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Introduction
• In this unit we will ultimately discuss how to get proper posteriors for measurements 

made with machine learning, e.g. how to “assign error bars”. 

• For this we need probabilistic machine learning. We need to know how to learn the 
probability distribution of data.  

• Thus in the present lecture we will discuss some main methods for machine learning 
probability distributions.  

• There are non-parametric and parametric methods to learn PDFs.  

• A non-parametric model smoothes the observed data in some way.  

• A parametric model fits a function that has some free parameters to the data, i.e. 
it makes stronger assumptions about the true PDF. 

• For parametric methods, we will discuss those that give us normalized PDFs. This is 
not the case for e.g. diffusion models, which we will cover later.



Learning the parameters 
of a PDF



Non-parametric methods to learn PDFs
• The simplest non-parametric method is just histogramming.  

• However:  

• Choice of binning can have a large effect 

• Does not work in high dimension

https://scikit-learn.org/stable/modules/density.html#



Kernel density estimators
• KDE work by smoothing the data with some Kernel, such as a Gaussian.  

• In the following figure, 100 points are drawn from a bimodal distribution, and the 
kernel density estimates are shown for three choices of kernels:

https://scikit-learn.org/stable/modules/density.html



Kernel density estimators
• Kernel Density Estimators (KDEs) belong to the class of non-parametric methods for 

estimating probability density functions (PDFs). 

• Unlike parametric methods (such as Gaussian distributions) that assume a specific 
functional form of the PDF, KDEs make minimal assumptions. Instead, they estimate 
the PDF directly from the data using kernels. 

• However: 

• Struggles in high dimensions due to the curse of dimensionality, where the data 
becomes sparse and the estimator requires exponentially more samples. 

• Limited to smoothing data points with a kernel function, which may not capture 
intricate patterns.



Example: KDE from my research 
• Population model in CHIME FRB catalogue https://arxiv.org/pdf/2106.04352  

• Goal was to make synthetic data (blue) that is similar to the observed one (black) 
but explores a somewhat larger domain.

https://scikit-learn.org/stable/modules/density.html

https://arxiv.org/pdf/2106.04352


Parametric methods to learn PDFs
• We now discuss parametric methods to learn PDFs. 

• In this case, we specify some functional form that we believe the PDF to be in, up to a 
number of free PFD parameters which we aim to learn. 

• We have some data {x} and want to learn the parameters theta of the PDF that 
describes the data (assuming it is i.i.d distributed): 

• We can do this by having a training data set {x}. Once the PDF is learned, we can draw 
new samples that were not in the training data. 



Learning parametric models with maximum 
likelihood
• Idea: Choose parameters that maximize the likelihood of observing the given data. 

• Or equivalently 

• Example for the Gaussian 

• We get the analytic 



Maximum Likelihood with gradient descent
• Recall: Choose parameters that maximize the likelihood of observing the given data. 

• When the PDF or likelihood is complex, gradient-based methods like stochastic 
gradient descent (SGD) are used to maximize the likelihood or log-likelihood. 

• We’ll use this for more complex PDFs using “Normalizing flows” below. 

• Gradient descent is used to fit the parameters of the PDF to make the training data 
maximally likely under the PDF.



How to learn a conditional PDF
• It is easy to generalize maximum likelihood to the case of a conditional PDF:



Other methods to learn PDFs
• Method of Moments: Match the theoretical moments of the distribution (mean, 

variance, skewness, etc.) to the empirical moments from the data. 

• When the MLE involves complex optimization or derivatives that are difficult to 
compute, the MoM can provide a quick and straightforward alternative. 

• Expectation-Maximization (EM) Algorithm: Used when data is incomplete or has 
latent variables. The algorithm iteratively estimates latent variables (E-step) and 
updates parameters (M-step) until convergence. 

• Example: Mixture models such as Gaussian Mixture Models (GMMs). 

• See next section 

• Bayesian Inference: Treat the parameters themselves as random variables and 
update their distributions based on observed data.



Gaussian Mixture 
Models (GMM)



Gaussian Mixture Model (GMM)

• Generative model often used in the context of clustering.

• Points are drawn from one of the  Gaussians, with its own  & :

•  = Probability a pt is drawn from mixture , the probability of 
generating a point  in a GMM is:

• Given a dataset , the likelihood of the dataset:

• Denote the set of parameters  by .

K μk Σk

πk k
x

X = {x1, …xN}

{μk, Σk, πk} θ
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underlying probability distribution from which the data was generated. Our model for how the data is generated is called
the generative model. In clustering, we assume that data points are assigned a cluster, with each cluster characterized by
some cluster-specific probability distribution (e.g. a Gaussian with some mean and variance that characterizes the cluster).
We then specify a procedure for finding the value of the latent variable. This is often done by choosing the values of the
latent variable that minimize some cost function.

One common choice for a class of cost functions for many unsupervised learning problems is Maximum Likelihood
Estimation (MLE), see Sections 5 and 6. In MLE, we choose the values of the latent variables that maximize the likelihood
of the observed data under our generative model (i.e. maximize the probability of getting the observed dataset under our
generative model). Such MLE equations often give rise to the kind of Expectation–Maximization (EM) equations that we
first encountered in the last section in the context of K -means clustering.

Gaussian Mixtures models (GMM) are a generative model often used in the context of clustering. In GMM, points are
drawn from one of K Gaussians, each with its own mean µk and covariance matrix ⌃k,

N (x|µ,⌃ ) ⇠ exp

�

1
2
(x � µ)⌃�1(x � µ)T

�
. (145)

Let us denote the probability that a point is drawn from mixture k by ⇡k. Then, the probability of generating a point x in
a GMM is given by

p(x|{µk,⌃ k, ⇡k}) =

KX

k=1

N (x|µk,⌃ k)⇡k. (146)

Given a dataset X = {x1, . . . , xN}, we can write the likelihood of the dataset as

p(X |{µk,⌃ k, ⇡k}) =

NY

i=1

p(xi|{µk,⌃ k, ⇡k}) (147)

For future reference, let us denote the set of parameters (of K Gaussians in the model) {µk,⌃ k, ⇡k} by ✓.
To see how we can use GMM and MLE to perform clustering, we introduce discrete binary K -dimensional latent

variables z for each data point x whose kth component is 1 if point x was generated from the kth Gaussian and zero
otherwise (these are often called ‘‘one-hot variables’’). For instance if we were considering a Gaussian mixture with K = 3,
we would have three possible values for z ⌘ (z1, z2, z3) : (1, 0, 0), (0, 1, 0) and (0, 0, 1). We cannot directly observe the
variable z . It is a latent variable that encodes the cluster identity of point x. Let us also denote all the N latent variables
corresponding to a dataset X by Z .

Viewing the GMM as a generative model, we can write the probability p(x|z) of observing a data point x given z as

p(x|z; {µk,⌃ k}) =

KY

k=1

N (x|µk, ⌃k)zk (148)

as well as the probability of observing a given value of latent variable

p(z|{⇡k}) =

KY

k=1

⇡
zk
k . (149)

Using Bayes’ rule, we can write the joint probability of a clustering assignment z and a data point x given the GMM
parameters as

p(x, z; ✓) = p(x|z; {µk,⌃ k})p(z|{⇡k}). (150)

We can also use Bayes rule to rearrange this expression to give the conditional probability of the data point x being
in the kth cluster, � (zk), given model parameters ✓ as

� (zk) ⌘ p(zk = 1|x; ✓ ) =
⇡kN (x|µk, ⌃k)PK
j=1 ⇡jN (x|µj, ⌃j)

. (151)

The � (zk) are often referred to as the ‘‘responsibility’’ that mixture k takes for explaining x. Just like in our discussion of
soft-max classifiers, this can be made into a ‘‘hard-assignment’’ by assigning each point to the cluster with the largest
probability: argmaxk � (zk) over the responsibilities.

The complication is of course that we do not know the parameters ✓ of the underlying GMM but instead must also
learn them from the dataset X . As discussed above, ideally we could do this by choosing the parameters that maximize
the likelihood (or equivalently the log-likelihood) of the data

✓̂ = argmax
✓

log p(X |✓) (152)
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https://scikit-learn.org/stable/modules/mixture.html



Gaussian Mixture Model (GMM)
• Common cost function is Maximum likelihood estimation (MLE).

• Latent variables are chosen to maximize the likelihood of the 
observed data under our generative model → Expectation-
Maximization (EM) equations.

• Latent variable  for point  has the property that 
 if  is drawn from the -th Gaussian, and .

• Probability of observing a datapoint  given :

• Probability of observing a given value of latent variable:

z = (z1, …, zK) x
zk = 1 x k zj≠k = 0

x z
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Gaussian Mixture Model (GMM)

• Joint probability of a clustering assignment  and a datapoint :

• Conditional probability of the data point in the -th cluster, ,  
given model parameters  is

 known as the “responsibility” that mixture  takes for explaining .

z x

k γ(zk)
θ

k x
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For future reference, let us denote the set of parameters (of K Gaussians in the model) {µk,⌃ k, ⇡k} by ✓.
To see how we can use GMM and MLE to perform clustering, we introduce discrete binary K -dimensional latent

variables z for each data point x whose kth component is 1 if point x was generated from the kth Gaussian and zero
otherwise (these are often called ‘‘one-hot variables’’). For instance if we were considering a Gaussian mixture with K = 3,
we would have three possible values for z ⌘ (z1, z2, z3) : (1, 0, 0), (0, 1, 0) and (0, 0, 1). We cannot directly observe the
variable z . It is a latent variable that encodes the cluster identity of point x. Let us also denote all the N latent variables
corresponding to a dataset X by Z .

Viewing the GMM as a generative model, we can write the probability p(x|z) of observing a data point x given z as

p(x|z; {µk,⌃ k}) =

KY

k=1

N (x|µk, ⌃k)zk (148)

as well as the probability of observing a given value of latent variable

p(z|{⇡k}) =

KY

k=1

⇡
zk
k . (149)

Using Bayes’ rule, we can write the joint probability of a clustering assignment z and a data point x given the GMM
parameters as

p(x, z; ✓) = p(x|z; {µk,⌃ k})p(z|{⇡k}). (150)

We can also use Bayes rule to rearrange this expression to give the conditional probability of the data point x being
in the kth cluster, � (zk), given model parameters ✓ as

� (zk) ⌘ p(zk = 1|x; ✓ ) =
⇡kN (x|µk, ⌃k)PK
j=1 ⇡jN (x|µj, ⌃j)

. (151)

The � (zk) are often referred to as the ‘‘responsibility’’ that mixture k takes for explaining x. Just like in our discussion of
soft-max classifiers, this can be made into a ‘‘hard-assignment’’ by assigning each point to the cluster with the largest
probability: argmaxk � (zk) over the responsibilities.

The complication is of course that we do not know the parameters ✓ of the underlying GMM but instead must also
learn them from the dataset X . As discussed above, ideally we could do this by choosing the parameters that maximize
the likelihood (or equivalently the log-likelihood) of the data

✓̂ = argmax
✓

log p(X |✓) (152)
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underlying probability distribution from which the data was generated. Our model for how the data is generated is called
the generative model. In clustering, we assume that data points are assigned a cluster, with each cluster characterized by
some cluster-specific probability distribution (e.g. a Gaussian with some mean and variance that characterizes the cluster).
We then specify a procedure for finding the value of the latent variable. This is often done by choosing the values of the
latent variable that minimize some cost function.

One common choice for a class of cost functions for many unsupervised learning problems is Maximum Likelihood
Estimation (MLE), see Sections 5 and 6. In MLE, we choose the values of the latent variables that maximize the likelihood
of the observed data under our generative model (i.e. maximize the probability of getting the observed dataset under our
generative model). Such MLE equations often give rise to the kind of Expectation–Maximization (EM) equations that we
first encountered in the last section in the context of K -means clustering.

Gaussian Mixtures models (GMM) are a generative model often used in the context of clustering. In GMM, points are
drawn from one of K Gaussians, each with its own mean µk and covariance matrix ⌃k,

N (x|µ,⌃ ) ⇠ exp

�

1
2
(x � µ)⌃�1(x � µ)T

�
. (145)
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parameters as
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The � (zk) are often referred to as the ‘‘responsibility’’ that mixture k takes for explaining x. Just like in our discussion of
soft-max classifiers, this can be made into a ‘‘hard-assignment’’ by assigning each point to the cluster with the largest
probability: argmaxk � (zk) over the responsibilities.

The complication is of course that we do not know the parameters ✓ of the underlying GMM but instead must also
learn them from the dataset X . As discussed above, ideally we could do this by choosing the parameters that maximize
the likelihood (or equivalently the log-likelihood) of the data

✓̂ = argmax
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log p(X |✓) (152)



Training GMM with the EM algorithm
• Recall: 

• The Expectation-Maximization algorithm performs the following steps iteratively:



The EM algorithm is used because directly maximizing the likelihood of a GMM is difficult due to 
latent variables (cluster assignments). EM provides an iterative approach that alternates 
between estimating latent variables (E-step) and optimizing parameters (M-step).



Normalizing Flows

Introduction



• Normalizing flow: Series of learned transformations that deform a 
simple base distribution into a complicated target distribution.


• Difference with most other ML methods: We learn a probability 
distribution, rather than an arbitrary input->output mapping.


• Review: https://arxiv.org/abs/1912.02762. Widely used in physics 
e.g. in QFT, likelihood-free inference and cosmology

Normalizing flows

T1(z0)

…
p0(z0) p1(z1)

T2(z1) TK(zK−1)

pK(zK)

z0 z1 zK = x

Learned transformations Ti 
e.g. parametrized by a neural network

…

High 
dimensional 

example 
(samples)

1d example 
(PDF)



Normalizing flows are generative models

• Like GANs and diffusion models, 
normalizing flows are generative 
models. 


• They can be used to generate 
images too. However they are 
not currently as good at that as 
these other models.


• But they can do something 
other models cannot: give a 
normalized probability density 
for the sample. The are real 
PDFs. 


Real-NVP flow


Glow flow




• After training two basic operations can be performed:


• Exact density evaluation (backward mode)


• Sampling from the distribution (forward mode)

• Transformation T (the “flow”)                Change of variables of PDF


• Chain many “simple” transformations together to make a complicated 
distribution: 

Normalizing flows

p(x)Sample x

Target sample xBase distribution sample u



















Designing normalizing 
flows















Source: 2310.03741

Illustration of the MAF flow



Use example: https://arxiv.org/abs/2101.08176 Normalizing Flows for Lattice Field Theory


https://arxiv.org/abs/2101.08176




Aside: Normalizing flows to model 
the matter distribution in cosmology  
(Research example from my group)



Gaussian initial conditions PDF morphs into complicated late-time 
matter distribution. 

NFs vs structure formation

T1(z0)

…
p0(z0) p1(z1)

T2(z1) TK(zK−1)

pK(zK)

z0 z1 zK = x

Gaussian primordial matter perturbations Non-gaussian matter/galaxy distribution today

Cosmological time evolution

Rouhiainen, MM: arXiv:2105.12024 Normalizing flows for random fields in cosmology

 

https://arxiv.org/abs/2105.12024


Flowing from a correlated Gaussian to todays matter distribution

Density peaks 
match, as in 
physical structure 
formation.

In cosmology: Flow 
from a physically 
motivated prior 
PDF: The gaussian 
field with the right 
power spectrum.

Flow:

RealNVP

Power spectrum matches



De-noising with a Generative Prior
In data analysis in cosmology we often make use of Gaussian priors (Wiener 
Filter). This is no longer justified for very high resolution observations. Using 
the trained normalizing flow we can include non-Gaussian priors: 

We use a flow trained on simulations of the matter distribution. Then we use 
this knowledge of the matter PDF to de-noise an observation of the matter 
field by maximizing the posterior. 

ln p(y |d) = −
1
2

(y − d)TN−1(y − d)−ln pflow(y)

Flow based de-noising

True matter field Noisy observation



De-noising the observed matter field

Rouhiainen, MM: arXiv:2211.15161 De-
noising non-Gaussian fields in cosmology 
with normalizing flows


As expected, the NF lowers the 
reconstruction noise on non-linear 
scales compared to the Wiener 
filter. 


Generative de-noising is useful in 
many other domains. 

MAP

https://arxiv.org/abs/2211.15161


• Reading for this lecture: 
• I did not use a specific primary reference for this lecture. However some of the 

main textbooks on the website cover these topics. 

Course logistics


