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Simulation-Based
Inference

A quick look into explicit
Inference with
Differentiable Simulations



Recall: Implicit vs Explicit inference

* |n most situations a simulation does not provide a probability density

(likelihood) Z(x | @) of observations given parameters. Such simulations
are sometimes called implicit models.

* |Implicit means that their likelihood cannot be computed explicitly, i.e. it
Is not computationally tractable. We only get samples of the simulation.

* On the other hand, models or simulations that do provide a likelihood are
called explicit models. Recall for example Gaussian likelihoods.

* A key problem in explicit inference is to marginalize over the latent
variables, such as the random initial conditions of a simulation.

p(c|6) = / dz p(z, 2/6)

* For comparison to our study of SBI | now want to discuss a specific
example of explicit inference. This approach is also sometimes called
“forward modelling” or Bayesian hierarchical modelling. This is a
general approach to many problems that is important to know.



Explicit inference with probabilistic forward modelling

 Assume that we have a simulator, called the “forward model” f,

depending on parameters 6 that describes the evolution of a

system starting from a signal s (e.g. the initial conditions of the
forward process):

f(s,0)

« We want to infer the parameters @ and the signal s from data

d, which we take to be a the forward evolved signal plus
some observational noise.

d = £(s) + n

* This setup is also called an “inverse problem?”, i.e. we want to
reconstruct the signal from the data, assuming that we know the
forward model as a function of some parameters. Inverse
problems are generally ill-posed (need to regularize).



Example: Cosmology forward model

Matter distribution of the universe

Initial conditions of the universe s
Observable galaxies

Function of 8 Function of ¢

Drawn from prior P(s)

Function of 0

Example of a very complicated forward
model that maps from the initial conditions
of the universe to (simulated) observed
data from a telescope. Note that we can
easily add new effects to the forward Data d
model. Clearly the computational

challenge is enormous.

Function of 0



Example: Cosmology forward model

 Assuming the observational noise is Gaussian we can write an explicit
likelihood of the form

log £L(d|s,©) = —%(f(s, 0) —d*)T'N~1(f(s,0) — d°%) + const.

* To complete the posterior we need to add a prior for the parameters
parameters @ and s which we want to infer.

* Then we need to sample the posterior. Since s is usually very high
dimensional, normal MCMC will not work.

 However there are sampling methods that work in very high dimensions,
in particular Hamiltonian Monte Carlo (HMC) and versions of Variational
Inference (VI). These require the forward model to be differentiable.

e Optimization in very high dimensions requires derivatives to find the
minimum. For this reason differentiable simulations have become an
important topic all over physics.

* More details about this approach in cosmology and references can be
found in my cosmology lecture notes.



Examples: differentiable cosmology simulations

nttps://arxiv.org/abs/2010.11847 FlowPM: Distributed TensorFlow
mplementation of the FastPM Cosmological N-body Solver

nttps://arxiv.org/abs/2211.09815 Differentiable Cosmological Simulation
with Adjoint Method

https://www.youtube.com/watch?
v=Epsgh6vrOgs&ab channel=ParticleMeshWithDerivatives

https://arxiv.org/abs/2002.00965 Bayesian de-lensing delight: sampling-
based inference of the primordial CMB and gravitational lensing



https://arxiv.org/abs/2010.11847
https://arxiv.org/abs/2211.09815
https://www.youtube.com/watch?v=Epsgh6vr0qs&ab_channel=ParticleMeshWithDerivatives
https://www.youtube.com/watch?v=Epsgh6vr0qs&ab_channel=ParticleMeshWithDerivatives
https://arxiv.org/abs/2002.00965

Graph Neural Networks
(GNN)

Graph data
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Data on graphs
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Data on graphs
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Graphs

* A graph consists of nodes and edges.

* [tis a very general structure that can represent many different forms of
data.

e Examples

e aregular grid is a specific graph (so you can consider a CNN as a
specific subset of GNN).

* In a molecule, the atoms would be nodes and the bondings (ionic,
covalent etc) would be edges.

A graph can be directed or undirected. For example, in a subway
network, it can take a different time to go from A to B than from B to A.



Definition of a graph

A Graph is a pair (V,E), where V is a set whose elements are called vertices and E is a set of
(un)ordered pairs of vertices {v1, v2}, whose elements are called edges.

Occasionally, this definition is being modified to include a general feature of the graph. In
that case, graph is defined as a three-tuple (V,E,u).

Im. Source:
Wikipedia

Directed and undirected fully-
connected graphs

The edges, nodes, and global features, can all carry information.



Adjacency matrix

Im. Source: bishopbook.com

A B C D E ¢ E A D B

Q

Q T =

T O = &

& O

(@) (b) (c)
Figure 13.2 An example of an adjacency matrix showing (a) an example of a graph with five nodes, (b) the

associated adjacency matrix for a particular choice of node order, and (c) the adjacency matrix corresponding to
a different choice for the node order.

* For undirected edges, the adjacency matrix is symmetric.

* The graph neural network should be invariant under re-ordering
(permutation) of the nodes. This is an “inductive bias”.


http://bishopbook.com

Learning with graphs

The key objective is to provide a framework to learn (and predict) from
graph-represented data.

The main examples are:

node-level prediction (eg: predict a property of a given node
(vertex))

edge-level prediction (predict the connection bw. two given nodes)
graph classification (predict a general property of a graph)

global regression (predict a global property from he graph)

graph generation



Graph neural networks

e A GNN transforms one graph into another graph, by
updating the node, edge and global features. We can

stack many such layers to make a deep graph neural
network.

e The edge features, node features and global features
are carrying information in form of a representation
(=embedding), which is usually a vector, i.e, a 1-
dimensional array of numbers.

e |f the goal is to predict a global output (rather than a
graph), one usually has a final aggregation layer that
takes all the information from the output graph and
passes it through a fully connected layer.



Receptive field of GNN

Figure 13.4 Schematic illustration of infor-
mation flow through successive layers of a
graph neural network. In the third layer a sin-
gle node is highlighted in red. It receives in-
formation from its two neighbours in the previ-
ous layer and those in turn receive informa-
tion from their neighbours in the first layer.
As with convolutional neural networks for im-
ages, we see that the effective receptive field,
corresponding to the number of nodes shown
in red, grows with the number of processing
layers.
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A simple GNN

We need to construct a method that will be permutation

invariant. We do so by aggregating information from
neighboring nodes.

Algorithm 13.1: Simple message-passing neural network

Input: Undirected graph G = (V, )
Initial node embeddings {h{’ = x,,}
Aggregate(-) function
Update(-, -) function

z.ﬁf) < Aggregate ({hgz) :m € N(")})

return {h.S,L )}

wodes {4kt sfare

Output: Final node embeddings {h{’} e // . A @ ”(,f" e
// Iterative message-passing / _1__4 - 4400{" o
forl € {0,...,L—1}do V

gH) + Update (hﬁf),z%)) — /ML F [~/61[L}r ca4/:fc/f/
end for 4//1/")



Typical aggregation operations

Summation Aggregate ({h!)) : m € N(n)}) = Z h(
meN(n)
Average Aggregate ({hﬁj,} :m € N(n)}) = |N271)| Z h,ﬁfl)
1 meN (n)

Often different aggregation operations are combined. For
example if we had only average aggregation, counting things
becomes difficult.



Message Passing Framework

(Relational iInductive biases, deep learning, and graph networks, https://arxiv.org/abs/
1806.01261)

A Message Passing Graph Neural Nets is a general class of
architectures for learning from graph-represented data.

It is a very general architecture that has become widely used.

It combines rules for edge, node and globals updates in each layer.
0P P @ o

(a) Edge update (b) Node update ) Global update


https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1806.01261

Algorithm 13.2: Graph neural network with node, edge, and graph embeddings

Input: Undirected graph G = (V, £)
Initial node embeddings {hS’)}
Initial edge embeddings {e'0)
Initial graph embedding g(®)
Output: Final node embeddings {h{"’}
Final edge embeddings {e' .
Final graph embedding g (%)

// Iterative message-passing

for! € {0,...,L — 1} do

elltl) Update, 4. (e%)n,h(l) h) g(l))

z\ V) « Aggregate, . ({eﬁf;,,l) :meN (n)})
h{!™") « Update,_,. (hg), (1+1) g(l))

g+D) « Update,,,y (89, {h™"}, {ell"})

end for
return {h$"'}, {e\r }, g©




el'"tl) = Update,, dge (e O h, h(l),g(l)) (13.32)
z*1) = Aggregate__,. ({e(l+1) : meN(n)}) (13.33)

h{"*Y) = Update,_
gt = Update

(h(l) (l+1),g(l)) (13.34)
( (l),{hg-i-l) . n eV}, {e(l+1) . (n,m) € g}) (13.35)

node

graph

Figure 13.5 lllustration of the general graph message-passing updates defined by (13.32) to (13.35), showing
(a) edge updates, (b) node updates, and (c) global graph updates. In each case the variable being updated is
shown in red and the variables that contribute to that update are those shown in red and blue.

The update functions are usually learned by MLPs.

Im. Source: bishopbook.com



http://bishopbook.com

Using GNN

* The message passing GNN that we have discussed is very general and
widely applicable.

e However GNN are not always easy to train. It can take a lot of
experimentation to get good results.

 There are also special forms of GNN, which are subsets of what we
discussed, but may work better for specific problems.

e For example there are Graph Convolutional Neural Networks which
generalize the notion of Convolution to Graphs using spectral graph
theory.

e GNN can also be made invariant under specific symmetries. In fact we
will explore rotation invariance in the next problem set.



Code frameworks

tensorflow/gnn

Tensor Flow GNN is a library to build Graph Neura
Networks on the TensorFlow platform.

F

tfgnn (TensorFlow)
jraph (Jax) e FL
{PyG} (PyTorch Geometric)




We will use PyG

https://pytorch-geometric.readthedocs.io/en/latest/
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PyG Documentation

@ PyG (PyTorch Geometric) is a library built upon O PyTorch to easily write and train Graph Neural
Networks (GNNs) for a wide range of applications related to structured data.

It consists of various methods for deep learning on graphs and other irregular structures, also
known as geometric deep learning, from a variety of published papers. In addition, it consists of
easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-
support, torch.compile support, DataPipe support, a large number of common benchmark datasets
(based on simple interfaces to create your own), and helpful transforms, both for learning on
arbitrary graphs as well as on 3D meshes or point clouds.

l';.,t Join our Slack community!

PyG Documentation

Install PyG

Installation

Get Started

Introduction by Example
Colab Notebooks and Video Tutorials

Tutorials

Design of Graph Neural Networks
Working with Graph Datasets
Use-Cases & Applications
Distributed Training

Advanced Concepts


https://pytorch-geometric.readthedocs.io/en/latest/

Examples of GNN in physics

lceCube particle shower reconstruction

LHC event reconstruction

Cosmological parameter estimation from galaxies
Particle-based simulations

https://arxiv.org/abs/2209.03042

d I'<1V > hep-ex > arXiv:2209.03042

High Energy Physics - Experiment

[Submitted on 7 Sep 2022 (v1), last revised 11 Oct 2022 (this version, v3)]

Graph Neural Networks for Low-Energy Event Classification &
Reconstruction in lceCube

https://arxiv.org/abs/2007.13681

Search

d I'(lv > hep-ex > arXiv:2007.13681

High Energy Physics - Experiment
[Submitted on 27 Jul 2020 (v1), last revised 21 Oct 2020 (this version, v2)]

Graph Neural Networks in Particle Physics

Jonathan Shlomi, Peter Battaglia, Jean-Roch Vlimant



N/l Search... https://arxiv.org/abs/2002.09405
d I' fﬂ\lV > ¢s > arXiv:2002.09405

Computer Science > Machine Learning

[Submitted on 21 Feb 2020 (v1), last revised 14 Sep 2020 (this version, v2)]

Learning to Simulate Complex Physics with Graph Networks

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, Peter W. Battaglia

https://arxiv.org/abs/2411.02496
As an example from my group

= I'(lV > astro-ph > arXiv:2411.02496

Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 4 Nov 2024]

Reconstruction of Continuous Cosmological Fields from Discrete
Tracers with Graph Neural Networks

Yurii Kvasiuk, Jordan Krywonos, Matthew C. Johnson, Moritz Miinchmeyer


https://arxiv.org/abs/2411.02496

Our example: GNN for galaxies

The rest of this lecture will be on Colab.

cO & gnn_for_si8_lecture.ipynb ¥
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© ax.patch.set_facecolor('black")

@ ax.xaxis.line.set_color((0.7, 0.7, 0.7, 0.7))
ax.yaxis.line.set_color((0.7, 0.7, 0.7, 0.7))
{x} ax.zaxis.line.set_color((0.7, 0.7, 0.7, 0.7))

ax.xaxis.label.set_color('white')
ax.yaxis.label.set_color('white')
ax.zaxis.label.set_color('white')
ax.tick_params(axis='x"', colors='white')
(] ax.tick_params(axis='y', colors='white')
ax.tick_params(axis='z', colors='white')
ax.title.set_color('white')

plt.show()
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Course logistics

e Reading for this lecture:

 This lecture was based in part on the book by Bishop, linked on the
website.



