
Moritz Münchmeyer (with slides from Gary Shiu)

Physics 361 - Machine Learning
in Physics

Lecture 15 – Transformers

March 11th 2025

Advertisement 1

Advertisement 2
• The X-ray astronomy group in the physics department is building a sounding-rocket instrument to measure the spectrum of

million-degree interstellar gas with an unprecedented resolution of 1 eV over the 70-1000 eV range. We are in immediate
need of a student looking for research experience to assist with the design of the superconducting and normal magnetic
shielding of these new detectors, which operate at a temperature of 0.05 K and are very sensitive to magnetic fields.

• The student would be building models using the COMSOL multi-physics package in close collaboration with graduate
student Sophia Nowak. Smaller models can be run on our computer, more complex ones and large amounts of optimization
would be run at the Center for High Throughput computing.

• Starts: immediately

• time commitment: 10 hrs/week (6 hrs/week minimum) - schedule is somewhat flexible and will allow for classes, exams, etc,
but need to average these hrs/week.

• requires:

• Good familiarity with computers and an operating system. Linux preferred, but windows OK.

• Good familiarity with Matplotlib, Gnuplot, or some similarly flexible plotting program.

• Solid Works or Pro-E experience a plus.

• Availability extending into summer and/or next fall a plus (by this point you should be working more independently).

• Pay: Start $15.00/hour, depending on experience.

• Conctact: Dan McCammon mccammon@physics.wisc.edu <mailto:mccammon@physics.wisc.edu> or Sophia Nowak
srnowak2@wisc.edu

Final project
• You will write a paper on an application of machine learning to physics of your choice. Your paper needs to

contain a computational analysis, which generally will mean applying a machine learning method to some data

set.

• You can work alone or in groups of up to four people. For larger groups we will expect a little bit more total

effort.

• The paper should be 5 to 10 pages and contain the following:

• A short review of at least one research paper related to your topic. This is to encourage you to learn how to

browse the literature.

• A description of the data set you will be working with and its properties.

• A brief description of the machine learning method you will use. Don’t re-explain basics such as how CNNs

work, rather describe the detailed properties of your approach.

• Train the model and put the results in your paper. Explore some variations such as different hyper parameters.

• Describe successes and problems in your analysis.

• If you are already doing research in physics or a related field, you can write the paper on this topic if you wish.

Final project
• You can use machine learning methods either from the lecture or ones that we have not

covered. Major topics which we have not yet covered but will be covering in the next weeks are
Generative models (GANs, Diffusion, Normalizing Flows), Simulation Based Inferences, and
Transformers and LLMs.

• The project should take you a few days of work, spread over the rest of the semester. 

• We will have an intermediate check-in. Format TBA.

• Your paper will be due on Sunday May 4th at midnight.

• We want to know your topic by March 11th. You can discuss your topic ideas with Yurii or with
me, after the lecture, or during office hours.

• Please send an Email to myself and Yurii with your proposed topic and team members.

• We will have a brief ~1 slide presentation of your results in the lecture on April 29th.

Transformers

Introduction

Introduction

• Transformer is one of the most talked about ML architecture (e.g. ChatGPT).

• Initially targeted at natural language processing (NLP) problems, transformers
are now being used quite generally on unstructured data representations
(texts, images, audio, video, and their combo).

• These ML models are known as transformers because they transform a set of
vectors in some representation space into a corresponding set of vectors,
having the same dimensionality, in some new space.

• The new space has a richer internal representation that is better suited to
solving downstream tasks.

• Reference: “Deep learning: Foundations and Concepts” by Chris Bishop with
Hugh Bishop, Chapter 12: https://www.bishopbook.com/

Why should you care?

• Math and Physics problems are language problems, expressed in terms of formulae. Your
tasks are to translate questions to answers.

• Numerous applications of transformers in math and theoretical physics. Applications of ML
are not limited to experimental areas.

• Some success in solving college level physics and math problems (see talks by Guy Gur-Ari
and Francois Charton at http://www.physicsmeetsml.org/)

• AI Does Math as Well as Math Olympians: https://www.scientificamerican.com/article/ai-
matches-the-abilities-of-the-best-math-olympians/

• Examples of research level problems:

• https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-
mathematical-sciences-using-large-language-models/

• https://nips.cc/virtual/2023/76132

http://www.physicsmeetsml.org/
https://www.scientificamerican.com/article/ai-matches-the-abilities-of-the-best-math-olympians/
https://www.scientificamerican.com/article/ai-matches-the-abilities-of-the-best-math-olympians/
https://www.scientificamerican.com/article/ai-matches-the-abilities-of-the-best-math-olympians/
https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-mathematical-sciences-using-large-language-models/
https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-mathematical-sciences-using-large-language-models/
https://nips.cc/virtual/2023/76132

Foundational Model

• A large-scale model that can be adapted to solve multiple different tasks is
known as a foundation model, e.g., https://polymathic-ai.org/

• Transformers can be trained in a self-supervised way using unlabeled data,
which is especially effective with language models since there are vast
quantities of text available from the internet.

• The scaling hypothesis asserts that simply by increasing the number of
learnable parameters and training on a commensurately large data set,
significant improvements in performance can be achieved.

• Transformers are quite suited for massively parallel processing hardware, e.g.,
GPU. Models with parameters can be trained in reasonable time.

• The pre-trained models can then be fine-tuned for specific tasks.

1012

Natural Language Processing

• Language datasets share some similarities with image data:

• The number of input variables can be very large.

• The statistics are similar at every position; not sensible to re-learn
the meaning of dog at every possible position in a body of text.

• These are the reasons for introducing CNN: instead of fully
connected NN, a CNN employs parameter sharing.

• However, language datasets have varying lengths in text sequences.
There is no easy way to resize them.

An Illustrative Example

• Consider the following restaurant review

• How to process texts like this into a representation suitable for downstream tasks
(positive/negative review? is steak served?)

• Three problems to overcome:

• Inputs are large: 37 words represented by an embedding vector of length
1024 has a 37x1024 = 37888 dimensional input.

• Inputs have different lengths: not obvious how to apply fully connected NNs;
how to share parameters across words at different positions?

• Language is ambiguous: it refers to the restaurant and not to ham sandwich. A
successful ML model should pay attention to the word restaurant. There are
connections between words and the strength of these connections depends
on the words themselves. The word their also refers to the restaurant.

Chapter 12

Transformers

Chapter 10 introduced convolutional networks, which are specialized for processing data
that lie on a regular grid. They are particularly suited to processing images, which have
a very large number of input variables, precluding the use of fully connected networks.
Each layer of a convolutional network employs parameter sharing so that local image
patches are processed similarly at every position in the image.

This chapter introduces transformers. These were initially targeted at natural lan-
guage processing (NLP) problems, where the network input is a series of high-dimensional
embeddings representing words or word fragments. Language datasets share some of the
characteristics of image data. The number of input variables can be very large, and the
statistics are similar at every position; it’s not sensible to re-learn the meaning of the
word dog at every possible position in a body of text. However, language datasets have
the complication that text sequences vary in length, and unlike images, there is no easy
way to resize them.

12.1 Processing text data

To motivate the transformer, consider the following passage:

The restaurant refused to serve me a ham sandwich because it only cooks vegetarian
food. In the end, they just gave me two slices of bread. Their ambiance was just as good
as the food and service.

The goal is to design a network to process this text into a representation suitable for
downstream tasks. For example, it might be used to classify the review as positive or
negative or to answer questions such as “Does the restaurant serve steak?”.

We can make three immediate observations. First, the encoded input can be surpris-
ingly large. In this case, each of the 37 words might be represented by an embedding
vector of length 1024, so the encoded input would be of length 37× 1024 = 37888 even
for this small passage. A more realistically sized body of text might have hundreds or
even thousands of words, so fully connected neural networks are impractical.

Draft: please send errata to udlbookmail@gmail.com.

Transformers

Attention

Attention is all you need

• Originally developed as an enhancement to RNNs for machine
translation: https://arxiv.org/abs/1409.0473

• https://arxiv.org/abs/1706.03762) showed that the RNN structure can be
eliminated; instead focus exclusively on the attention mechanism.

• Consider the following two sentences:

• The word “bank” has different meanings which can be detected by looking
at other words in the sentence.

• In the first sentence, the words “swam” and “river” most strongly indicate
that “bank” refers to the side of a river, while in the second sentence, the
word “cash” is a strong indicator that “bank” refers to a financial institution.

https://arxiv.org/abs/1706.03762

12.1. Attention 359

I swam across the river to get to the other bank

I swam across the river to get to the other bank

Figure 12.1 Schematic illustration of attention in which the interpretation of the word ‘bank’ is influenced by the
words ‘river’ and ‘swam’, with the thickness of each line being indicative of the strength of its influence.

although it has much broader applicability. Consider the following two sentences:

I swam across the river to get to the other bank.
I walked across the road to get cash from the bank.

Here the word ‘bank’ has different meanings in the two sentences. However, this
can be detected only by looking at the context provided by other words in the se-
quence. We also see that some words are more important than others in determining
the interpretation of ‘bank’. In the first sentence, the words ‘swam’ and ‘river’ most
strongly indicate that ‘bank’ refers to the side of a river, whereas in the second sen-
tence, the word ‘cash’ is a strong indicator that ‘bank’ refers to a financial institution.
We see that to determine the appropriate interpretation of ‘bank’, a neural network
processing such a sentence should attend to, in other words rely more heavily on,
specific words from the rest of the sequence. This concept of attention is illustrated
in Figure 12.1.

Moreover, we also see that the particular locations that should receive more
attention depend on the input sequence itself: in the first sentence it is the second and
fifth words that are important whereas in the second sentence it is the eighth word.
In a standard neural network, different inputs will influence the output to different
extents according to the values of the weights that multiply those inputs. Once the
network is trained, however, those weights, and their associated inputs, are fixed.
By contrast, attention uses weighting factors whose values depend on the specific
input data. Figure 12.2 shows the attention weights from a section of a transformer
network trained on natural language.

When we discuss natural language processing, we will see how word embed-
ding can be used to map words into vectors in an embedding space. These vectors
can then be used as inputs for subsequent neural network processing. These embed-
dings capture elementary semantic properties, for example by mapping words with
similar meanings to nearby locations in the embedding space. One characteristic of
such embeddings is that a given word always maps to the same embedding vector.

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Attention is all you need

• A NN processing a sentence should attend to specific words from the rest
of the sequence:

• The specific locations that should receive more attention depends on the
input sequence itself.

• In a standard NN, once a network is trained, the weights are independent
on the input data.

• By contrast, attention uses weighting factors whose values depend on the
specific input data.

12.1. Attention 359

I swam across the river to get to the other bank

I swam across the river to get to the other bank

Figure 12.1 Schematic illustration of attention in which the interpretation of the word ‘bank’ is influenced by the
words ‘river’ and ‘swam’, with the thickness of each line being indicative of the strength of its influence.

although it has much broader applicability. Consider the following two sentences:

I swam across the river to get to the other bank.
I walked across the road to get cash from the bank.

Here the word ‘bank’ has different meanings in the two sentences. However, this
can be detected only by looking at the context provided by other words in the se-
quence. We also see that some words are more important than others in determining
the interpretation of ‘bank’. In the first sentence, the words ‘swam’ and ‘river’ most
strongly indicate that ‘bank’ refers to the side of a river, whereas in the second sen-
tence, the word ‘cash’ is a strong indicator that ‘bank’ refers to a financial institution.
We see that to determine the appropriate interpretation of ‘bank’, a neural network
processing such a sentence should attend to, in other words rely more heavily on,
specific words from the rest of the sequence. This concept of attention is illustrated
in Figure 12.1.

Moreover, we also see that the particular locations that should receive more
attention depend on the input sequence itself: in the first sentence it is the second and
fifth words that are important whereas in the second sentence it is the eighth word.
In a standard neural network, different inputs will influence the output to different
extents according to the values of the weights that multiply those inputs. Once the
network is trained, however, those weights, and their associated inputs, are fixed.
By contrast, attention uses weighting factors whose values depend on the specific
input data. Figure 12.2 shows the attention weights from a section of a transformer
network trained on natural language.

When we discuss natural language processing, we will see how word embed-
ding can be used to map words into vectors in an embedding space. These vectors
can then be used as inputs for subsequent neural network processing. These embed-
dings capture elementary semantic properties, for example by mapping words with
similar meanings to nearby locations in the embedding space. One characteristic of
such embeddings is that a given word always maps to the same embedding vector.

Word Embedding

• Words are mapped into vectors in an embedding space.

• Words with similar meanings are mapped to nearby locations in the embedding
space.

• A transformer is a richer form of embedding in which a given vector is mapped to a
location that depends on other vectors in the sequence.

• The vector representing “bank” is mapped to a location close to “water” in the
embedding space in the first sentence, and close to “money” in the second
sentence.

• Not only for words: a protein is a 1d sequence of amino acids (22 possibilities). A
protein can comprise hundreds or thousands of such amino acids. Amino acids that
are widely separated in the 1d sequence can be physically close in 3d space if the
proton folds. A transformer model allows distant amino acids to attend to each other
for modeling 3d structure.

• For similar reasons, transformers have been used for modeling molecular dynamics.

Transformer Processing

• Input data is a set of vectors of dimensionality , .

• These data vectors are known as tokens (e.g., a word within a
sentence, a patch within an image, or an amino acid within a protein).

• The elements of the tokens are called features.

• Transformers can handle a mix of different data types by combining
the data variables into a joint set of tokens.

• Combining the data vectors into a matrix of dimensions .

{xn} D n = 1,…, N

xni

X N × D12.1. Attention 361

Figure 12.3 The structure of the data matrix X, of di-
mension N × D, in which row n repre-
sents the transposed data vector xT

n .

X

N
(to

ke
ns

)

D (features)

xT
n

is important to be precise about notation. We will follow the standard convention
and combine the data vectors into a matrix X of dimensions N × D in which the
nth row comprises the token vector xT

n , and where n = 1, . . . , N labels the rows,
as illustrated in Figure 12.3. Note that this matrix represents one set of input tokens,
and that for most applications, we will require a data set containing many sets of
tokens, such as independent passages of text where each word is represented as one
token. The fundamental building block of a transformer is a function that takes a
data matrix as input and creates a transformed matrix X̃ of the same dimensionality
as the output. We can write this function in the form

X̃ = TransformerLayer [X] . (12.1)

We can then apply multiple transformer layers in succession to construct deep net-
works capable of learning rich internal representations. Each transformer layer con-
tains its own weights and biases, which can be learned using gradient descent using
an appropriate cost function, as we will discuss in detail later in the chapter.Section 12.3

A single transformer layer itself comprises two stages. The first stage, which im-
plements the attention mechanism, mixes together the corresponding features from
different token vectors across the columns of the data matrix, whereas the second
stage then acts on each row independently and transforms the features within each
token vector. We start by looking at the attention mechanism.

12.1.2 Attention coefficients
Suppose that we have a set of input tokens x1, . . . ,xN in an embedding space

and we want to map this to another set y1, . . . ,yN having the same number of tokens
but in a new embedding space that captures a richer semantic structure. Consider a
particular output vector yn. The value of yn should depend not just on the corre-
sponding input vector xn but on all the vectors x1, . . . ,xN in the set. With attention,
this dependence should be stronger for those inputs xm that are particularly impor-
tant for determining the modified representation of yn. A simple way to achieve this
is to define each output vector yn to be a linear combination of the input vectors

12.1. Attention 361

Figure 12.3 The structure of the data matrix X, of di-
mension N × D, in which row n repre-
sents the transposed data vector xT

n .

X

N
(to

ke
ns

)

D (features)

xT
n

is important to be precise about notation. We will follow the standard convention
and combine the data vectors into a matrix X of dimensions N × D in which the
nth row comprises the token vector xT

n , and where n = 1, . . . , N labels the rows,
as illustrated in Figure 12.3. Note that this matrix represents one set of input tokens,
and that for most applications, we will require a data set containing many sets of
tokens, such as independent passages of text where each word is represented as one
token. The fundamental building block of a transformer is a function that takes a
data matrix as input and creates a transformed matrix X̃ of the same dimensionality
as the output. We can write this function in the form

X̃ = TransformerLayer [X] . (12.1)

We can then apply multiple transformer layers in succession to construct deep net-
works capable of learning rich internal representations. Each transformer layer con-
tains its own weights and biases, which can be learned using gradient descent using
an appropriate cost function, as we will discuss in detail later in the chapter.Section 12.3

A single transformer layer itself comprises two stages. The first stage, which im-
plements the attention mechanism, mixes together the corresponding features from
different token vectors across the columns of the data matrix, whereas the second
stage then acts on each row independently and transforms the features within each
token vector. We start by looking at the attention mechanism.

12.1.2 Attention coefficients
Suppose that we have a set of input tokens x1, . . . ,xN in an embedding space

and we want to map this to another set y1, . . . ,yN having the same number of tokens
but in a new embedding space that captures a richer semantic structure. Consider a
particular output vector yn. The value of yn should depend not just on the corre-
sponding input vector xn but on all the vectors x1, . . . ,xN in the set. With attention,
this dependence should be stronger for those inputs xm that are particularly impor-
tant for determining the modified representation of yn. A simple way to achieve this
is to define each output vector yn to be a linear combination of the input vectors

same dimensionality as X

Apply multiple transformer layer
to learn rich internal representations.

Attention Coefficients

362 12. TRANSFORMERS

x1, . . . ,xN with weighting coefficients anm:

yn =
N∑

m=1

anmxm (12.2)

where anm are called attention weights. The coefficients should be close to zero for
input tokens that have little influence on the output yn and largest for inputs that
have most influence. We therefore constrain the coefficients to be non-negative to
avoid situations in which one coefficient can become large and positive while another
coefficient compensates by becoming large and negative. We also want to ensure that
if an output pays more attention to a particular input, this will be at the expense of
paying less attention to the other inputs, and so we constrain the coefficients to sum
to unity. Thus, the weighting coefficients must satisfy the following two constraints:

anm ! 0 (12.3)
N∑

m=1

anm = 1. (12.4)

Together these imply that each coefficient lies in the range 0 " anm " 1 and so theExercise 12.1
coefficients define a ‘partition of unity’. For the special case amm = 1, it follows that
anm = 0 for n ̸= m, and therefore ym = xm so that the input vector is unchanged
by the transformation. More generally, the output ym is a blend of the input vectors
with some inputs given more weight than others.

Note that we have a different set of coefficients for each output vector yn, and
the constraints (12.3) and (12.4) apply separately for each value of n. These co-
efficients anm depend on the input data, and we will shortly see how to calculate
them.

12.1.3 Self-attention
The next question is how to determine the coefficients anm. Before we discuss

this in detail, it is useful to first introduce some terminology taken from the field of
information retrieval. Consider the problem of choosing which movie to watch in
an online movie streaming service. One approach would be to associate each movie
with a list of attributes describing things such as the genre (comedy, action, etc.), the
names of the leading actors, the length of the movie, and so on. The user could then
search through a catalogue to find a movie that matches their preferences. We could
automate this by encoding the attributes of each movie in a vector called the key.
The corresponding movie file itself is called a value. Similarly, the user could then
provide their own personal vector of values for the desired attributes, which we call
the query. The movie service could then compare the query vector with all the key
vectors to find the best match and send the corresponding movie to the user in the
form of the value file. We can think of the user ‘attending’ to the particular movie
whose key most closely matches their query. This would be considered a form of
hard attention in which a single value vector is returned. For the transformer, we
generalize this to soft attention in which we use continuous variables to measure

• A set of input tokens is mapped to a set of output tokens
.

• With attention, this dependence should be stronger for those inputs
 that are particularly important for determining .

• Consider the map:

where are called attention weights. for input tokens
that have little influence on the output and large otherwise.

• The attention weights satisfy two constraints:

{x1, …, xN}
{y1, …, yN}

xm yn

anm anm ≈ 0 xm
yn

362 12. TRANSFORMERS

x1, . . . ,xN with weighting coefficients anm:

yn =
N∑

m=1

anmxm (12.2)

where anm are called attention weights. The coefficients should be close to zero for
input tokens that have little influence on the output yn and largest for inputs that
have most influence. We therefore constrain the coefficients to be non-negative to
avoid situations in which one coefficient can become large and positive while another
coefficient compensates by becoming large and negative. We also want to ensure that
if an output pays more attention to a particular input, this will be at the expense of
paying less attention to the other inputs, and so we constrain the coefficients to sum
to unity. Thus, the weighting coefficients must satisfy the following two constraints:

anm ! 0 (12.3)
N∑

m=1

anm = 1. (12.4)

Together these imply that each coefficient lies in the range 0 " anm " 1 and so theExercise 12.1
coefficients define a ‘partition of unity’. For the special case amm = 1, it follows that
anm = 0 for n ̸= m, and therefore ym = xm so that the input vector is unchanged
by the transformation. More generally, the output ym is a blend of the input vectors
with some inputs given more weight than others.

Note that we have a different set of coefficients for each output vector yn, and
the constraints (12.3) and (12.4) apply separately for each value of n. These co-
efficients anm depend on the input data, and we will shortly see how to calculate
them.

12.1.3 Self-attention
The next question is how to determine the coefficients anm. Before we discuss

this in detail, it is useful to first introduce some terminology taken from the field of
information retrieval. Consider the problem of choosing which movie to watch in
an online movie streaming service. One approach would be to associate each movie
with a list of attributes describing things such as the genre (comedy, action, etc.), the
names of the leading actors, the length of the movie, and so on. The user could then
search through a catalogue to find a movie that matches their preferences. We could
automate this by encoding the attributes of each movie in a vector called the key.
The corresponding movie file itself is called a value. Similarly, the user could then
provide their own personal vector of values for the desired attributes, which we call
the query. The movie service could then compare the query vector with all the key
vectors to find the best match and send the corresponding movie to the user in the
form of the value file. We can think of the user ‘attending’ to the particular movie
whose key most closely matches their query. This would be considered a form of
hard attention in which a single value vector is returned. For the transformer, we
generalize this to soft attention in which we use continuous variables to measure

avoid cancellation from large
coefficients of opposite signs.

normalize the total attention.

Self-attention

• Consider the problem of choosing which movie to watch on Netflix.

• Associate each movie with a list of attributes: genre, names of
leading actors, length of movie, etc.

• Search though a catalogue to find a movie that matches preferences.

• Encode the attributes of each movie in a vector called the key.

• The corresponding movie file is called a value.

• The user’s personal vector of attributes is called the query.

• Netflix compares the query vector with all the key vectors to find the
best match, and send the user the corresponding movie (value) file.

• Hard attention: a single value vector is returned.

Dot-Product Self-attention
• For transformer, we generalize this info retrieval to soft attention.

• Use continuous variables to measure the degree of match between
queries and keys, then use these variables to weight the influence.

• Transformer function is differentiable, trainable by gradient descent.

• To satisfy the two constraints on the attention weights, we define:

• In matrix notation:

where is an operator that takes the exponential of every
element of a matrix then normalizes each row independently to sum to 1.

• Dot-product self-attention (using the same sequence to determine the
queries, keys, and values; measure of similarity is given by dot product).

Softmax[L]
L

12.1. Attention 363

the degree of match between queries and keys and we then use these variables to
weight the influence of the value vectors on the outputs. This will also ensure that
the transformer function is differentiable and can therefore be trained by gradient
descent.

Following the analogy with information retrieval, we can view each of the input
vectors xn as a value vector that will be used to create the output tokens. We also use
the vector xn directly as the key vector for input token n. That would be analogous
to using the movie itself to summarize the characteristics of the movie. Finally, we
can use xm as the query vector for output ym, which can then be compared to each
of the key vectors. To see how much the token represented by xn should attend to
the token represented by xm, we need to work out how similar these vectors are.
One simple measure of similarity is to take their dot product xT

nxm. To impose the
constraints (12.3) and (12.4), we can define the weighting coefficients anm by using
the softmax function to transform the dot products:Section 5.3

anm =
exp(xT

nxm)
∑N

m′=1 exp(x
T
nxm′)

. (12.5)

Note that in this case there is no probabilistic interpretation of the softmax function
and it is simply being used to normalize the attention weights appropriately.

So in summary, each input vector xn is transformed to a corresponding output
vector yn by taking a linear combination of input vectors of the form (12.2) in which
the weight anm applied to input vector xm is given by the softmax function (12.5)
defined in terms of the dot product xT

nxm between the query xn for input n and the
key xm associated with input m. Note that, if all the input vectors are orthogonal,
then each output vector is simply equal to the corresponding input vector so that
ym = xm form = 1, . . . , N .Exercise 12.3

We can write (12.2) in matrix notation by using the data matrix X, along with
the analogous N ×D output matrixY, whose rows are given by ym, so that

Y = Softmax
[
XXT

]
X (12.6)

where Softmax[L] is an operator that takes the exponential of every element of a
matrix L and then normalizes each row independently to sum to one. From now on,
we will focus on matrix notation for clarity.

This process is called self-attention because we are using the same sequence to
determine the queries, keys, and values. We will encounter variants of this attention
mechanism later in this chapter. Also, because the measure of similarity between
query and key vectors is given by a dot product, this is known as dot-product self-
attention.

12.1.4 Network parameters
As it stands, the transformation from input vectors {xn} to output vectors {yn}

is fixed and has no capacity to learn from data because it has no adjustable parame-
ters. Furthermore, each of the feature values within a token vector xn plays an equal
role in determining the attention coefficients, whereas we would like the network to

12.1. Attention 363

the degree of match between queries and keys and we then use these variables to
weight the influence of the value vectors on the outputs. This will also ensure that
the transformer function is differentiable and can therefore be trained by gradient
descent.

Following the analogy with information retrieval, we can view each of the input
vectors xn as a value vector that will be used to create the output tokens. We also use
the vector xn directly as the key vector for input token n. That would be analogous
to using the movie itself to summarize the characteristics of the movie. Finally, we
can use xm as the query vector for output ym, which can then be compared to each
of the key vectors. To see how much the token represented by xn should attend to
the token represented by xm, we need to work out how similar these vectors are.
One simple measure of similarity is to take their dot product xT

nxm. To impose the
constraints (12.3) and (12.4), we can define the weighting coefficients anm by using
the softmax function to transform the dot products:Section 5.3

anm =
exp(xT

nxm)
∑N

m′=1 exp(x
T
nxm′)

. (12.5)

Note that in this case there is no probabilistic interpretation of the softmax function
and it is simply being used to normalize the attention weights appropriately.

So in summary, each input vector xn is transformed to a corresponding output
vector yn by taking a linear combination of input vectors of the form (12.2) in which
the weight anm applied to input vector xm is given by the softmax function (12.5)
defined in terms of the dot product xT

nxm between the query xn for input n and the
key xm associated with input m. Note that, if all the input vectors are orthogonal,
then each output vector is simply equal to the corresponding input vector so that
ym = xm form = 1, . . . , N .Exercise 12.3

We can write (12.2) in matrix notation by using the data matrix X, along with
the analogous N ×D output matrixY, whose rows are given by ym, so that

Y = Softmax
[
XXT

]
X (12.6)

where Softmax[L] is an operator that takes the exponential of every element of a
matrix L and then normalizes each row independently to sum to one. From now on,
we will focus on matrix notation for clarity.

This process is called self-attention because we are using the same sequence to
determine the queries, keys, and values. We will encounter variants of this attention
mechanism later in this chapter. Also, because the measure of similarity between
query and key vectors is given by a dot product, this is known as dot-product self-
attention.

12.1.4 Network parameters
As it stands, the transformation from input vectors {xn} to output vectors {yn}

is fixed and has no capacity to learn from data because it has no adjustable parame-
ters. Furthermore, each of the feature values within a token vector xn plays an equal
role in determining the attention coefficients, whereas we would like the network to

Network Parameters

• Transformation from to is fixed, with no capacity to learn
from data because it has no adjustable parameters.

• Each feature within a token vector plays an equal role in
determining . Want flexibility to focus on some features vs others.

• We can address both issues if we define modified feature vectors:

• is a matrix of learnable weight parameters, analogous to a
layer in a standard NN. This gives a modified transformation:

• This has more flexibility, but still the matrix is symmetric.

{xn} {yn}

{xn}
anm

U D × D

XUUTXT

364 12. TRANSFORMERS

have the flexibility to focus more on some features than others when determining
token similarity. We can address both issues if we define modified feature vectors
given by a linear transformation of the original vectors in the form

X̃ = XU (12.7)

where U is a D × D matrix of learnable weight parameters, analogous to a ‘layer’
in a standard neural network. This gives a modified transformation of the form

Y = Softmax
[
XUUTXT

]
XU. (12.8)

Although this has much more flexibility, it has the property that the matrix

XUUTXT (12.9)

is symmetric, whereas we would like the attention mechanism to support significant
asymmetry. For example, we might expect that ‘chisel’ should be strongly associ-
ated with ‘tool’ since every chisel is a tool, whereas ‘tool’ should only be weakly
associated with ‘chisel’ because there are many other kinds of tools besides chis-
els. Although the softmax function means the resulting matrix of attention weights
is not itself symmetric, we can create a much more flexible model by allowing the
queries and the keys to have independent parameters. Furthermore, the form (12.8)
uses the same parameter matrix U to define both the value vectors and the attention
coefficients, which again seems like an undesirable restriction.

We can overcome these limitations by defining separate query, key, and value
matrices each having their own independent linear transformations:

Q = XW(q) (12.10)

K = XW(k) (12.11)

V = XW(v) (12.12)

where the weight matrices W(q), W(k), and W(v) represent parameters that will
be learned during the training of the final transformer architecture. Here the matrix
W(k) has dimensionality D × Dk where Dk is the length of the key vector. The
matrix W(q) must have the same dimensionality D × Dk as W(k) so that we can
form dot products between the query and key vectors. A typical choice is Dk = D.
Similarly,W(v) is a matrix of sizeD×Dv, whereDv governs the dimensionality of
the output vectors. If we set Dv = D, so that the output representation has the same
dimensionality as the input, this will facilitate the inclusion of residual connections,
which we discuss later. Also, multiple transformer layers can be stacked on top ofSection 12.1.7
each other if each layer has the same dimensionality. We can then generalize (12.6)
to give

Y = Softmax
[
QKT

]
V (12.13)

whereQKT has dimension N ×N , and the matrixY has dimension N ×Dv. The
calculation of the matrix QKT is illustrated in Figure 12.4, whereas the evaluation
of the matrixY is illustrated in Figure 12.5.

364 12. TRANSFORMERS

have the flexibility to focus more on some features than others when determining
token similarity. We can address both issues if we define modified feature vectors
given by a linear transformation of the original vectors in the form

X̃ = XU (12.7)

where U is a D × D matrix of learnable weight parameters, analogous to a ‘layer’
in a standard neural network. This gives a modified transformation of the form

Y = Softmax
[
XUUTXT

]
XU. (12.8)

Although this has much more flexibility, it has the property that the matrix

XUUTXT (12.9)

is symmetric, whereas we would like the attention mechanism to support significant
asymmetry. For example, we might expect that ‘chisel’ should be strongly associ-
ated with ‘tool’ since every chisel is a tool, whereas ‘tool’ should only be weakly
associated with ‘chisel’ because there are many other kinds of tools besides chis-
els. Although the softmax function means the resulting matrix of attention weights
is not itself symmetric, we can create a much more flexible model by allowing the
queries and the keys to have independent parameters. Furthermore, the form (12.8)
uses the same parameter matrix U to define both the value vectors and the attention
coefficients, which again seems like an undesirable restriction.

We can overcome these limitations by defining separate query, key, and value
matrices each having their own independent linear transformations:

Q = XW(q) (12.10)

K = XW(k) (12.11)

V = XW(v) (12.12)

where the weight matrices W(q), W(k), and W(v) represent parameters that will
be learned during the training of the final transformer architecture. Here the matrix
W(k) has dimensionality D × Dk where Dk is the length of the key vector. The
matrix W(q) must have the same dimensionality D × Dk as W(k) so that we can
form dot products between the query and key vectors. A typical choice is Dk = D.
Similarly,W(v) is a matrix of sizeD×Dv, whereDv governs the dimensionality of
the output vectors. If we set Dv = D, so that the output representation has the same
dimensionality as the input, this will facilitate the inclusion of residual connections,
which we discuss later. Also, multiple transformer layers can be stacked on top ofSection 12.1.7
each other if each layer has the same dimensionality. We can then generalize (12.6)
to give

Y = Softmax
[
QKT

]
V (12.13)

whereQKT has dimension N ×N , and the matrixY has dimension N ×Dv. The
calculation of the matrix QKT is illustrated in Figure 12.4, whereas the evaluation
of the matrixY is illustrated in Figure 12.5.

Network Parameters
• The attention mechanism should support significant asymmetry, e.g.,

“chisel” is strongly associated with “tool”, but not the other way round.

• Although the softmax function means the attention weights matrix is not
symmetric (NB normalization), we can create more flexibility by allowing
queries & keys to have independent parameters.

• Define query, key, & value matrices each w/ different transformations:

the weight matrices represent parameters that will be
learned during the training of the transformer architecture.

• are matrices of dim. . Setting
 allows for dot-products between query and key while

allows multiple transformer layers to be stacked. We set .

W(q), W(k), W(v)

W(q), W(k), W(v) D × Dk, D × Dq, D × Dv
Dk = Dq Dv = D

Dk = Dq = Dv = D

364 12. TRANSFORMERS

have the flexibility to focus more on some features than others when determining
token similarity. We can address both issues if we define modified feature vectors
given by a linear transformation of the original vectors in the form

X̃ = XU (12.7)

where U is a D × D matrix of learnable weight parameters, analogous to a ‘layer’
in a standard neural network. This gives a modified transformation of the form

Y = Softmax
[
XUUTXT

]
XU. (12.8)

Although this has much more flexibility, it has the property that the matrix

XUUTXT (12.9)

is symmetric, whereas we would like the attention mechanism to support significant
asymmetry. For example, we might expect that ‘chisel’ should be strongly associ-
ated with ‘tool’ since every chisel is a tool, whereas ‘tool’ should only be weakly
associated with ‘chisel’ because there are many other kinds of tools besides chis-
els. Although the softmax function means the resulting matrix of attention weights
is not itself symmetric, we can create a much more flexible model by allowing the
queries and the keys to have independent parameters. Furthermore, the form (12.8)
uses the same parameter matrix U to define both the value vectors and the attention
coefficients, which again seems like an undesirable restriction.

We can overcome these limitations by defining separate query, key, and value
matrices each having their own independent linear transformations:

Q = XW(q) (12.10)

K = XW(k) (12.11)

V = XW(v) (12.12)

where the weight matrices W(q), W(k), and W(v) represent parameters that will
be learned during the training of the final transformer architecture. Here the matrix
W(k) has dimensionality D × Dk where Dk is the length of the key vector. The
matrix W(q) must have the same dimensionality D × Dk as W(k) so that we can
form dot products between the query and key vectors. A typical choice is Dk = D.
Similarly,W(v) is a matrix of sizeD×Dv, whereDv governs the dimensionality of
the output vectors. If we set Dv = D, so that the output representation has the same
dimensionality as the input, this will facilitate the inclusion of residual connections,
which we discuss later. Also, multiple transformer layers can be stacked on top ofSection 12.1.7
each other if each layer has the same dimensionality. We can then generalize (12.6)
to give

Y = Softmax
[
QKT

]
V (12.13)

whereQKT has dimension N ×N , and the matrixY has dimension N ×Dv. The
calculation of the matrix QKT is illustrated in Figure 12.4, whereas the evaluation
of the matrixY is illustrated in Figure 12.5.

Network Parameters

• The transformation is now generalized to:

whereas the dot-product can be computed by:

364 12. TRANSFORMERS

have the flexibility to focus more on some features than others when determining
token similarity. We can address both issues if we define modified feature vectors
given by a linear transformation of the original vectors in the form

X̃ = XU (12.7)

where U is a D × D matrix of learnable weight parameters, analogous to a ‘layer’
in a standard neural network. This gives a modified transformation of the form

Y = Softmax
[
XUUTXT

]
XU. (12.8)

Although this has much more flexibility, it has the property that the matrix

XUUTXT (12.9)

is symmetric, whereas we would like the attention mechanism to support significant
asymmetry. For example, we might expect that ‘chisel’ should be strongly associ-
ated with ‘tool’ since every chisel is a tool, whereas ‘tool’ should only be weakly
associated with ‘chisel’ because there are many other kinds of tools besides chis-
els. Although the softmax function means the resulting matrix of attention weights
is not itself symmetric, we can create a much more flexible model by allowing the
queries and the keys to have independent parameters. Furthermore, the form (12.8)
uses the same parameter matrix U to define both the value vectors and the attention
coefficients, which again seems like an undesirable restriction.

We can overcome these limitations by defining separate query, key, and value
matrices each having their own independent linear transformations:

Q = XW(q) (12.10)

K = XW(k) (12.11)

V = XW(v) (12.12)

where the weight matrices W(q), W(k), and W(v) represent parameters that will
be learned during the training of the final transformer architecture. Here the matrix
W(k) has dimensionality D × Dk where Dk is the length of the key vector. The
matrix W(q) must have the same dimensionality D × Dk as W(k) so that we can
form dot products between the query and key vectors. A typical choice is Dk = D.
Similarly,W(v) is a matrix of sizeD×Dv, whereDv governs the dimensionality of
the output vectors. If we set Dv = D, so that the output representation has the same
dimensionality as the input, this will facilitate the inclusion of residual connections,
which we discuss later. Also, multiple transformer layers can be stacked on top ofSection 12.1.7
each other if each layer has the same dimensionality. We can then generalize (12.6)
to give

Y = Softmax
[
QKT

]
V (12.13)

whereQKT has dimension N ×N , and the matrixY has dimension N ×Dv. The
calculation of the matrix QKT is illustrated in Figure 12.4, whereas the evaluation
of the matrixY is illustrated in Figure 12.5. 12.1. Attention 365

× W(q)

D ×D

= Q

N ×D

W(k)

D ×D

= K

N ×D

×

QKT

N ×N

X

N ×D

Figure 12.4 Illustration of the evaluation of the matrix QKT, which determines the attention coeffi-
cients in a transformer. The input X is separately transformed using (12.10) and (12.11)
to give the query matrix Q and key matrix K, respectively, which are then multiplied to-
gether.

In practice we can also include bias parameters in these linear transformations.
However, the bias parameters can be absorbed into the weight matrices, as we did
with standard neural networks, by augmenting the data matrix X with an additionalSection 6.2.1
column of 1’s and by augmenting the weight matrices with an additional row of
parameters to represent the biases. From now on we will treat the bias parameters as
implicit to avoid cluttering the notation.

Compared to a conventional neural network, the signal paths have multiplicative
relations between activation values. Whereas standard networks multiply activations
by fixed weights, here the activations are multiplied by the data-dependent attention
coefficients. This means, for example, that if one of the attention coefficients is
close to zero for a particular choice of input vector, the resulting signal path will
ignore the corresponding incoming signal, which will therefore have no influence

Figure 12.5 Illustration of the evaluation
of the output from an attention layer given
the query, key, and value matrices Q,
K, and V, respectively. The entry at
the position highlighted in the output ma-
trix Y is obtained from the dot prod-
uct of the highlighted row and column
of the Softmax

[
QKT

]
and V matrices,

respectively.

Y

N ×Dv

= Softmax QKT

N ×N

×

N ×Dv

V

12.1. Attention 365

× W(q)

D ×D

= Q

N ×D

W(k)

D ×D

= K

N ×D

×

QKT

N ×N

X

N ×D

Figure 12.4 Illustration of the evaluation of the matrix QKT, which determines the attention coeffi-
cients in a transformer. The input X is separately transformed using (12.10) and (12.11)
to give the query matrix Q and key matrix K, respectively, which are then multiplied to-
gether.

In practice we can also include bias parameters in these linear transformations.
However, the bias parameters can be absorbed into the weight matrices, as we did
with standard neural networks, by augmenting the data matrix X with an additionalSection 6.2.1
column of 1’s and by augmenting the weight matrices with an additional row of
parameters to represent the biases. From now on we will treat the bias parameters as
implicit to avoid cluttering the notation.

Compared to a conventional neural network, the signal paths have multiplicative
relations between activation values. Whereas standard networks multiply activations
by fixed weights, here the activations are multiplied by the data-dependent attention
coefficients. This means, for example, that if one of the attention coefficients is
close to zero for a particular choice of input vector, the resulting signal path will
ignore the corresponding incoming signal, which will therefore have no influence

Figure 12.5 Illustration of the evaluation
of the output from an attention layer given
the query, key, and value matrices Q,
K, and V, respectively. The entry at
the position highlighted in the output ma-
trix Y is obtained from the dot prod-
uct of the highlighted row and column
of the Softmax

[
QKT

]
and V matrices,

respectively.

Y

N ×Dv

= Softmax QKT

N ×N

×

N ×Dv

V

bias parameters are implicit

Scaled self-attention
• Gradient of Softmax becomes exponentially

small for inputs of high magnitude, c.f. or
sigmoid activation; trouble with grad descent.

• Rescale the product of the query and key
vectors before Softmax.

• If the elements of the query and key vectors
were all independent random numbers with
zero mean and unit variance, then the variance
of the dot product would be .

• Normalizing the argument to the softmax using
the standard deviation given by :

• This is the scaled dot-product self-attention.

tanh

Dk

Dk

366 12. TRANSFORMERS

Figure 12.6 Information flow in a scaled dot-
product self-attention neural network
layer. Here ‘mat mul’ denotes matrix
multiplication, and ‘scale’ refers to the
normalization of the argument to the
softmax using

√
Dk. This structure

constitutes a single attention ‘head’.

X

W(k)W(q) W(v)

KQ V

mat mul

scale

softmax

mat mul

Y

on the network outputs. By contrast, if a standard neural network learns to ignore a
particular input or hidden-unit variable, it does so for all input vectors.

12.1.5 Scaled self-attention
There is one final refinement we can make to the self-attention layer. Recall that

the gradients of the softmax function become exponentially small for inputs of high
magnitude, just as happens with tanh or logistic-sigmoid activation functions. To
help prevent this from happening, we can re-scale the product of the query and key
vectors before applying the softmax function. To derive a suitable scaling, note that
if the elements of the query and key vectors were all independent random numbers
with zero mean and unit variance, then the variance of the dot product would beDk.Exercise 12.4
We therefore normalize the argument to the softmax using the standard deviation
given by the square root of Dk, so that the output of the attention layer takes the
form

Y = Attention(Q,K,V) ≡ Softmax

[
QKT

√
Dk

]
V. (12.14)

This is called scaled dot-product self-attention, and is the final form of our self-
attention neural network layer. The structure of this layer is summarized in Fig-
ure 12.6 and in Algorithm 12.1.

12.1.6 Multi-head attention
The attention layer described so far allows the output vectors to attend to data-

dependent patterns of input vectors and is called an attention head. However, there

366 12. TRANSFORMERS

Figure 12.6 Information flow in a scaled dot-
product self-attention neural network
layer. Here ‘mat mul’ denotes matrix
multiplication, and ‘scale’ refers to the
normalization of the argument to the
softmax using

√
Dk. This structure

constitutes a single attention ‘head’.

X

W(k)W(q) W(v)

KQ V

mat mul

scale

softmax

mat mul

Y

on the network outputs. By contrast, if a standard neural network learns to ignore a
particular input or hidden-unit variable, it does so for all input vectors.

12.1.5 Scaled self-attention
There is one final refinement we can make to the self-attention layer. Recall that

the gradients of the softmax function become exponentially small for inputs of high
magnitude, just as happens with tanh or logistic-sigmoid activation functions. To
help prevent this from happening, we can re-scale the product of the query and key
vectors before applying the softmax function. To derive a suitable scaling, note that
if the elements of the query and key vectors were all independent random numbers
with zero mean and unit variance, then the variance of the dot product would beDk.Exercise 12.4
We therefore normalize the argument to the softmax using the standard deviation
given by the square root of Dk, so that the output of the attention layer takes the
form

Y = Attention(Q,K,V) ≡ Softmax

[
QKT

√
Dk

]
V. (12.14)

This is called scaled dot-product self-attention, and is the final form of our self-
attention neural network layer. The structure of this layer is summarized in Fig-
ure 12.6 and in Algorithm 12.1.

12.1.6 Multi-head attention
The attention layer described so far allows the output vectors to attend to data-

dependent patterns of input vectors and is called an attention head. However, there

Multi-head attention
• There might be multiple patterns of attention relevant at the same time,

e.g., some associated with tenses, some with vocabulary.

• Single “attention head” averages out these effects. Instead use multiple
attention heads in parallel; analogous to channels in CNN.

• Suppose we have heads indexed by :

• The heads are concatenated into a single matrix, and the result is then
linearly transformed to give a combined output:

• The matrix is learned along with the weight matrices .

H h = 1,…, H

W(o) W(q), W(k), W(v)

12.1. Attention 367

Algorithm 12.1: Scaled dot-product self-attention

Input: Set of tokensX ∈ RN×D : {x1, . . . ,xN}
Weight matrices {W(q),W(k)} ∈ RD×Dk andW(v) ∈ RD×Dv

Output: Attention(Q,K,V) ∈ RN×Dv : {y1, . . . ,yN}
Q = XW(q) // compute queries Q ∈ RN×Dk

K = XW(k) // compute keys K ∈ RN×Dk

V = XW(v) // compute values V ∈ RN×D

return Attention(Q,K,V) = Softmax

[
QKT

√
Dk

]
V

might be multiple patterns of attention that are relevant at the same time. In natu-
ral language, for example, some patterns might be relevant to tense whereas others
might be associated with vocabulary. Using a single attention head can lead to av-
eraging over these effects. Instead we can use multiple attention heads in parallel.
These consist of identically structured copies of the single head, with independent
learnable parameters that govern the calculation of the query, key, and value matri-
ces. This is analogous to using multiple different filters in each layer of a convolu-
tional network.

Suppose we have H heads indexed by h = 1, . . . ,H of the form

Hh = Attention(Qh,Kh,Vh) (12.15)

whereAttention(·, ·, ·) is given by (12.14), and we have defined separate query, key,
and value matrices for each head using

Qh = XW(q)
h (12.16)

Kh = XW(k)
h (12.17)

Vh = XW(v)
h . (12.18)

The heads are first concatenated into a single matrix, and the result is then linearly
transformed using a matrixW(o) to give a combined output in the form

Y(X) = Concat [H1, . . . ,HH]W(o). (12.19)

This is illustrated in Figure 12.7.
Each matrix Hh has dimension N × Dv, and so the concatenated matrix has

dimension N ×HDv. This is transformed by the linear matrix W(o) of dimension
HDv×D to give the final output matrixY of dimensionN ×D, which is the same
as the original input matrix X. The elements of the matrix W(o) are learned during
the training phase along with the query, key, and value matrices. Typically Dv is

12.1. Attention 367

Algorithm 12.1: Scaled dot-product self-attention

Input: Set of tokensX ∈ RN×D : {x1, . . . ,xN}
Weight matrices {W(q),W(k)} ∈ RD×Dk andW(v) ∈ RD×Dv

Output: Attention(Q,K,V) ∈ RN×Dv : {y1, . . . ,yN}
Q = XW(q) // compute queries Q ∈ RN×Dk

K = XW(k) // compute keys K ∈ RN×Dk

V = XW(v) // compute values V ∈ RN×D

return Attention(Q,K,V) = Softmax

[
QKT

√
Dk

]
V

might be multiple patterns of attention that are relevant at the same time. In natu-
ral language, for example, some patterns might be relevant to tense whereas others
might be associated with vocabulary. Using a single attention head can lead to av-
eraging over these effects. Instead we can use multiple attention heads in parallel.
These consist of identically structured copies of the single head, with independent
learnable parameters that govern the calculation of the query, key, and value matri-
ces. This is analogous to using multiple different filters in each layer of a convolu-
tional network.

Suppose we have H heads indexed by h = 1, . . . ,H of the form

Hh = Attention(Qh,Kh,Vh) (12.15)

whereAttention(·, ·, ·) is given by (12.14), and we have defined separate query, key,
and value matrices for each head using

Qh = XW(q)
h (12.16)

Kh = XW(k)
h (12.17)

Vh = XW(v)
h . (12.18)

The heads are first concatenated into a single matrix, and the result is then linearly
transformed using a matrixW(o) to give a combined output in the form

Y(X) = Concat [H1, . . . ,HH]W(o). (12.19)

This is illustrated in Figure 12.7.
Each matrix Hh has dimension N × Dv, and so the concatenated matrix has

dimension N ×HDv. This is transformed by the linear matrix W(o) of dimension
HDv×D to give the final output matrixY of dimensionN ×D, which is the same
as the original input matrix X. The elements of the matrix W(o) are learned during
the training phase along with the query, key, and value matrices. Typically Dv is

368 12. TRANSFORMERS

Figure 12.7 Network architecture for multi-
head attention. Each head com-
prises the structure shown in Fig-
ure 12.6, and has its own key,
query, and value parameters. The
outputs of the heads are con-
catenated and then linearly pro-
jected back to the input data
dimensionality.

N ×HDv

H1 H2 ... HH × W(o)

HDv ×D

= Y

N ×D

chosen to be equal to D/H so that the resulting concatenated matrix has dimension
N ×D. Multi-head attention is summarized in Algorithm 12.2, and the information
flow in a multi-head attention layer is illustrated in Figure 12.8.

Note that the formulation of multi-head attention given above, which follows
that used in the research literature, includes some redundancy in the successive mul-
tiplication of theW(v) matrix for each head and the output matrixW(o). Removing
this redundancy allows a multi-head self-attention layer to be written as a sum over
contributions from each of the heads separately.Exercise 12.5

12.1.7 Transformer layers
Multi-head self-attention forms the core architectural element in a transformer

network. We know that neural networks benefit greatly from depth, and so we would
like to stack multiple self-attention layers on top of each other. To improve training

Algorithm 12.2: Multi-head attention

Input: Set of tokensX ∈ RN×D : {x1, . . . ,xN}
Query weight matrices {W(q)

1 , . . . ,W(q)
H } ∈ RD×D

Key weight matrices {W(k)
1 , . . . ,W(k)

H } ∈ RD×D

Value weight matrices {W(v)
1 , . . . ,W(v)

H } ∈ RD×Dv

Output weight matrixW(o) ∈ RHDv×D

Output: Y ∈ RN×D : {y1, . . . ,xN}
// compute self-attention for each head (Algorithm 12.1)

for h = 1, . . . ,H do
Qh = XW(q)

h , Kh = XW(k)
h , Vh = XW(v)

h

Hh = Attention (Qh,Kh,Vh) // Hh ∈ RN×Dv

end for
H = Concat [H1, . . . ,HN] // concatenate heads

returnY(X) = HW(o)

• NNs benefit greatly from depth, so we
can stack self-attention layers (like the
right) on top of each other.

• To improve efficiency, transformer
layers are followed by layer
normalization: https://arxiv.org/abs/
1607.06450

• Output of an attention layer are
constrained to be linear combinations of
the inputs, though non-linearities enter
through the attention weights.

• Enhance flexibility by post-processing
the output of each layer using non-linear
network denoted by MLP (e.g., fully
connected NN with ReLu activation.

12.1. Attention 369

X

self-attentionself-attention ... self-attention

concat

linear

Y

Figure 12.8 Information flow in a multi-head attention layer. The associated computation, given by
Algorithm 12.2, is illustrated in Figure 12.7.

efficiency, we can introduce residual connections that bypass the multi-head struc-Section 9.5
ture. To do this we require that the output dimensionality is the same as the input
dimensionality, namely N × D. This is then followed by layer normalization (Ba,Section 7.4.3
Kiros, and Hinton, 2016), which improves training efficiency. The resulting trans-
formation can be written as

Z = LayerNorm [Y(X) +X] (12.20)

where Y is defined by (12.19). Sometimes the layer normalization is replaced by
pre-norm in which the normalization layer is applied before the multi-head self-
attention instead of after, as this can result in more effective optimization, in which
case we have

Z = Y(X′) +X, where X′ = LayerNorm [X] . (12.21)

In each case, Z again has the same dimensionality N ×D as the input matrixX.
We have seen that the attention mechanism creates linear combinations of the

value vectors, which are then linearly combined to produce the output vectors. Also,
the values are linear functions of the input vectors, and so we see that the outputs
of an attention layer are constrained to be linear combinations of the inputs. Non-
linearity does enter through the attention weights, and so the outputs will depend
nonlinearly on the inputs via the softmax function, but the output vectors are still
constrained to lie in the subspace spanned by the input vectors and this limits the
expressive capabilities of the attention layer. We can enhance the flexibility of the
transformer by post-processing the output of each layer using a standard nonlinear
neural network with D inputs and D outputs, denoted MLP[·] for ‘multilayer per-
ceptron’. For example, this might consist of a two-layer fully connected network
with ReLU hidden units. This needs to be done in a way that preserves the ability

370 12. TRANSFORMERS

Figure 12.9 One layer of the transformer architecture that
implements the transformation (12.1). Here
‘MLP’ stands for multilayer perceptron, while
‘add and norm’ denotes a residual connection
followed by layer normalization.

X

multi-head
self-attention

add & norm

MLP

add & norm

X̃

Z

of the transformer to process sequences of variable length. To achieve this, the same
shared network is applied to each of the output vectors, corresponding to the rows of
Z. Again, this neural network layer can be improved by using a residual connection.
It also includes layer normalization so that the final output from the transformer layer
has the form

X̃ = LayerNorm [MLP [Z] + Z] . (12.22)

This leads to an overall architecture for a transformer layer shown in Figure 12.9 and
summarized in Algorithm 12.3. Again, we can use a pre-norm instead, in which case
the final output is given by

X̃ = MLP(Z′) + Z, where Z′ = LayerNorm [Z] . (12.23)

In a typical transformer there are multiple such layers stacked on top of each other.
The layers generally have identical structures, although there is no sharing of weights
and biases between different layers.

12.1.8 Computational complexity
The attention layer discussed so far takes a set of N vectors each of length

D and maps them into another set of N vectors having the same dimensionality.
Thus, the inputs and outputs each have overall dimensionalityND. If we had used a
standard fully connected neural network to map the input values to the output values,
it would have O(N2D2) independent parameters. Likewise the computational cost
of evaluating one forward pass through such a network would also be O(N2D2).

In the attention layer, the matrices W(q), W(k), and W(v) are shared across in-
put tokens, and therefore the number of independent parameters isO(D2), assuming
Dk ≃ Dv ≃ D. Since there are N input tokens, the number of computational steps

Transformer Layers

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450

Position Encoding

• The weight matrices are shared among the input
tokens, so transformer is equivariant w.r.t. input permutations.

• Token ordering is important in sequential processing: “The professor
failed the students” is different from “The students failed the professor”.

• Construct a position encoding vector and combine with the input
token embedding . Concatenation would increase the dim of input
space and significantly increase computational cost. Instead:

• The position & input vectors have the same dim. Two randomly
chosen uncorrelated vectors tend to be nearly orthogonal in high dim.

• Associate an integer to each position has the problem of
corrupting the input vector because the length is unbounded, and vary
among training sets. May not recognize new longer input sequence.

W(q), W(k), W(v)

rn
xn

1,2,3,…

372 12. TRANSFORMERS

stead of having to be represented in the network architecture. We will therefore
construct a position encoding vector rn associated with each input position n and
then combine this with the associated input token embedding xn. One obvious way
to combine these vectors would be to concatenate them, but this would increase the
dimensionality of the input space and hence of all subsequent attention spaces, cre-
ating a significant increase in computational cost. Instead, we can simply add the
position vectors onto the token vectors to give

x̃n = xn + rn. (12.24)

This requires that the positional encoding vectors have the same dimensionality as
the token-embedding vectors.

At first it might seem that adding position information onto the token vector
would corrupt the input vectors and make the task of the network much more diffi-
cult. However, some intuition as to why this can work well comes from noting that
two randomly chosen uncorrelated vectors tend to be nearly orthogonal in spaces of
high dimensionality, indicating that the network is able to process the token identityExercise 12.8
information and the position information relatively separately. Note also that, be-
cause of the residual connections across every layer, the position information does
not get lost in going from one transformer layer to the next. Moreover, due to the
linear processing layers in the transformer, a concatenated representation has similar
properties to an additive one.Exercise 12.9

The next task is to construct the embedding vectors {rn}. A simple approach
would be to associate an integer 1, 2, 3, . . . with each position. However, this has the
problem that the magnitude of the value increases without bound and therefore may
start to corrupt the embedding vector significantly. Also it may not generalize well
to new input sequences that are longer than those used in training, since these will
involve coding values that lie outside the range of those used in training. Alterna-
tively we could assign a number in the range (0, 1) to each token in the sequence,
which keeps the representation bounded. However, this representation is not unique
for a given position as it depends on the overall sequence length.

An ideal positional encoding should provide a unique representation for each
position, it should be bounded, it should generalize to longer sequences, and it should
have a consistent way to express the number of steps between any two input vectors
irrespective of their absolute position because the relative position of tokens is often
more important than the absolute position.

There are many approaches to positional encoding (Dufter, Schmitt, and Schütze,
2021). Here we describe a technique based on sinusoidal functions introduced by
Vaswani et al. (2017). For a given position n the associated position-encoding vec-
tor has components rni given by

rni =

⎧
⎪⎨

⎪⎩

sin
(n

Li/D

)
, if i is even,

cos
(n

L(i−1)/D

)
, if i is odd.

(12.25)

We see that the elements of the embedding vector rn are given by a series of sine and
cosine functions of steadily increasing wavelength, as illustrated in Figure 12.10(a).

Position Encoding

• Assigning a # between to each token
in the sequence does not work as the rep.
is not unique for a given position (depends
on sequence length).

• Is there an encoding that provides a
unique rep. for each position, is bounded,
generalizable to longer sequences, &
capture relative positions?

• Use sinusoidal functions (Vaswani et al):

• Because of the properties of sine and
cosine, the encoding allows the network to
attend to relative positions.

(0,1)

372 12. TRANSFORMERS

stead of having to be represented in the network architecture. We will therefore
construct a position encoding vector rn associated with each input position n and
then combine this with the associated input token embedding xn. One obvious way
to combine these vectors would be to concatenate them, but this would increase the
dimensionality of the input space and hence of all subsequent attention spaces, cre-
ating a significant increase in computational cost. Instead, we can simply add the
position vectors onto the token vectors to give

x̃n = xn + rn. (12.24)

This requires that the positional encoding vectors have the same dimensionality as
the token-embedding vectors.

At first it might seem that adding position information onto the token vector
would corrupt the input vectors and make the task of the network much more diffi-
cult. However, some intuition as to why this can work well comes from noting that
two randomly chosen uncorrelated vectors tend to be nearly orthogonal in spaces of
high dimensionality, indicating that the network is able to process the token identityExercise 12.8
information and the position information relatively separately. Note also that, be-
cause of the residual connections across every layer, the position information does
not get lost in going from one transformer layer to the next. Moreover, due to the
linear processing layers in the transformer, a concatenated representation has similar
properties to an additive one.Exercise 12.9

The next task is to construct the embedding vectors {rn}. A simple approach
would be to associate an integer 1, 2, 3, . . . with each position. However, this has the
problem that the magnitude of the value increases without bound and therefore may
start to corrupt the embedding vector significantly. Also it may not generalize well
to new input sequences that are longer than those used in training, since these will
involve coding values that lie outside the range of those used in training. Alterna-
tively we could assign a number in the range (0, 1) to each token in the sequence,
which keeps the representation bounded. However, this representation is not unique
for a given position as it depends on the overall sequence length.

An ideal positional encoding should provide a unique representation for each
position, it should be bounded, it should generalize to longer sequences, and it should
have a consistent way to express the number of steps between any two input vectors
irrespective of their absolute position because the relative position of tokens is often
more important than the absolute position.

There are many approaches to positional encoding (Dufter, Schmitt, and Schütze,
2021). Here we describe a technique based on sinusoidal functions introduced by
Vaswani et al. (2017). For a given position n the associated position-encoding vec-
tor has components rni given by

rni =

⎧
⎪⎨

⎪⎩

sin
(n

Li/D

)
, if i is even,

cos
(n

L(i−1)/D

)
, if i is odd.

(12.25)

We see that the elements of the embedding vector rn are given by a series of sine and
cosine functions of steadily increasing wavelength, as illustrated in Figure 12.10(a).

12.1. Attention 373

r6 r5 r4 r3 r2 r1

embedding dimension

n

m

po
si
tio

n

(a)

embedding dimension

po
si
tio

n

−1

0

1

(b)

Figure 12.10 Illustrations of the functions defined by (12.25) and used to construct position-encoding vectors.
(a) A plot in which the horizontal axis shows the different components of the embedding vector r whereas the
vertical axis shows the position in the sequence. The values of the vector elements for two positions n andm are
shown by the intersections of the sine and cosine curves with the horizontal grey lines. (b) A heat map illustration
of the position-encoding vectors defined by (12.25) for dimension D = 100 with L = 30 for the first N = 200
positions.

Similar to binary reps of integers,
except that is continuous:rni

374 12. TRANSFORMERS

This encoding has the property that the elements of the vector rn all lie in the
range (−1, 1). It is reminiscent of the way binary numbers are represented, with the
lowest order bit alternating with high frequency, and subsequent bits alternating with
steadily decreasing frequencies:

1 : 0 0 0 1
2 : 0 0 1 0
3 : 0 0 1 1
4 : 0 1 0 0
5 : 0 1 0 1
6 : 0 1 1 0
7 : 0 1 1 1
8 : 1 0 0 0
9 : 1 0 0 1

For the encoding given by (12.25), however, the vector elements are continuous
variables rather than binary. A plot of the position-encoding vectors is shown in
Figure 12.10(b).

One nice property of the sinusoidal representation given by (12.25) is that, for
any fixed offset k, the encoding at position n + k can be represented as a linear
combination of the encoding at position n, in which the coefficients do not dependExercise 12.10
on the absolute position but only on the value of k. The network should therefore be
able to learn to attend to relative positions. Note that this property requires that the
encoding makes use of both sine and cosine functions.

Another popular approach to positional representation is to use learned position
encodings. This is done by having a vector of weights at each token position that
can be learned jointly with the rest of the model parameters during training, and
avoids using hand-crafted representations. Because the parameters are not shared
between the token positions, the tokens are no longer invariant under a permutation,
which is the purpose of a positional encoding. However, this approach does not
meet the criteria we mentioned earlier of generalizing to longer input sequences,
as the encoding will be untrained for positional encodings not seen during training.
Therefore, this approach is generally most suitable when the input length is relatively
constant during both training and inference.

12.2. Natural Language

Now that we have studied the architecture of the transformer, we will explore how
this can be used to process language data consisting of words, sentences, and para-
graphs. Although this is the modality that transformers were originally developed to
operate on, they have proved to be a very general class of models and have become
the state-of-the-art for most input data types. Later in this chapter we will look at
their use in other domains.Section 12.4

Many languages, including English, comprise a series of words separated by
white space, along with punctuation symbols, and therefore represent an example of

Transformers

Natural Language

Transformer for NLP

• A typical NLP pipeline starts with a tokenizer that splits the text into
words or word fragments. Using words as tokens may not be ideal:

• Some words (e.g. names, technical terms) aren’t in the vocabulary.

• How about punctuation? A question mark contains info to encode.

• The vocabulary would need different tokens for different versions
of the same word with different suffices (e.g., walk, walks, walked,
walking), and there is no way to clarify these variations are related.

• Then each of the tokens is mapped to a learned embedding.

• The whole vocabulary is stored in a matrix where
 is the vocabulary size; this vocabulary matrix is learned.

• These embeddings are passed thru a series of transformer layers.

Ωe ∈ ℝD×|𝒱|

|𝒱 |

Tokenization

• One approach is to use letters and punctuations as the vocabulary.
But this requires the subsequent network to re-learn the relations
between the very small pieces.

• A compromise is sub-word tokenizer such as byte pair encoding
that greedily merges sub-strings based on their frequencies.

• Consider the following nursery rhyme:

• The tokens are initially just the characters & whitespace (represented
by an underscore), and their frequencies given in the table.

12.5 Transformers for natural language processing 217

Figure 12.8 Sub-word tokenization. a) A passage of text from a nursery rhyme.
The tokens are initially just the characters and whitespace (represented by an
underscore), and their frequencies are displayed in the table. b) At each iteration,
the sub-word tokenizer looks for the most commonly occurring adjacent pair of
tokens (in this case, se) and merges them. This creates a new token and decreases
the counts for the original tokens s and e. c) At the second iteration, the algorithm
merges e and the whitespace character_. Note that the last character of the first
token to be merged cannot be whitespace, which prevents merging across words.
d) After 22 iterations, the tokens consist of a mix of letters, word fragments, and
commonly occurring words. e) If we continue this process indefinitely, the tokens
eventually represent the full words. f) Over time, the number of tokens increases
as we add word fragments to the letters and then decreases again as we merge
these fragments. In a real situation, there would be a very large number of words,
and the algorithm would terminate when the vocabulary size (number of tokens)
reached a predetermined value. Punctuation and capital letters would also be
treated as separate input characters.

Draft: please send errata to udlbookmail@gmail.com.

Byte pair encoding
• At each iteration, the sub-word tokenizer looks for the most commonly

occurring adjacent pair of tokens and merges them. This creates a new
token & decreases the counts for the original tokens.

• At the second iteration, the algorithm merges e and the whitespace
character_. The last character of the first token to be merged cannot be
whitespace, which prevents merging across words.

12.5 Transformers for natural language processing 217

Figure 12.8 Sub-word tokenization. a) A passage of text from a nursery rhyme.
The tokens are initially just the characters and whitespace (represented by an
underscore), and their frequencies are displayed in the table. b) At each iteration,
the sub-word tokenizer looks for the most commonly occurring adjacent pair of
tokens (in this case, se) and merges them. This creates a new token and decreases
the counts for the original tokens s and e. c) At the second iteration, the algorithm
merges e and the whitespace character_. Note that the last character of the first
token to be merged cannot be whitespace, which prevents merging across words.
d) After 22 iterations, the tokens consist of a mix of letters, word fragments, and
commonly occurring words. e) If we continue this process indefinitely, the tokens
eventually represent the full words. f) Over time, the number of tokens increases
as we add word fragments to the letters and then decreases again as we merge
these fragments. In a real situation, there would be a very large number of words,
and the algorithm would terminate when the vocabulary size (number of tokens)
reached a predetermined value. Punctuation and capital letters would also be
treated as separate input characters.

Draft: please send errata to udlbookmail@gmail.com.

12.5 Transformers for natural language processing 217

Figure 12.8 Sub-word tokenization. a) A passage of text from a nursery rhyme.
The tokens are initially just the characters and whitespace (represented by an
underscore), and their frequencies are displayed in the table. b) At each iteration,
the sub-word tokenizer looks for the most commonly occurring adjacent pair of
tokens (in this case, se) and merges them. This creates a new token and decreases
the counts for the original tokens s and e. c) At the second iteration, the algorithm
merges e and the whitespace character_. Note that the last character of the first
token to be merged cannot be whitespace, which prevents merging across words.
d) After 22 iterations, the tokens consist of a mix of letters, word fragments, and
commonly occurring words. e) If we continue this process indefinitely, the tokens
eventually represent the full words. f) Over time, the number of tokens increases
as we add word fragments to the letters and then decreases again as we merge
these fragments. In a real situation, there would be a very large number of words,
and the algorithm would terminate when the vocabulary size (number of tokens)
reached a predetermined value. Punctuation and capital letters would also be
treated as separate input characters.

Draft: please send errata to udlbookmail@gmail.com.

Byte pair encoding (continued)

• After 22 iterations, the tokens consist of a mix of letters, word
fragments, and commonly occurring words:

• If we continue this process indefinitely, the tokens eventually
represent the full words:

12.5 Transformers for natural language processing 217

Figure 12.8 Sub-word tokenization. a) A passage of text from a nursery rhyme.
The tokens are initially just the characters and whitespace (represented by an
underscore), and their frequencies are displayed in the table. b) At each iteration,
the sub-word tokenizer looks for the most commonly occurring adjacent pair of
tokens (in this case, se) and merges them. This creates a new token and decreases
the counts for the original tokens s and e. c) At the second iteration, the algorithm
merges e and the whitespace character_. Note that the last character of the first
token to be merged cannot be whitespace, which prevents merging across words.
d) After 22 iterations, the tokens consist of a mix of letters, word fragments, and
commonly occurring words. e) If we continue this process indefinitely, the tokens
eventually represent the full words. f) Over time, the number of tokens increases
as we add word fragments to the letters and then decreases again as we merge
these fragments. In a real situation, there would be a very large number of words,
and the algorithm would terminate when the vocabulary size (number of tokens)
reached a predetermined value. Punctuation and capital letters would also be
treated as separate input characters.

Draft: please send errata to udlbookmail@gmail.com.

12.5 Transformers for natural language processing 217

Figure 12.8 Sub-word tokenization. a) A passage of text from a nursery rhyme.
The tokens are initially just the characters and whitespace (represented by an
underscore), and their frequencies are displayed in the table. b) At each iteration,
the sub-word tokenizer looks for the most commonly occurring adjacent pair of
tokens (in this case, se) and merges them. This creates a new token and decreases
the counts for the original tokens s and e. c) At the second iteration, the algorithm
merges e and the whitespace character_. Note that the last character of the first
token to be merged cannot be whitespace, which prevents merging across words.
d) After 22 iterations, the tokens consist of a mix of letters, word fragments, and
commonly occurring words. e) If we continue this process indefinitely, the tokens
eventually represent the full words. f) Over time, the number of tokens increases
as we add word fragments to the letters and then decreases again as we merge
these fragments. In a real situation, there would be a very large number of words,
and the algorithm would terminate when the vocabulary size (number of tokens)
reached a predetermined value. Punctuation and capital letters would also be
treated as separate input characters.

Draft: please send errata to udlbookmail@gmail.com.

12.5 Transformers for natural language processing 217

Figure 12.8 Sub-word tokenization. a) A passage of text from a nursery rhyme.
The tokens are initially just the characters and whitespace (represented by an
underscore), and their frequencies are displayed in the table. b) At each iteration,
the sub-word tokenizer looks for the most commonly occurring adjacent pair of
tokens (in this case, se) and merges them. This creates a new token and decreases
the counts for the original tokens s and e. c) At the second iteration, the algorithm
merges e and the whitespace character_. Note that the last character of the first
token to be merged cannot be whitespace, which prevents merging across words.
d) After 22 iterations, the tokens consist of a mix of letters, word fragments, and
commonly occurring words. e) If we continue this process indefinitely, the tokens
eventually represent the full words. f) Over time, the number of tokens increases
as we add word fragments to the letters and then decreases again as we merge
these fragments. In a real situation, there would be a very large number of words,
and the algorithm would terminate when the vocabulary size (number of tokens)
reached a predetermined value. Punctuation and capital letters would also be
treated as separate input characters.

Draft: please send errata to udlbookmail@gmail.com.

The number of tokens increases as we add
word fragments to the letters and then

decreases again as we merge these fragments.

Learned Embeddings
• Each token is mapped to a unique word embedding; the embeddings

for the whole vocabulary are storied in a matrix

• The matrix is learned like any other network parameter.

• A typical embedding size is and a typical total vocabulary size
 is . Many parameters in to learn.

Ωe ∈ ℝD×|𝒱|

Ωe

D 1024
|𝒱 | 30,000 Ωe

12.6 Encoder model example: BERT 219

Figure 12.9 The input embedding matrix X ∈ RD×N contains N embeddings of
length D and is created by multiplying a matrix Ωe containing the embeddings
for the entire vocabulary with a matrix containing one-hot vectors in its columns
that correspond to the word or sub-word indices. The vocabulary matrix Ωe is
considered a parameter of the model and is learned along with the other param-
eters. Note that the two embeddings for the word an in X are the same.

text. Encoder-decoders are used in sequence-to-sequence tasks, where one text string is
converted into another (e.g., machine translation). These variations are described in
sections 12.6–12.8, respectively.

12.6 Encoder model example: BERT

BERT is an encoder model that uses a vocabulary of 30,000 tokens. Input tokens are
converted to 1024-dimensional word embeddings and passed through 24 transformer
layers. Each contains a self-attention mechanism with 16 heads. The queries, keys, and
values for each head are of dimension 64 (i.e., the matrices Ωvh,Ωqh,Ωkh are 1024×64).
The dimension of the single hidden layer in the fully connected networks is 4096. The
total number of parameters is ∼ 340 million. When BERT was introduced, this was
considered large, but it is now much smaller than state-of-the-art models.

Encoder models like BERT exploit transfer learning (section 9.3.6). During pre-
training, the parameters of the transformer architecture are learned using self-supervision
from a large corpus of text. The goal here is for the model to learn general information
about the statistics of language. In the fine-tuning stage, the resulting network is adapted
to solve a particular task using a smaller body of supervised training data.

Draft: please send errata to udlbookmail@gmail.com.

218 12 Transformers

is mapped to a learned embedding. These embeddings are passed through a series of
transformer layers. We now consider each of these stages in turn.

12.5.1 Tokenization

A text processing pipeline begins with a tokenizer. This splits the text into smaller
constituent units (tokens) from a vocabulary of possible tokens. In the discussion above,
we have implied that these tokens represent words, but there are several difficulties.

• Inevitably, some words (e.g., names) will not be in the vocabulary.
• It’s unclear how to handle punctuation, but this is important. If a sentence ends

in a question mark, we must encode this information.
• The vocabulary would need different tokens for versions of the same word with

different suffixes (e.g., walk, walks, walked, walking), and there is no way to clarify
that these variations are related.

One approach would be to use letters and punctuation marks as the vocabulary, but this
would mean splitting text into very small parts and requiring the subsequent network to
re-learn the relations between them.

In practice, a compromise between letters and full words is used, and the final vo-Notebook 12.3
Tokenization cabulary includes both common words and word fragments from which larger and less

frequent words can be composed. The vocabulary is computed using a sub-word tok-
enizer such as byte pair encoding (figure 12.8) that greedily merges commonly occurring
sub-strings based on their frequency.

12.5.2 Embeddings

Each token in the vocabulary V is mapped to a unique word embedding, and the embed-
dings for the whole vocabulary are stored in a matrix Ωe ∈ RD×|V|. To accomplish this,
the N input tokens are first encoded in the matrix T ∈ R|V|×N , where the nth column
corresponds to the nth token and is a |V| × 1 one-hot vector (i.e., a vector where every
entry is zero except for the entry corresponding to the token, which is set to one). The
input embeddings are computed as X = ΩeT, and Ωe is learned like any other network
parameter (figure 12.9). A typical embedding size D is 1024, and a typical total vocab-
ulary size |V| is 30,000, so even before the main network, there are many parameters
in Ωe to learn.

12.5.3 Transformer model

Finally, the embedding matrix X representing the text is passed through a series of K
transformer layers, called a transformer model. There are three types of transformer
models. An encoder transforms the text embeddings into a representation that can
support a variety of tasks. A decoder predicts the next token to continue the input

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

• Reading for this lecture:
• This lecture was based in part on the book by Bishop, linked on the

website.

Course logistics

