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Simulation-Based 
Inference
A quick look into explicit 
inference with  
Differentiable Simulations



Recall: Implicit vs Explicit inference
• In most situations a simulation does not provide a probability density 

(likelihood)  of observations given parameters. Such simulations 
are sometimes called implicit models. 


• Implicit means that their likelihood cannot be computed explicitly, i.e. it 
is not computationally tractable. We only get samples of the simulation.


• On the other hand, models or simulations that do provide a likelihood are 
called explicit models. Recall for example Gaussian likelihoods. 


• A key problem in explicit inference is to marginalize over the latent 
variables, such as the random initial conditions of a simulation. 


• For comparison to our study of SBI I now want to discuss a specific 
example of explicit inference. This approach is also sometimes called 
“forward modelling” or Bayesian hierarchical modelling. This is a 
general approach to many problems that is important to know.
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Explicit inference with probabilistic forward modelling

• Assume that we have a simulator, called the “forward model” f, 
depending on parameters  that describes the evolution of a 
system starting from a signal s (e.g. the initial conditions of the 
forward process):


• We want to infer the parameters  and the signal s from data 
d, which we take to be a the forward evolved signal plus 
some observational noise.  

       
• This setup is also called an “inverse problem”, i.e. we want to 

reconstruct the signal from the data, assuming that we know the 
forward model as a function of some parameters. Inverse 
problems are generally ill-posed (need to regularize). 
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d = f(s) + n



Example: Cosmology forward model

Data d

forward

Observable galaxies

Matter distribution of the universe
Initial conditions of the universe s
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Example of a very complicated forward 
model that maps from the initial conditions 
of the universe to (simulated) observed 
data from a telescope. Note that we can 
easily add new effects to the forward 
model. Clearly the computational 
challenge is enormous. 

Function of θ Function of θ

Function of θ

Function of θ

Drawn from prior P(s)



Example: Cosmology forward model
• Assuming the observational noise is Gaussian we can write an explicit 

likelihood of the form


• To complete the posterior we need to add a prior for the parameters 
parameters  and s which we want to infer. 


• Then we need to sample the posterior. Since s is usually very high 
dimensional, normal MCMC will not work.


• However there are sampling methods that work in very high dimensions, 
in particular Hamiltonian Monte Carlo (HMC) and versions of Variational 
Inference (VI). These require the forward model to be differentiable. 


• Optimization in very high dimensions requires derivatives to find the 
minimum. For this reason differentiable simulations have become an 
important topic all over physics.


• More details about this approach in cosmology and references can be 
found in my cosmology lecture notes. 
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Examples: differentiable cosmology simulations

• https://arxiv.org/abs/2010.11847 FlowPM: Distributed TensorFlow 
Implementation of the FastPM Cosmological N-body Solver 


• https://arxiv.org/abs/2211.09815 Differentiable Cosmological Simulation 
with Adjoint Method 


• https://www.youtube.com/watch?
v=Epsgh6vr0qs&ab_channel=ParticleMeshWithDerivatives 


• https://arxiv.org/abs/2002.00965 Bayesian de-lensing delight: sampling-
based inference of the primordial CMB and gravitational lensing

https://arxiv.org/abs/2010.11847
https://arxiv.org/abs/2211.09815
https://www.youtube.com/watch?v=Epsgh6vr0qs&ab_channel=ParticleMeshWithDerivatives
https://www.youtube.com/watch?v=Epsgh6vr0qs&ab_channel=ParticleMeshWithDerivatives
https://arxiv.org/abs/2002.00965


Graph Neural Networks 
(GNN)

Graph data



Images: Wikipedia 

Data on regular grids

Grids:  
Image: (HxWxC)

Video: (TxHxWxC)


Time Series (also grids) 

Text: (N)-dim sequence

Speech: (N)-dim sequence




https://snap.stanford.edu/class/cs224w-2023/
slides/01-intro.pdf

Data on graphs



https://snap.stanford.edu/class/cs224w-2023/
slides/01-intro.pdf

Data on graphs



Graphs
• A graph consists of nodes and edges. 

• It is a very general structure that can represent many different forms of 

data. 

• Examples

• a regular grid is a specific graph (so you can consider a CNN as a 

specific subset of GNN).

• In a molecule, the atoms would be nodes and the bondings (ionic, 

covalent etc) would be edges. 

• A graph can be directed or undirected. For example, in a subway 

network, it can take a different time to go from A to B than from B to A.  



A Graph is a pair (V,E), where V is a set whose elements are called vertices and E is a set of 
(un)ordered pairs of vertices {v1, v2}, whose elements are called edges. 


Occasionally, this definition is being modified to include a general feature of the graph. In 
that case, graph is defined as a three-tuple (V,E,u). 

Im. Source: 
Wikipedia

Directed and undirected fully-
connected graphs

Definition of a graph

The edges, nodes, and global features, can all carry information.



Im. Source: bishopbook.com

Adjacency matrix

• For undirected edges, the adjacency matrix is symmetric. 

• The graph neural network should be invariant under re-ordering 

(permutation) of the nodes. This is an “inductive bias”. 

http://bishopbook.com


The key objective is to provide a framework to learn (and predict) from 
graph-represented data. 

The main examples are:  

● node-level prediction (eg: predict a property of a given node 
(vertex))  

● edge-level prediction (predict the connection bw. two given nodes) 
● graph classification (predict a general property of a graph) 
● global regression (predict a global property from he graph) 
● graph generation

Learning with graphs



• A GNN transforms one graph into another graph, by 
updating the node, edge and global features. We can 
stack many such layers to make a deep graph neural 
network. 

• The edge features, node features and global features 
are carrying information in form of a representation 
(=embedding), which is usually a vector, i.e, a 1-
dimensional array of numbers.  

• If the goal is to predict a global output (rather than a 
graph), one usually has a final aggregation layer that 
takes all the information from the output graph and 
passes it through a fully connected layer. 

Graph neural networks



Receptive field of GNN



We need to construct a method that will be permutation 
invariant. We do so by aggregating information from 
neighboring nodes.

A simple GNN



Summation 

Average 

Often different aggregation operations are combined. For 
example if we had only average aggregation, counting things 
becomes difficult.  

Typical aggregation operations



Message Passing Framework  
(Relational inductive biases, deep learning, and graph networks, https://arxiv.org/abs/
1806.01261)

A Message Passing Graph Neural Nets is a general class of 
architectures for learning from graph-represented data.  

It is a very general architecture that has become widely used.  

It combines rules for edge, node and globals updates in each layer.

https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1806.01261




Im. Source: bishopbook.com

The update functions are usually learned by MLPs. 

http://bishopbook.com


• The message passing GNN that we have discussed is very general and 
widely applicable.  

• However GNN are not always easy to train. It can take a lot of 
experimentation to get good results. 

• There are also special forms of GNN, which are subsets of what we 
discussed, but may work better for specific problems.  

• For example there are Graph Convolutional Neural Networks which 
generalize the notion of Convolution to Graphs using spectral graph 
theory.  

• GNN can also be made invariant under specific symmetries. In fact we 
will explore rotation invariance in the next problem set. 

Using GNN



tfgnn (TensorFlow)  

jraph (Jax) 

PyG  (PyTorch Geometric)

Code frameworks



We will use PyG
https://pytorch-geometric.readthedocs.io/en/latest/ 

https://pytorch-geometric.readthedocs.io/en/latest/


Examples of GNN in physics
• IceCube particle shower reconstruction

• LHC event reconstruction

• Cosmological parameter estimation from galaxies

• Particle-based simulations

https://arxiv.org/abs/2209.03042

https://arxiv.org/abs/2007.13681



https://arxiv.org/abs/2002.09405

https://arxiv.org/abs/2411.02496

As an example from my group

https://arxiv.org/abs/2411.02496


Our example: GNN for galaxies
The rest of this lecture will be on Colab. 



• Reading for this lecture:  
• This lecture was based in part on the book by Bishop, linked on the 

website.

Course logistics


