256x64
Input image:
256x256x3

Image credit: https://towardsai.net/



Example from my research
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Example use from my research

Robust Neural Network-Enhanced Estimation of Local Primordial Non-Gaussianity

Utkarsh Giri* and Moritz Miinchmeyer
University of Wisconsin-Madison, Madison, Wisconsin, USA

Kendrick M. Smith
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, CA
(Dated: May 27, 2022)

When applied to the non-linear matter distribution of the universe, neural networks have been
shown to be very statistically sensitive probes of cosmological parameters, such as the linear per-
turbation amplitude og. However, when used as a “black box”, neural networks are not robust to
baryonic uncertainty. We propose a robust architecture for constraining primordial non-Gaussianity
f~nL, by training a neural network to locally estimate og, and correlating these local estimates with
the large-scale density field. We apply our method to N-body simulations, and show that o(fnr) is
3.5 times better than the constraint obtained from a standard halo-based approach. We show that
our method has the same robustness property as large-scale halo bias: baryonic physics can change
the normalization of the estimated fnr, but cannot change whether fnr is detected.

Keywords: non-Gaussianity, neural networks, large-scale structure
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Boundary conditions and FCNNSs

« The FCNN output will have the same size as the input if we use zero padding or
periodic (“wrap around”, “circular”) boundary conditions.

« Periodic boundary conditions are common in physics simulations, but less common in
every day life.

« If we want to use “valid” convolutions, and we want large receptive fields, the output
image would be much smaller, e.g we could only segment the center of the image.



The U-Net architecture

« The U-Net is an encoder-decoder architecture where the earlier representations are
concatenated to the later ones.

« The U-Net’s encoder-decoder structure with skip connections is great for capturing both global
context and fine-grained local details, making it ideal for segmentation or reconstruction tasks.

e Note that the U-Net is completely convolutional, so after training, it can be run on an image of

any size.
" o https://arxiv.org/pdf/1505.04597
U-Net: Convolutional Networks for Biomedical
input Image Segmentation (100000 citations)
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.


https://arxiv.org/pdf/1505.04597

The U-Net architecture
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Figure 11.10 U-Net for segmenting HeLa cells. The U-Net has an encoder-decoder
structure, in which the representation is downsampled (orange blocks) and then
re-upsampled (blue blocks). The encoder uses regular convolutions, and the de-
coder uses transposed convolutions. Residual connections append the last repre-
sentation at each scale in the encoder to the first representation at the same scale
in the decoder (orange arrows). The original U-Net used “valid” convolutions, so
the size decreased slightly with each layer, even without downsampling. Hence,
the representations from the encoder were cropped (dashed squares) before ap-
pending to the decoder. Adapted from Ronneberger et al. (2015).




U-Nets and V-Nets in cosmology

Example: https://arxiv.org/abs/2408.07699 Field-level Emulation of Cosmic Structure
Formation with Cosmology and Redshift Dependence
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https://arxiv.org/abs/2408.07699

Convolutional Neural
Networks

Data Normalization



Before training we normalize the data

Normalizing data for a machine learning task is essential to ensure faster and more stable training.

1. Channel-wise Normalization (Standard Approach)

This is the most common method where each channel is normalized independently:

T —
/ c
T =

o

e U and o, are the mean and standard deviation of each channel computed across the entire

dataset.

¢ This ensures that each channel has zero mean and unit variance.

2. Min-Max Scaling
If your regression targets are sensitive to the scale of input features, consider Min-Max scaling:

o T~ min(x)

max(z) — min(x)

« This scales values to a range [0, 1] or [—1, 1].

e For multi-channel data, apply this to each channel individually or to the entire dataset depending

on the scenario.

When to Normalize _
* |Input: Always normalize.

Always compute normalization statistics using the training dataset only. . . .
» Target: Normalize if it's large or has a wide range, but remember to invert the

Apply the same normalization to both training and test data. normalization during inference.



Convolutional Neural
Networks

Using pre-trained models



Fine-tuning pre-trained models

« For many tasks it is better not to train a CNN from scratch, but to fine-tune
parameters from a pertained model.

« Finetuning a pre-trained CNN is a powerful technique to leverage existing knowledge
from large datasets (like ImageNet) and apply it to your specific task.

« This involves the following steps:

e Choose a Pre-trained Mode

from torchvision import models
model = models.resnetl8(pretrained=True) |

« Modify the Output Layer for your target (e.g. regression)
e Freeze Some Layers (optional, reduces computation time)

« Usually we freeze lower level layers and fine tune higher level ones

e Train the model parameters on your data set



Convolutional Neural
Networks

Our CNN project: CAMELS
simulations



CAMELS Multi-field dataset

« We will use a real research dataset to explore both regression and field-to-field learning with
CNNs.

e The dataset comes from here:

https://www.camel-simulations.org/

« https://arxiv.org/abs/2201.01300 The CAMELS project: public data release

The Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project was developed to combine cosmology
with astrophysics through thousands of cosmological hydrodynamic simulations and machine learning. CAMELS contains 4,233
cosmological simulations, 2,049 N-body and 2,184 state-of-the-art hydrodynamic simulations that sample a vast volume in
parameter space. In this paper we present the CAMELS public data release, describing the characteristics of the CAMELS
simulations and a variety of data products generated from them, including halo, subhalo, galaxy, and void catalogues, power
spectra, bispectra, Lyman-a spectra, probability distribution functions, halo radial profiles, and X-rays photon lists. We also
release over one thousand catalogues that contain billions of galaxies from CAMELS-SAM: a large collection of N-body
simulations that have been combined with the Santa Cruz Semi-Analytic Model. We release all the data, comprising more than
350 terabytes and containing 143,922 snapshots, millions of halos, galaxies and summary statistics.

We will use the CAMELS multi field dataset

https://arxiv.org/abs/2109.10915 The CAMELS Multifield Dataset: Learning the
Universe's Fundamental Parameters with Artificial Intelligence

We present the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) Multifield Dataset, CMD, a collection
of hundreds of thousands of 2D maps and 3D grids containing many different properties of cosmic gas, dark matter, and stars
from 2,000 distinct simulated universes at several cosmic times. The 2D maps and 3D grids represent cosmic regions that

span ~100 million light years and have been generated from thousands of state-of-the-art hydrodynamic and gravity-only N-
body simulations from the CAMELS project. Designed to train machine learning models, CMD is the largest dataset of its kind
containing more than 70 Terabytes of data. In this paper we describe CMD in detail and outline a few of its applications. We
focus our attention on one such task, parameter inference, formulating the problems we face as a challenge to the community.


https://www.camel-simulations.org/
https://arxiv.org/abs/2201.01300
https://arxiv.org/abs/2109.10915

Colab

e The rest of this lecture will be using a Colab notebook, prepared by our TA Yurii

Kvasiuk.

. —
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& Camels_Multifield_lecture.ipynb ¢ & B ® o Share + @

File Edit View Insert Runtime Tools Help

+ Code + Text Connect A

[ 1 from mpl_toolkits.axes_gridl import make_axes_locatable
colormaps = {'HI':'gnuplot', 'Mcdm':'viridis', 'Mgas':'plasma’', 'Mstar':'inferno', 'ne':'cividis"','P':'cubehelix"','T"': 'magma'}
fig,axs = plt.subplots(1,7,figsize=(28,4))
for i in range(7):
arr = tng_data.fields[12, il
im = axs[il.imshow(arr,norm="'1og"',cmap=colormaps[tng_data.field_names[i]])
divider = make_axes_locatable(axs[i])
cax = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(im, cax=cax, orientation='vertical')
axs[il.set_xticks([])
axs[i].set_yticks([])
axs[i].set_xlabel(tng_data.field_names[i])
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© fig,axs = plt.subplots(1,7,figsize=(28,4))
for i in range(7):

arr = tng_data.fields[12, il
im = axs[i].imshow(arr,cmap=colormaps [tng_data.field_names[i]])
divider = make_axes_locatable(axs[il)
cax = divider.append_axes('right', size='5%"', pad=0.05)
fig.colorbar(im, cax=cax, orientation='vertical')
axs[i].set_xticks([])
axs[i].set_yticks([])
axs[i].set_xlabel(tng_data.field_names[i])
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[ ] train_idx, val_idx = get_train_splits(6000, 0.8)



Course logistics

e Reading for this lecture:

e https://udlbook.qgithub.io/udlbook/ (Simon Prince - Understanding Deep Learning)

» deeplearningbook.com



https://udlbook.github.io/udlbook/
http://deeplearningbook.com

