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e The X-ray astronomy group in the physics department is building a sounding-rocket instrument to measure the spectrum of
million-degree interstellar gas with an unprecedented resolution of 1 eV over the 70-1000 eV range. We are in immediate

need of a student looking for research experience to assist with the design of the superconducting and normal magnetic
shielding of these new detectors, which operate at a temperature of 0.05 K and are very sensitive to magnetic fields.

« The student would be building models using the COMSOL multi-physics package in close collaboration with graduate
student Sophia Nowak. Smaller models can be run on our computer, more complex ones and large amounts of optimization
would be run at the Center for High Throughput computing.

o Starts: immediately

« time commitment: 10 hrs/week (6 hrs/week minimum) - schedule is somewhat flexible and will allow for classes, exams, etc,
but need to average these hrs/week.

e requires:
« Good familiarity with computers and an operating system. Linux preferred, but windows OK.
e Good familiarity with Matplotlib, Gnuplot, or some similarly flexible plotting program.
« Solid Works or Pro-E experience a plus.
« Availability extending into summer and/or next fall a plus (by this point you should be working more independently).

« Pay: Start $15.00/hour, depending on experience.

« Conctact: Dan McCammon mccammon@physics.wisc.edu <mailto:mccammon@physics.wisc.edu> or Sophia Nowak
srnowak2@wisc.edu



Final project

* You will write a paper on an application of machine learning to physics of your choice. Your paper needs to
contain a computational analysis, which generally will mean applying a machine learning method to some data
set.

* You can work alone or in groups of up to four people. For larger groups we will expect a little bit more total
effort.

* The paper should be 5 to 10 pages and contain the following:

» A short review of at least one research paper related to your topic. This is to encourage you to learn how to
browse the literature.

» A description of the data set you will be working with and its properties.

A brief description of the machine learning method you will use. Don’t re-explain basics such as how CNNs
work, rather describe the detailed properties of your approach.

 Train the model and put the results in your paper. Explore some variations such as different hyper parameters.

» Describe successes and problems in your analysis.

* If you are already doing research in physics or a related field, you can write the paper on this topic if you wish.



Final project

* You can use machine learning methods either from the lecture or ones that we have not
covered. Major topics which we have not yet covered but will be covering in the next weeks are
Generative models (GANSs, Diffusion, Normalizing Flows), Simulation Based Inferences, and
Transformers and LLMs.

* The project should take you a few days of work, spread over the rest of the semester.

* We will have an intermediate check-in. Format TBA.

* Your paper will be due on Sunday May 4th at midnight.

* We want to know your topic by March 11th. You can discuss your topic ideas with Yurii or with
me, after the lecture, or during office hours.

* Please send an Email to myself and Yurii with your proposed topic and team members.

 We will have a brief ~1 slide presentation of your results in the lecture on April 29th.



Transformers

Introduction



Introduction

Transformer is one of the most talked about ML architecture (e.g. ChatGPT).

Initially targeted at natural language processing (NLP) problems, transformers
are now being used quite generally on unstructured data representations
(texts, images, audio, video, and their combo).

These ML models are known as transformers because they transform a set of
vectors in some representation space into a corresponding set of vectors,
having the same dimensionality, iIn some new space.

The new space has a richer internal representation that is better suited to
solving downstream tasks.

Reference: “Deep learning: Foundations and Concepts” by Chris Bishop with
Hugh Bishop, Chapter 12: https://www.bishopbook.com/



Why should you care?

Math and Physics problems are language problems, expressed in terms of formulae. Your
tasks are to translate questions to answers.

Numerous applications of transformers in math and theoretical physics. Applications of ML
are not limited to experimental areas.

Some success in solving college level physics and math problems (see talks by Guy Gur-Ari
and Francois Charton at http://www.physicsmeetsml.org/)

Al Does Math as Well as Math Olympians: https://www.scientificamerican.com/article/ai-
matches-the-abilities-of-the-best-math-olympians/

Examples of research level problems:

e https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-
mathematical-sciences-using-large-language-models/

e https://nips.cc/virtual/2023/76132
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Foundational Model

A large-scale model that can be adapted to solve multiple different tasks is
known as a foundation model, e.g., https://polymathic-ai.org/

Transformers can be trained in a self-supervised way using unlabeled data,
which is especially effective with language models since there are vast
quantities of text available from the internet.

The scaling hypothesis asserts that simply by increasing the number of
learnable parameters and training on a commensurately large data set,
significant improvements in performance can be achieved.

Transformers are quite suited for massively parallel processing hardware, e.g.,
GPU. Models with 10!? parameters can be trained in reasonable time.

The pre-trained models can then be fine-tuned for specific tasks.



Natural Language Processing

e [anguage datasets share some similarities with image data:
 The number of input variables can be very large.

* The statistics are similar at every position; not sensible to re-learn
the meaning of dog at every possible position in a body of text.

 These are the reasons for introducing CNN: instead of fully
connected NN, a CNN employs parameter sharing.

* However, language datasets have varying lengths in text sequences.
There is no easy way to resize them.



An lllustrative Example

e Consider the following restaurant review

The restaurant refused to serve me a ham sandwich because it only cooks vegetarian
food. In the end, they just gave me two slices of bread. Their ambiance was just as good
as the food and service.

e How to process texts like this into a representation suitable for downstream tasks
(positive/negative review? is steak served?)

e Three problems to overcome:

e Inputs are large: 37 words represented by an embedding vector of length
1024 has a 37x1024 = 37888 dimensional input.

e Inputs have different lengths: not obvious how to apply fully connected NNs;
how to share parameters across words at different positions?

e Language is ambiguous: it refers to the restaurant and not to ham sandwich. A
successful ML model should pay attention to the word restaurant. There are
connections between words and the strength of these connections depends
on the words themselves. The word their also refers to the restaurant.



Transformers

Attention



Attention is all you need

https://arxiv.org/abs/1706.03762

Originally developed as an enhancement to RNNs for machine
translation: https://arxiv.org/abs/1409.0473

https://arxiv.org/abs/1706.03762) showed that the RNN structure can be
eliminated; instead focus exclusively on the attention mechanism.

Consider the following two sentences:

| swam across the river to get to the other bank.
| walked across the road to get cash from the bank.

The word “bank” has different meanings which can be detected by looking
at other words in the sentence.

In the first sentence, the words “swam” and “river” most strongly indicate
that “bank” refers to the side of a river, while in the second sentence, the
word “cash” is a strong indicator that “bank” refers to a financial institution.


https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Attention is all you need

A NN processing a sentence should attend to specific words from the rest
of the sequence:

[ I )(swam) (across)( the J[river)[ to J[ get J[ to J{ the J[other) [bank)

[ I J(SwamJ (across)( the J[river)[ to J[ get }[ to J{ the J[other) [bank)

The specific locations that should receive more attention depends on the
iInput sequence itself.

In a standard NN, once a network is trained, the weights are independent
on the input data.

By contrast, attention uses weighting factors whose values depend on the
specific input data.



Word Embedding

Words are mapped into vectors in an embedding space.

Words with similar meanings are mapped to nearby locations in the embedding
space.

A transformer is a richer form of embedding in which a given vector is mapped to a
location that depends on other vectors in the sequence.

The vector representing “bank” is mapped to a location close to “water” in the
embedding space in the first sentence, and close to “money” in the second
sentence.

Not only for words: a protein is a 1d sequence of amino acids (22 possibilities). A
protein can comprise hundreds or thousands of such amino acids. Amino acids that
are widely separated in the 1d sequence can be physically close in 3d space if the
proton folds. A transformer model allows distant amino acids to attend to each other
for modeling 3d structure.

For similar reasons, transformers have been used for modeling molecular dynamics.



Transformer Processing

Input data is a set of vectors {X,} of dimensionality D, n = 1,..., N.

These data vectors are known as tokens (e.g., a word within a
sentence, a patch within an image, or an amino acid within a protein).

The elements x, ; of the tokens are called features.

Transformers can handle a mix of different data types by combining
the data variables into a joint set of tokens.

Combining the data vectors into a matrix X of dimensions N X D.

X = TransformerLayer [X]

|

same dimensionality as X

SH

N (tokens)
<

Apply multiple transformer layer
to learn rich internal representations.

D (features)



Attention Coefficients

A set of input tokens {X, ..., Xy} is mapped to a set of output tokens
Y- Y-

With attention, this dependence should be stronger for those inputs
X, that are particularly important for determining y,..

Consider the map:

N
Yn = § AnmXm
m=1

where a, , are called attention weights. a,,, ~ 0 for input tokens X,
that have little influence on the output y, and large otherwise.

The attention weights satisfy two constraints:

>0 avoid cancellation from large
anm = . . .
coefficients of opposite signs.
N
Z Qnp = 1. normalize the total attention.

m=1



Self-attention

Consider the problem of choosing which movie to watch on Netflix.

Associate each movie with a list of attributes: genre, names of
leading actors, length of movie, etc.

Search though a catalogue to find a movie that matches preferences.
Encode the attributes of each movie in a vector called the key.
The corresponding movie file is called a value.

The user’s personal vector of attributes is called the query.

Netflix compares the query vector with all the key vectors to find the
best match, and send the user the corresponding movie (value) file.

Hard attention: a single value vector is returned.



Dot-Product Self-attention

For transformer, we generalize this info retrieval to soft attention.

Use continuous variables to measure the degree of match between
gueries and keys, then use these variables to weight the influence.

Transformer function is differentiable, trainable by gradient descent.
To satisfy the two constraints on the attention weights, we define:

exp (X X, )

S exp(XT %)

Anm —
In matrix notation:

Y = Softmax [ XX"| X

where Softmax[L] is an operator that takes the exponential of every
element of a matrix L then normalizes each row independently to sum to 1.

e Dot-product self-attention (using the same sequence to determine the

queries, keys, and values; measure of similarity is given by dot product).



Network Parameters

Transformation from {X,} to {y, } is fixed, with no capacity to learn
from data because it has no adjustable parameters.

Each feature within a token vector (X, } plays an equal role in
determining a,,,. Want flexibility to focus on some features vs others.

We can address both issues if we define modified feature vectors:

~

X =XU

U is a D X D matrix of learnable weight parameters, analogous to a
layer in a standard NN. This gives a modified transformation:

Y = Softmax | XUU'X"| XU

This has more flexibility, but still the matrix XUUTXT is symmetric.



Network Parameters

The attention mechanism should support significant asymmetry, e.g.,
“chisel” is strongly associated with “tool”, but not the other way round.

Although the softmax function means the attention weights matrix is not
symmetric (NB normalization), we can create more flexibility by allowing
gueries & keys to have independent parameters.

Define query, key, & value matrices each w/ different transformations:

Q=XW
K =XW®
V=XwWW

the weight matrices W@, W%, W) represent parameters that will be
learned during the training of the transformer architecture.

W@, W, W are matrices of dim. D x D,, D X D_, D X D,. Setting
D, = D, allows for dot-products between query and key while D, = D
allows multiple transformer layers to be stacked. We set D, =D, =D, = D.



Network Parameters

* The transformation is now generalized to:

O
Y — SOftma;X [QKT] V Y = Softmax < QK > X Vv
\ /
N x D, N x N N x Dy

whereas the dot-product can be computed by:

X W (@ = Q
/ D x D \

N x D

NXD\X wo | = | K / N x N

D x D

bias parameters are implicit
N x D



Scaled self-attention

Gradient of Softmax becomes exponentially
small for inputs of high magnitude, c.f. tanh or
sigmoid activation; trouble with grad descent.

Rescale the product of the query and key
vectors before Softmax.

If the elements of the query and key vectors
were all independent random numbers with
zero mean and unit variance, then the variance
of the dot product would be D,

Normalizing the argument to the softmax using
the standard deviation given by 4 /D, :

Y = Attention(Q, K, V) = Softma [QKT] \%
= ntion(Q, K, V) = max .
v Dy

This is the scaled dot-product self-attention.

Y

*

( mat mul J

1

softmax

*

scale

*

mat mul




Algorithm 12.1: Scaled dot-product self-attention

Input: Set of tokens X € RV*P : {x,, ..., xn}
Weight matrices {W (@, Wk} ¢ RP*Px agnd W) ¢ RP*Dv
Output: Attention(Q,K,V) € RV*DPv . {y ... yn}

Q= XW(@ // compute queries Q € RV*Px
K=XWk // compute keys K € RV*Px
V=XWW // compute values V € RV*P

. QK"
return Attention(Q, K, V) = Softmax . \'%




Multi-head attention

There might be multiple patterns of attention relevant at the same time,
e.g., some associated with tenses, some with vocabulary.

Single “attention head” averages out these effects. Instead use multiple
attention heads in parallel; analogous to channels in CNN.

Suppose we have H heads indexedby h = 1,..., H:
H; = Attention(Qp, Ky, V)

The heads are concatenated into a single matrix, and the result is then
linearly transformed to give a combined output:

Y/(X) = Concat [Hy,... Hy W [sfe =t - Jwo] - |5

N x HD, N x D
HD, x D

The matrix W is learned along with the weight matrices W@, W®_ WM



Algorithm 12.2: Multi-head attention

Input: Set of tokens X € RVXP : {x;,...,xn}
Query weight matrices {W(O‘) .. ,Wg)} c RDxD
Key weight matrices {W(k) .. ,W%‘)} c RDxD
Value weight matrices {W1 e Wg)} e RDPXDy
Output weight matrix W(©) ¢ RHDvxD

Output: Y € RV*P : {y,, ..., xn}

// compute self-attention for each head (Algorithm 12.1)
forh=1,...,Hdo

Qr=XW? K,=xXxwW¥ v,=xw

H;, = Attention (Qp,Kpn,Vy) // Hy € RV*P

end for

H = Concat [Hy,...,HN| // concatenate heads

return Y(X) = HW(©)




Transformer Layers

NNs benefit greatly from depth, so we Y

can stack self-attention layers (like the _T

right) on top of each other. E - 1

To improve efficiency, transformer L J
IayerS are followed by Iayer [ self-attention ] [ self-attention ] [ self-attention ]
normalization: https://arxiv.org/abs/ {1 I 1 1 I 1
1607.06450 !

Output of an attention layer are <
constrained to be linear combinations of }

the inputs, though non-linearities enter -
through the attention weights. ( wr )

Enhance flexibility by post-processing
the output of each layer using non-linear
network denoted by MLP (e.g., fully [ mutihead |

self-attention

connected NN with RelLu activation. = ? -

p
add & norm |
\ J

X


https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450

Algorithm 12.3: Transformer layer

Input: Set of tokens X € RV*P : {x;,...,xn}
Multi-head self-attention layer parameters
Feed-forward network parameters
Output: X € RV*D . {X;,...,Xn}
Z = LayerNorm [Y(X) 4+ X]| // Y(X) from Algorithm 12.2

X = LayerNorm [MLP [Z] + Z] // shared neural network
return X




Position Encoding

The weight matrices W@, WX W) gre shared among the input
tokens, so transformer is equivariant w.r.t. input permutations.

Token ordering is important in sequential processing: “The professor
failed the students”is different from “The students failed the professor”.

Construct a position encoding vector r, and combine with the input
token embedding X, . Concatenation would increase the dim of input
space and significantly increase computational cost. Instead:

~

X, = Xn + 1.

The position & input vectors have the same dim. Two randomly
chosen uncorrelated vectors tend to be nearly orthogonal in high dim.

Associate an integer 1,2,3,... to each position has the problem of
corrupting the input vector because the length is unbounded, and vary
among training sets. May not recognize new longer input sequence.



Position Encoding

Assigning a # between (0,1) to each token
In the sequence does not work as the rep.

IS not unique for a given position (depends
on sequence length).

Is there an encoding that provides a
unique rep. for each position, is bounded,
generalizable to longer sequences, &
capture relative positions?

Use sinusoidal functions (Vaswani et al):

{s' ( n if 7 1s even
in : 7 .
LZ/D) Y, S

Tni =
n

COS (L(Z——I)/D> , if 2 1s odd.

Because of the properties of sine and
cosine, the encoding allows the network to
attend to relative positions.

m

IIIIII
rrrrrrrrrrrr

Similar to binary reps of integers,
except that r, ; is continuous:

OO Ui W=

OO OO0 o oo

embedding dimension

HOMHROFROROHR

/
/
v

1



Transformers

Natural Language



Transformer for NLP

* Atypical NLP pipeline starts with a tokenizer that splits the text into
words or word fragments. Using words as tokens may not be ideal:

e Some words (e.g. names, technical terms) aren’t in the vocabulary.
e How about punctuation? A question mark contains info to encode.

 The vocabulary would need different tokens for different versions
of the same word with different suffices (e.g., walk, walks, walked,
walking), and there is no way to clarify these variations are related.

 Then each of the tokens is mapped to a learned embedding.

e The whole vocabulary is stored in a matrix 2, € RPXI71 where
| 7| is the vocabulary size; this vocabulary matrix is learned.

* These embeddings are passed thru a series of transformer layers.



Tokenization

e One approach is to use letters and punctuations as the vocabulary.
But this requires the subsequent network to re-learn the relations
between the very small pieces.

e Acompromise is sub-word tokenizer such as byte pair encoding
that greedily merges sub-strings based on their frequencies.

* Consider the following nursery rhyme:

a_sailor_.went_to_sea_sea_sea_
to_see_what_he_could_see_see_see_
but_all_that_he_could_see_see_see_
was_the_bottom_of_the_deep_blue_sea_sea_sea_

e bld|w|c|f|i|m|n|p
28 71

tolh|1]u]
M[8[6(6[4|3|3|3 21|11

id
I

 The tokens are initially just the characters & whitespace (represented
by an underscore), and their frequencies given in the table.



Byte pair encoding

* At each iteration, the sub-word tokenizer looks for the most commonly
occurring adjacent pair of tokens and merges them. This creates a new
token & decreases the counts for the original tokens.

a_sailor_went_to_sea sea sea

to_see what_he could sece sece sece

but_all_that he could see see see_
was_the bottom of the deep blue seca sea sea

||||||||||||W|C||||m||P|r|
3315113 [12[n]sl6[6[4]3]3|3[2[2[T[T[T]1]1

* At the second iteration, the algorithm merges e and the whitespace
character_. The last character of the first token to be merged cannot be
whitespace, which prevents merging across words.

a_sailor went to sea sea sea

to_see what_he could see see see

but_all that he could see see see
was_the bottom_of the deep blue sea sea sea




Byte pair encoding (continued)

o After 22 iterations, the tokens consist of a mix of letters, word
fragments, and commonly occurring words:

|see_|sea_|e|b|l|w]|a|could_|hat_|he_|o|t|t_|the_|to_|u|a_|d|f|m|n]|p]|s]sailor_|to|
716 [43[31313] 2 [ 2 [ 2 2f2[2] 2 2 [2[ 1 [T pnpngon

* |f we continue this process indefinitely, the tokens eventually
represent the full words:

|see_|sea_|could_|he_|the_|a_]all_|blue_|bottom_|but_|deep_|of_|sailor_|that_|to_|was_|went_|what_|
c7le 2 fzp 2o r g 1|

30

The number of tokens increases as we add
word fragments to the letters and then
decreases again as we merge these fragments.

# tokens

R 50
lterations



Learned Embeddings

 Each token is mapped to a unigue word embedding; the embeddings
for the whole vocabulary are storied in a matrix 2, € RDXI7]
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Input, X Vocabulary embeddings, €2,

“an aardvark ate an ant”

Token indices, T

e The matrix €2, is learned like any other network parameter.

« Atypical embedding size D is 1024 and a typical total vocabulary size
| 7| is 30,000. Many parameters in €2, to learn.



Course logistics

e Reading for this lecture:

 This lecture was based in part on the book by Bishop, linked on the
website.



