
Moritz Münchmeyer   

Physics 361 - Machine Learning in 
Physics 

Lecture 16 – Large Language Models 

March 13th 2025 



Transformers

Recall: Transformers



Transformer Processing

• Input data is a set of vectors  of dimensionality , .

• These data vectors are known as tokens (e.g., a word within a 
sentence, a patch within an image, or an amino acid within a protein).

• The elements  of the tokens are called features.

• Transformers can handle a mix of different data types by combining 
the data variables into a joint set of tokens.

• Combining the data vectors into a matrix  of dimensions .

{xn} D n = 1,…, N

xni

X N × D12.1. Attention 361

Figure 12.3 The structure of the data matrix X, of di-
mension N × D, in which row n repre-
sents the transposed data vector xT

n .

X

N
(to

ke
ns

)

D (features)

xT
n

is important to be precise about notation. We will follow the standard convention
and combine the data vectors into a matrix X of dimensions N × D in which the
nth row comprises the token vector xT

n , and where n = 1, . . . , N labels the rows,
as illustrated in Figure 12.3. Note that this matrix represents one set of input tokens,
and that for most applications, we will require a data set containing many sets of
tokens, such as independent passages of text where each word is represented as one
token. The fundamental building block of a transformer is a function that takes a
data matrix as input and creates a transformed matrix X̃ of the same dimensionality
as the output. We can write this function in the form

X̃ = TransformerLayer [X] . (12.1)

We can then apply multiple transformer layers in succession to construct deep net-
works capable of learning rich internal representations. Each transformer layer con-
tains its own weights and biases, which can be learned using gradient descent using
an appropriate cost function, as we will discuss in detail later in the chapter.Section 12.3

A single transformer layer itself comprises two stages. The first stage, which im-
plements the attention mechanism, mixes together the corresponding features from
different token vectors across the columns of the data matrix, whereas the second
stage then acts on each row independently and transforms the features within each
token vector. We start by looking at the attention mechanism.

12.1.2 Attention coefficients
Suppose that we have a set of input tokens x1, . . . ,xN in an embedding space

and we want to map this to another set y1, . . . ,yN having the same number of tokens
but in a new embedding space that captures a richer semantic structure. Consider a
particular output vector yn. The value of yn should depend not just on the corre-
sponding input vector xn but on all the vectors x1, . . . ,xN in the set. With attention,
this dependence should be stronger for those inputs xm that are particularly impor-
tant for determining the modified representation of yn. A simple way to achieve this
is to define each output vector yn to be a linear combination of the input vectors

12.1. Attention 361

Figure 12.3 The structure of the data matrix X, of di-
mension N × D, in which row n repre-
sents the transposed data vector xT

n .

X

N
(to

ke
ns

)

D (features)

xT
n

is important to be precise about notation. We will follow the standard convention
and combine the data vectors into a matrix X of dimensions N × D in which the
nth row comprises the token vector xT

n , and where n = 1, . . . , N labels the rows,
as illustrated in Figure 12.3. Note that this matrix represents one set of input tokens,
and that for most applications, we will require a data set containing many sets of
tokens, such as independent passages of text where each word is represented as one
token. The fundamental building block of a transformer is a function that takes a
data matrix as input and creates a transformed matrix X̃ of the same dimensionality
as the output. We can write this function in the form

X̃ = TransformerLayer [X] . (12.1)

We can then apply multiple transformer layers in succession to construct deep net-
works capable of learning rich internal representations. Each transformer layer con-
tains its own weights and biases, which can be learned using gradient descent using
an appropriate cost function, as we will discuss in detail later in the chapter.Section 12.3

A single transformer layer itself comprises two stages. The first stage, which im-
plements the attention mechanism, mixes together the corresponding features from
different token vectors across the columns of the data matrix, whereas the second
stage then acts on each row independently and transforms the features within each
token vector. We start by looking at the attention mechanism.

12.1.2 Attention coefficients
Suppose that we have a set of input tokens x1, . . . ,xN in an embedding space

and we want to map this to another set y1, . . . ,yN having the same number of tokens
but in a new embedding space that captures a richer semantic structure. Consider a
particular output vector yn. The value of yn should depend not just on the corre-
sponding input vector xn but on all the vectors x1, . . . ,xN in the set. With attention,
this dependence should be stronger for those inputs xm that are particularly impor-
tant for determining the modified representation of yn. A simple way to achieve this
is to define each output vector yn to be a linear combination of the input vectors

same dimensionality as X

Apply multiple transformer layer 
to learn rich internal representations.



Network Parameters

• Define query, key, & value matrices each w/ different transformations:

the weight matrices  represent parameters that will be 
learned during the training of the transformer architecture. 

•  are matrices of dim. . Setting 
 allows for dot-products between query and key while  

allows multiple transformer layers to be stacked. We set 
.

• Note: E.g. in GPT-3, the embedding dimension is divided among multiple attention heads but the 
overall dimensional consistency is maintained.

W(q), W(k), W(v)

W(q), W(k), W(v) D × Dk, D × Dq, D × Dv
Dk = Dq Dv = D

Dk = Dq = Dv = D

364 12. TRANSFORMERS

have the flexibility to focus more on some features than others when determining
token similarity. We can address both issues if we define modified feature vectors
given by a linear transformation of the original vectors in the form

X̃ = XU (12.7)

where U is a D × D matrix of learnable weight parameters, analogous to a ‘layer’
in a standard neural network. This gives a modified transformation of the form

Y = Softmax
[
XUUTXT

]
XU. (12.8)

Although this has much more flexibility, it has the property that the matrix

XUUTXT (12.9)

is symmetric, whereas we would like the attention mechanism to support significant
asymmetry. For example, we might expect that ‘chisel’ should be strongly associ-
ated with ‘tool’ since every chisel is a tool, whereas ‘tool’ should only be weakly
associated with ‘chisel’ because there are many other kinds of tools besides chis-
els. Although the softmax function means the resulting matrix of attention weights
is not itself symmetric, we can create a much more flexible model by allowing the
queries and the keys to have independent parameters. Furthermore, the form (12.8)
uses the same parameter matrix U to define both the value vectors and the attention
coefficients, which again seems like an undesirable restriction.

We can overcome these limitations by defining separate query, key, and value
matrices each having their own independent linear transformations:

Q = XW(q) (12.10)

K = XW(k) (12.11)

V = XW(v) (12.12)

where the weight matrices W(q), W(k), and W(v) represent parameters that will
be learned during the training of the final transformer architecture. Here the matrix
W(k) has dimensionality D × Dk where Dk is the length of the key vector. The
matrix W(q) must have the same dimensionality D × Dk as W(k) so that we can
form dot products between the query and key vectors. A typical choice is Dk = D.
Similarly,W(v) is a matrix of sizeD×Dv, whereDv governs the dimensionality of
the output vectors. If we set Dv = D, so that the output representation has the same
dimensionality as the input, this will facilitate the inclusion of residual connections,
which we discuss later. Also, multiple transformer layers can be stacked on top ofSection 12.1.7
each other if each layer has the same dimensionality. We can then generalize (12.6)
to give

Y = Softmax
[
QKT

]
V (12.13)

whereQKT has dimension N ×N , and the matrixY has dimension N ×Dv. The
calculation of the matrix QKT is illustrated in Figure 12.4, whereas the evaluation
of the matrixY is illustrated in Figure 12.5.



Network Parameters

• The transformation is now generalized to:

whereas the dot-product can be computed by:

364 12. TRANSFORMERS

have the flexibility to focus more on some features than others when determining
token similarity. We can address both issues if we define modified feature vectors
given by a linear transformation of the original vectors in the form

X̃ = XU (12.7)

where U is a D × D matrix of learnable weight parameters, analogous to a ‘layer’
in a standard neural network. This gives a modified transformation of the form

Y = Softmax
[
XUUTXT

]
XU. (12.8)

Although this has much more flexibility, it has the property that the matrix

XUUTXT (12.9)

is symmetric, whereas we would like the attention mechanism to support significant
asymmetry. For example, we might expect that ‘chisel’ should be strongly associ-
ated with ‘tool’ since every chisel is a tool, whereas ‘tool’ should only be weakly
associated with ‘chisel’ because there are many other kinds of tools besides chis-
els. Although the softmax function means the resulting matrix of attention weights
is not itself symmetric, we can create a much more flexible model by allowing the
queries and the keys to have independent parameters. Furthermore, the form (12.8)
uses the same parameter matrix U to define both the value vectors and the attention
coefficients, which again seems like an undesirable restriction.

We can overcome these limitations by defining separate query, key, and value
matrices each having their own independent linear transformations:

Q = XW(q) (12.10)

K = XW(k) (12.11)

V = XW(v) (12.12)

where the weight matrices W(q), W(k), and W(v) represent parameters that will
be learned during the training of the final transformer architecture. Here the matrix
W(k) has dimensionality D × Dk where Dk is the length of the key vector. The
matrix W(q) must have the same dimensionality D × Dk as W(k) so that we can
form dot products between the query and key vectors. A typical choice is Dk = D.
Similarly,W(v) is a matrix of sizeD×Dv, whereDv governs the dimensionality of
the output vectors. If we set Dv = D, so that the output representation has the same
dimensionality as the input, this will facilitate the inclusion of residual connections,
which we discuss later. Also, multiple transformer layers can be stacked on top ofSection 12.1.7
each other if each layer has the same dimensionality. We can then generalize (12.6)
to give

Y = Softmax
[
QKT

]
V (12.13)

whereQKT has dimension N ×N , and the matrixY has dimension N ×Dv. The
calculation of the matrix QKT is illustrated in Figure 12.4, whereas the evaluation
of the matrixY is illustrated in Figure 12.5. 12.1. Attention 365

× W(q)

D ×D

= Q

N ×D

W(k)

D ×D

= K

N ×D

×

QKT

N ×N

X

N ×D

Figure 12.4 Illustration of the evaluation of the matrix QKT, which determines the attention coeffi-
cients in a transformer. The input X is separately transformed using (12.10) and (12.11)
to give the query matrix Q and key matrix K, respectively, which are then multiplied to-
gether.

In practice we can also include bias parameters in these linear transformations.
However, the bias parameters can be absorbed into the weight matrices, as we did
with standard neural networks, by augmenting the data matrix X with an additionalSection 6.2.1
column of 1’s and by augmenting the weight matrices with an additional row of
parameters to represent the biases. From now on we will treat the bias parameters as
implicit to avoid cluttering the notation.

Compared to a conventional neural network, the signal paths have multiplicative
relations between activation values. Whereas standard networks multiply activations
by fixed weights, here the activations are multiplied by the data-dependent attention
coefficients. This means, for example, that if one of the attention coefficients is
close to zero for a particular choice of input vector, the resulting signal path will
ignore the corresponding incoming signal, which will therefore have no influence

Figure 12.5 Illustration of the evaluation
of the output from an attention layer given
the query, key, and value matrices Q,
K, and V, respectively. The entry at
the position highlighted in the output ma-
trix Y is obtained from the dot prod-
uct of the highlighted row and column
of the Softmax

[
QKT

]
and V matrices,

respectively.

Y

N ×Dv

= Softmax QKT

N ×N

×

N ×Dv

V

12.1. Attention 365

× W(q)

D ×D

= Q

N ×D

W(k)

D ×D

= K

N ×D

×

QKT

N ×N

X

N ×D

Figure 12.4 Illustration of the evaluation of the matrix QKT, which determines the attention coeffi-
cients in a transformer. The input X is separately transformed using (12.10) and (12.11)
to give the query matrix Q and key matrix K, respectively, which are then multiplied to-
gether.

In practice we can also include bias parameters in these linear transformations.
However, the bias parameters can be absorbed into the weight matrices, as we did
with standard neural networks, by augmenting the data matrix X with an additionalSection 6.2.1
column of 1’s and by augmenting the weight matrices with an additional row of
parameters to represent the biases. From now on we will treat the bias parameters as
implicit to avoid cluttering the notation.

Compared to a conventional neural network, the signal paths have multiplicative
relations between activation values. Whereas standard networks multiply activations
by fixed weights, here the activations are multiplied by the data-dependent attention
coefficients. This means, for example, that if one of the attention coefficients is
close to zero for a particular choice of input vector, the resulting signal path will
ignore the corresponding incoming signal, which will therefore have no influence

Figure 12.5 Illustration of the evaluation
of the output from an attention layer given
the query, key, and value matrices Q,
K, and V, respectively. The entry at
the position highlighted in the output ma-
trix Y is obtained from the dot prod-
uct of the highlighted row and column
of the Softmax

[
QKT

]
and V matrices,

respectively.

Y

N ×Dv

= Softmax QKT

N ×N

×

N ×Dv

V

bias parameters are implicit





Multi-head attention
• There might be multiple patterns of attention relevant at the same time, 

e.g., some associated with tenses, some with vocabulary.

• Single “attention head” averages out these effects. Instead use multiple 
attention heads in parallel; analogous to channels in CNN.

• Suppose we have  heads indexed by :

• The heads are concatenated into a single matrix, and the result is then 
linearly transformed to give a combined output: 

• The matrix  is learned along with the weight matrices .

H h = 1,…, H

W(o) W(q), W(k), W(v)

12.1. Attention 367

Algorithm 12.1: Scaled dot-product self-attention

Input: Set of tokensX ∈ RN×D : {x1, . . . ,xN}
Weight matrices {W(q),W(k)} ∈ RD×Dk andW(v) ∈ RD×Dv

Output: Attention(Q,K,V) ∈ RN×Dv : {y1, . . . ,yN}
Q = XW(q) // compute queries Q ∈ RN×Dk

K = XW(k) // compute keys K ∈ RN×Dk

V = XW(v) // compute values V ∈ RN×D

return Attention(Q,K,V) = Softmax

[
QKT

√
Dk

]
V

might be multiple patterns of attention that are relevant at the same time. In natu-
ral language, for example, some patterns might be relevant to tense whereas others
might be associated with vocabulary. Using a single attention head can lead to av-
eraging over these effects. Instead we can use multiple attention heads in parallel.
These consist of identically structured copies of the single head, with independent
learnable parameters that govern the calculation of the query, key, and value matri-
ces. This is analogous to using multiple different filters in each layer of a convolu-
tional network.

Suppose we have H heads indexed by h = 1, . . . ,H of the form

Hh = Attention(Qh,Kh,Vh) (12.15)

whereAttention(·, ·, ·) is given by (12.14), and we have defined separate query, key,
and value matrices for each head using

Qh = XW(q)
h (12.16)

Kh = XW(k)
h (12.17)

Vh = XW(v)
h . (12.18)

The heads are first concatenated into a single matrix, and the result is then linearly
transformed using a matrixW(o) to give a combined output in the form

Y(X) = Concat [H1, . . . ,HH ]W(o). (12.19)

This is illustrated in Figure 12.7.
Each matrix Hh has dimension N × Dv, and so the concatenated matrix has

dimension N ×HDv. This is transformed by the linear matrix W(o) of dimension
HDv×D to give the final output matrixY of dimensionN ×D, which is the same
as the original input matrix X. The elements of the matrix W(o) are learned during
the training phase along with the query, key, and value matrices. Typically Dv is

12.1. Attention 367

Algorithm 12.1: Scaled dot-product self-attention

Input: Set of tokensX ∈ RN×D : {x1, . . . ,xN}
Weight matrices {W(q),W(k)} ∈ RD×Dk andW(v) ∈ RD×Dv

Output: Attention(Q,K,V) ∈ RN×Dv : {y1, . . . ,yN}
Q = XW(q) // compute queries Q ∈ RN×Dk

K = XW(k) // compute keys K ∈ RN×Dk

V = XW(v) // compute values V ∈ RN×D

return Attention(Q,K,V) = Softmax

[
QKT

√
Dk

]
V

might be multiple patterns of attention that are relevant at the same time. In natu-
ral language, for example, some patterns might be relevant to tense whereas others
might be associated with vocabulary. Using a single attention head can lead to av-
eraging over these effects. Instead we can use multiple attention heads in parallel.
These consist of identically structured copies of the single head, with independent
learnable parameters that govern the calculation of the query, key, and value matri-
ces. This is analogous to using multiple different filters in each layer of a convolu-
tional network.

Suppose we have H heads indexed by h = 1, . . . ,H of the form

Hh = Attention(Qh,Kh,Vh) (12.15)

whereAttention(·, ·, ·) is given by (12.14), and we have defined separate query, key,
and value matrices for each head using

Qh = XW(q)
h (12.16)

Kh = XW(k)
h (12.17)

Vh = XW(v)
h . (12.18)

The heads are first concatenated into a single matrix, and the result is then linearly
transformed using a matrixW(o) to give a combined output in the form

Y(X) = Concat [H1, . . . ,HH ]W(o). (12.19)

This is illustrated in Figure 12.7.
Each matrix Hh has dimension N × Dv, and so the concatenated matrix has

dimension N ×HDv. This is transformed by the linear matrix W(o) of dimension
HDv×D to give the final output matrixY of dimensionN ×D, which is the same
as the original input matrix X. The elements of the matrix W(o) are learned during
the training phase along with the query, key, and value matrices. Typically Dv is

368 12. TRANSFORMERS

Figure 12.7 Network architecture for multi-
head attention. Each head com-
prises the structure shown in Fig-
ure 12.6, and has its own key,
query, and value parameters. The
outputs of the heads are con-
catenated and then linearly pro-
jected back to the input data
dimensionality.

N ×HDv

H1 H2 ... HH × W(o)

HDv ×D

= Y

N ×D

chosen to be equal to D/H so that the resulting concatenated matrix has dimension
N ×D. Multi-head attention is summarized in Algorithm 12.2, and the information
flow in a multi-head attention layer is illustrated in Figure 12.8.

Note that the formulation of multi-head attention given above, which follows
that used in the research literature, includes some redundancy in the successive mul-
tiplication of theW(v) matrix for each head and the output matrixW(o). Removing
this redundancy allows a multi-head self-attention layer to be written as a sum over
contributions from each of the heads separately.Exercise 12.5

12.1.7 Transformer layers
Multi-head self-attention forms the core architectural element in a transformer

network. We know that neural networks benefit greatly from depth, and so we would
like to stack multiple self-attention layers on top of each other. To improve training

Algorithm 12.2: Multi-head attention

Input: Set of tokensX ∈ RN×D : {x1, . . . ,xN}
Query weight matrices {W(q)

1 , . . . ,W(q)
H } ∈ RD×D

Key weight matrices {W(k)
1 , . . . ,W(k)

H } ∈ RD×D

Value weight matrices {W(v)
1 , . . . ,W(v)

H } ∈ RD×Dv

Output weight matrixW(o) ∈ RHDv×D

Output: Y ∈ RN×D : {y1, . . . ,xN}
// compute self-attention for each head (Algorithm 12.1)

for h = 1, . . . ,H do
Qh = XW(q)

h , Kh = XW(k)
h , Vh = XW(v)

h

Hh = Attention (Qh,Kh,Vh) // Hh ∈ RN×Dv

end for
H = Concat [H1, . . . ,HN] // concatenate heads

returnY(X) = HW(o)





• NNs benefit greatly from depth, so we 
can stack self-attention layers (like the 
right) on top of each other.

• To improve efficiency, transformer 
layers are followed by layer 
normalization: https://arxiv.org/abs/
1607.06450

• Output of an attention layer are 
constrained to be linear combinations 
of the inputs, though non-linearities 
enter through the attention weights.

• Enhance flexibility by post-processing 
the output of each layer using non-
linear network denoted by MLP (same 
for each vector).

12.1. Attention 369

X

self-attentionself-attention ... self-attention

concat

linear

Y

Figure 12.8 Information flow in a multi-head attention layer. The associated computation, given by
Algorithm 12.2, is illustrated in Figure 12.7.

efficiency, we can introduce residual connections that bypass the multi-head struc-Section 9.5
ture. To do this we require that the output dimensionality is the same as the input
dimensionality, namely N × D. This is then followed by layer normalization (Ba,Section 7.4.3
Kiros, and Hinton, 2016), which improves training efficiency. The resulting trans-
formation can be written as

Z = LayerNorm [Y(X) +X] (12.20)

where Y is defined by (12.19). Sometimes the layer normalization is replaced by
pre-norm in which the normalization layer is applied before the multi-head self-
attention instead of after, as this can result in more effective optimization, in which
case we have

Z = Y(X′) +X, where X′ = LayerNorm [X] . (12.21)

In each case, Z again has the same dimensionality N ×D as the input matrixX.
We have seen that the attention mechanism creates linear combinations of the

value vectors, which are then linearly combined to produce the output vectors. Also,
the values are linear functions of the input vectors, and so we see that the outputs
of an attention layer are constrained to be linear combinations of the inputs. Non-
linearity does enter through the attention weights, and so the outputs will depend
nonlinearly on the inputs via the softmax function, but the output vectors are still
constrained to lie in the subspace spanned by the input vectors and this limits the
expressive capabilities of the attention layer. We can enhance the flexibility of the
transformer by post-processing the output of each layer using a standard nonlinear
neural network with D inputs and D outputs, denoted MLP[·] for ‘multilayer per-
ceptron’. For example, this might consist of a two-layer fully connected network
with ReLU hidden units. This needs to be done in a way that preserves the ability

370 12. TRANSFORMERS

Figure 12.9 One layer of the transformer architecture that
implements the transformation (12.1). Here
‘MLP’ stands for multilayer perceptron, while
‘add and norm’ denotes a residual connection
followed by layer normalization.

X

multi-head
self-attention

add & norm

MLP

add & norm

X̃

Z

of the transformer to process sequences of variable length. To achieve this, the same
shared network is applied to each of the output vectors, corresponding to the rows of
Z. Again, this neural network layer can be improved by using a residual connection.
It also includes layer normalization so that the final output from the transformer layer
has the form

X̃ = LayerNorm [MLP [Z] + Z] . (12.22)

This leads to an overall architecture for a transformer layer shown in Figure 12.9 and
summarized in Algorithm 12.3. Again, we can use a pre-norm instead, in which case
the final output is given by

X̃ = MLP(Z′) + Z, where Z′ = LayerNorm [Z] . (12.23)

In a typical transformer there are multiple such layers stacked on top of each other.
The layers generally have identical structures, although there is no sharing of weights
and biases between different layers.

12.1.8 Computational complexity
The attention layer discussed so far takes a set of N vectors each of length

D and maps them into another set of N vectors having the same dimensionality.
Thus, the inputs and outputs each have overall dimensionalityND. If we had used a
standard fully connected neural network to map the input values to the output values,
it would have O(N2D2) independent parameters. Likewise the computational cost
of evaluating one forward pass through such a network would also be O(N2D2).

In the attention layer, the matrices W(q), W(k), and W(v) are shared across in-
put tokens, and therefore the number of independent parameters isO(D2), assuming
Dk ≃ Dv ≃ D. Since there are N input tokens, the number of computational steps

Transformer Layers

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450




Transformers

Large Language Models



Transformer for NLP

• A typical NLP pipeline starts with a tokenizer that splits the text into 
words or word fragments. 

• Then each of the tokens is mapped to a learned embedding. 

• The whole vocabulary is stored in a matrix  where 
 is the vocabulary size; this vocabulary matrix is learned.

• These embeddings are passed through a series of transformer 
layers.

Ωe ∈ ℝD×|𝒱|

|𝒱 |



• Each token is mapped to a unique word embedding; the embeddings 
for the whole vocabulary are storied in a matrix 

• The matrix  can be learned like any other network parameter.

• A typical embedding size  is  and a typical total vocabulary size 
 is . Many parameters in  to learn.

Ωe ∈ ℝD×|𝒱|

Ωe

D 1024
|𝒱 | 30,000 Ωe

Learned Embeddings

12.6 Encoder model example: BERT 219

Figure 12.9 The input embedding matrix X ∈ RD×N contains N embeddings of
length D and is created by multiplying a matrix Ωe containing the embeddings
for the entire vocabulary with a matrix containing one-hot vectors in its columns
that correspond to the word or sub-word indices. The vocabulary matrix Ωe is
considered a parameter of the model and is learned along with the other param-
eters. Note that the two embeddings for the word an in X are the same.

text. Encoder-decoders are used in sequence-to-sequence tasks, where one text string is
converted into another (e.g., machine translation). These variations are described in
sections 12.6–12.8, respectively.

12.6 Encoder model example: BERT

BERT is an encoder model that uses a vocabulary of 30,000 tokens. Input tokens are
converted to 1024-dimensional word embeddings and passed through 24 transformer
layers. Each contains a self-attention mechanism with 16 heads. The queries, keys, and
values for each head are of dimension 64 (i.e., the matrices Ωvh,Ωqh,Ωkh are 1024×64).
The dimension of the single hidden layer in the fully connected networks is 4096. The
total number of parameters is ∼ 340 million. When BERT was introduced, this was
considered large, but it is now much smaller than state-of-the-art models.

Encoder models like BERT exploit transfer learning (section 9.3.6). During pre-
training, the parameters of the transformer architecture are learned using self-supervision
from a large corpus of text. The goal here is for the model to learn general information
about the statistics of language. In the fine-tuning stage, the resulting network is adapted
to solve a particular task using a smaller body of supervised training data.

Draft: please send errata to udlbookmail@gmail.com.



Transformer Encoders and Decoders

• The embedding matrix  representing the text is passed through a 
series of  transformer layers, called a transformer model.

• Three types of transformer models: 

• An encoder transforms the text embeddings into a representation 
that can support a variety of tasks (e.g., sentiment analysis).

• A decoder predicts the next token to continue the input text.

• Encoder-decoder used in sequence-to-sequence tasks, where 
one text string is converted into another, e.g., machine translation.

• A hands-on tutorial on transformers in pytorch can be found here: 
https://peterbloem.nl/blog/transformers

X
K

https://peterbloem.nl/blog/transformers


Transformers

Large Language Models - 
Encoders



Encoder model example: BERT

• BERT is an encoder model that uses a vocabulary of 30,000 tokens.

• Input tokens are converted to 1024 dimensional word embeddings 
and passed through 24 transformer layers.

• Each contains a self-attention mechanism with 16 heads.

• The weight matrices  for each head are .

• The total number of parameters is  million, but it is now much 
smaller than state-of-the-art models.

• Encoder models like BERT exploit transfer learning: parameters of 
the ML model are learned during pre-training using self-supervision 
from a large corpus of data, followed by a fine-tuning stage to adapt 
for specific task using a smaller body of supervised training data.

Qh, Kh, Vh 1024 × 64

∼ 340

https://arxiv.org/abs/1810.04805v2

https://arxiv.org/abs/1810.04805v2


Pre-training

• For BERT, the self-supervision task consists of predicting missing 
words from sentences from a large internet corpus. 

• Predicting missing words forces the transformer model to understand 
some syntax. For example, red is often found before car or dress 
than swim. In the above example, train is more likely than lasagna.

220 12 Transformers

Figure 12.10 Pre-training for BERT-like encoder. The input tokens (and a spe-
cial <cls> token denoting the start of the sequence) are converted to word em-
beddings. Here, these are represented as rows rather than columns, so the box
labeled “word embeddings” is XT . These embeddings are passed through a series
of transformer layers (orange connections indicate that every token attends to
every other token in these layers) to create a set of output embeddings. A small
fraction of the input tokens is randomly replaced with a generic <mask> token.
In pre-training, the goal is to predict the missing word from the associated output
embedding. As such, the output embeddings are passed through a softmax func-
tion, and the multiclass classification loss (section 5.24) is used. This task has
the advantage that it uses both the left and right context to predict the missing
word but has the disadvantage that it does not make efficient use of data; here,
seven tokens need to be processed to add two terms to the loss function.

12.6.1 Pre-training

In the pre-training stage, the network is trained using self-supervision. This allows the
use of enormous amounts of data without the need for manual labels. For BERT, the self-
supervision task consists of predicting missing words from sentences from a large internetProblem 12.6 corpus (figure 12.10).1 During training, the maximum input length is 512 tokens, and
the batch size is 256. The system is trained for a million steps, corresponding to roughly
50 epochs of the 3.3-billion word corpus.

Predicting missing words forces the transformer network to understand some syntax.
For example, it might learn that the adjective red is often found before nouns like house
or car but never before a verb like shout. It also allows the model to learn superficial
common sense about the world. For example, after training, the model will assign a
higher probability to the missing word train in the sentence The <mask> pulled into
the station than it would to the word peanut. However, the degree of “understanding”
this type of model can ever have is limited.

1BERT also uses a secondary task that predicts whether two sentences were originally adjacent in
the text or not, but this only marginally improves performance.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.



Fine-tuning

• In the fine-tuning stage, the model parameters are adjusted to 
specialize the network to a particular task. 

• An extra layer is appended onto the transformer network to convert 
the output vectors to the desired output format.

• Specific tasks include:

• Text classification: <cls> token is added to the start of each string 
during pre-training. sentiment analysis, the vector associated with 
<cls> is mapped to a number & passed through a logistic sigmoid.

• Word classification: e.g., to classify a word into entity types 
(person, place, organization, or no-entry). Input is mapped to a 

 vector where entry types, then Softmax for probabilities.E × 1 E =



Fine-tuning
12.6 Encoder model example: BERT 221

Figure 12.11 After pre-training, the encoder is fine-tuned using manually labeled
data to solve a particular task. Usually, a linear transformation or a multi-layer
perceptron (MLP) is appended to the encoder to produce whatever output is
required. a) Example text classification task. In this sentiment classification
task, the <cls> token embedding is used to predict the probability that the
review is positive. b) Example word classification task. In this named entity
recognition problem, the embedding for each word is used to predict whether the
word corresponds to a person, place, or organization, or is not an entity.

12.6.2 Fine-tuning

In the fine-tuning stage, the model parameters are adjusted to specialize the network to
a particular task. An extra layer is appended onto the transformer network to convert
the output vectors to the desired output format. Examples include:

Text classification: In BERT, a special token known as the classification or <cls>
token is placed at the start of each string during pre-training. For text classification
tasks like sentiment analysis (in which the passage is labeled as having a positive or
negative emotional tone), the vector associated with the <cls> token is mapped to a
single number and passed through a logistic sigmoid (figure 12.11a). This contributes to
a standard binary cross-entropy loss (section 5.4).

Draft: please send errata to udlbookmail@gmail.com.

Text classification

Word classification



Transformers

Large Language Models - 
Decoders



Autoregressive text generation
• The basic architecture is similar to the encoder model & comprises a 

series of transformer layers that operate on learned word embeddings.

• Different goal: to generate the next token in a sequence (and generate 
a coherent text passage by feeding the sequence back into the model).

• Autoregressive language model: factors the joint probability of a 
sequence of observed tokens into an autoregressive sequence.

• Consider e.g.: “It takes great courage to let yourself appear weak.”

222 12 Transformers

Word classification: The goal of named entity recognition is to classify each word as
an entity type (e.g., person, place, organization, or no-entity). To this end, each input
embedding xn is mapped to an E × 1 vector where the E entries correspond to the E
entity types. This is passed through a softmax function to create probabilities for each
class, which contribute to a multiclass cross-entropy loss (figure 12.11b).

Text span prediction: In the SQuAD 1.1 question answering task, the question and a
passage from Wikipedia containing the answer are concatenated and tokenized. BERT
is then used to predict the text span in the passage that contains the answer. Each
token maps to two numbers indicating how likely it is that the text span begins and
ends at this location. The resulting two sets of numbers are put through two softmax
functions. The likelihood of any text span being the answer can be derived by combining
the probability of starting and ending at the appropriate places.

12.7 Decoder model example: GPT3

This section presents a high-level description of GPT3, an example of a decoder model.
The basic architecture is extremely similar to the encoder model and comprises a series
of transformer layers that operate on learned word embeddings. However, the goal is
different. The encoder aimed to build a representation of the text that could be fine-
tuned to solve a variety of more specific NLP tasks. Conversely, the decoder has one
purpose: to generate the next token in a sequence. It can generate a coherent text
passage by feeding the extended sequence back into the model.

12.7.1 Language modeling

GPT3 constructs an autoregressive language model. This is easiest to understand with
a concrete example. Consider the sentence It takes great courage to let yourself appear
weak. For simplicity, let’s assume that the tokens are the full words. The probability of
the full sentence is:

Pr(It takes great courage to let yourself appear weak) =

Pr(It)× Pr(takes|It)× Pr(great|It takes)× Pr(courage|It takes great)×
Pr(to|It takes great courage)× Pr(let|It takes great courage to)×
Pr(yourself|It takes great courage to let)×
Pr(appear|It takes great courage to let yourself)×
Pr(weak|It takes great courage to let yourself appear). (12.14)

More formally, an autoregressive model factors the joint probability Pr(t1, t2, . . . , tN ) of
the N observed tokens into an autoregressive sequence:

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

12.7 Decoder model example: GPT3 223

Pr(t1, t2, . . . , tN ) = Pr(t1)
N∏

n=2

Pr(tn|t1, . . . , tn−1). (12.15)

The autoregressive formulation demonstrates the connection between maximizing the log
probability of the tokens in the loss function and the next token prediction task.

12.7.2 Masked self-attention

To train a decoder, we maximize the log probability of the input text under the autore-
gressive model. Ideally, we would pass in the whole sentence and compute all the log
probabilities and gradients simultaneously. However, this poses a problem; if we pass in
the full sentence, the term computing log [Pr(great|It takes)] has access to both the an-
swer great and the right context courage to let yourself appear weak. Hence, the system
can cheat rather than learn to predict the following words and will not train properly.

Fortunately, the tokens only interact in the self-attention layers in a transformer
network. Hence, the problem can be resolved by ensuring that the attention to the
answer and the right context is zero. This can be achieved by setting the corresponding
dot products in the self-attention computation (equation 12.5) to negative infinity before
they are passed through the softmax[•] function. This is known as masked self-attention.
The effect is to make the weight of all the upward-angled arrows in figure 12.1 zero.

The entire decoder network operates as follows. The input text is tokenized, and the
tokens are converted to embeddings. The embeddings are passed into the transformer
network, but now the transformer layers use masked self-attention so that they can
only attend to the current and previous tokens. Each of the output embeddings can be
thought of as representing a partial sentence, and for each, the goal is to predict the next
token in the sequence. Consequently, after the transformer layers, a linear layer maps
each word embedding to the size of the vocabulary, followed by a softmax[•] function
that converts these values to probabilities. During training, we aim to maximize the sum
of the log probabilities of the next token in the ground truth sequence at every position
using a standard multiclass cross-entropy loss (figure 12.12).

12.7.3 Generating text from a decoder

The autoregressive language model is the first example of a generative model discussed
in this book. Since it defines a probability model over text sequences, it can be used
to sample new examples of plausible text. To generate from the model, we start with
an input sequence of text (which might be just a special <start> token indicating the
beginning of the sequence) and feed this into the network, which then outputs the proba-
bilities over possible subsequent tokens. We can then either pick the most likely token or
sample from this probability distribution. The new extended sequence can be fed back
into the decoder network that outputs the probability distribution over the next token.
By repeating this process, we can generate large bodies of text. The computation can
be made quite efficient as prior embeddings do not depend on subsequent ones due to

Draft: please send errata to udlbookmail@gmail.com.

Generally:



Decoder model example: GPT3
• To train a decoder, we maximize the log probability of the input text under 

the autoregressive model defined above.

• This poses a problem: if we pass the full sentence, the term computing
 has access to the rest of the sentence.

• The system can cheat rather than learn to predict, and thus will not train 
properly.

• Masked self-attention: setting the dot products with future tokens in the 
self-attention computation to  before passing through softmax.

• The transformer layers use masked self-attention so that only attention to 
the current and previous tokens are allowed. 

• During training, we aim to maximize the sum of the log probabilities of the 
next token using a standard multiclass cross-entropy loss.

log |Pr(great | It takes)

−∞



Masked self-attention
224 12 Transformers

Figure 12.12 Training GPT3-type decoder network. The tokens are mapped to
word embeddings with a special <start> token at the beginning of the sequence.
The embeddings are passed through a series of transformer layers that use masked
self-attention. Here, each position in the sentence can only attend to its own
embedding and those of tokens earlier in the sequence (orange connections). The
goal at each position is to maximize the probability of the following ground truth
token in the sequence. In other words, at position one, we want to maximize the
probability of the token It; at position two, we want to maximize the probability
of the token takes; and so on. Masked self-attention ensures the system cannot
cheat by looking at subsequent inputs. The autoregressive task has the advantage
of making efficient use of the data since every word contributes a term to the loss
function. However, it only exploits the left context of each word.

the masked self-attention. Hence, much of the earlier computation can be recycled as weProblem 12.7 generate subsequent tokens.
In practice, many strategies can make the output text more coherent. For example,Notebook 12.4

Decoding
strategies

beam search keeps track of multiple possible sentence completions to find the overall most
likely (which is not necessarily found by greedily choosing the most likely next word at
each step). Top-k sampling randomly draws the next word from only the top-K most
likely possibilities to prevent the system from accidentally choosing from the long tail of
low-probability tokens and leading to an unnecessary linguistic dead end.

12.7.4 GPT3 and few-shot learning

Large language models like GPT3 apply these ideas on a massive scale. In GPT3, the
sequence lengths are 2048 tokens long, and the total batch size is 3.2 million tokens.
There are 96 transformer layers (some of which implement a sparse version of attention),
each processing a word embedding of size 12288. There are 96 heads in the self-attention
layers, and the value, query, and key dimension is 128. It is trained with 300 billion
tokens and contains 175 billion parameters.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

attend only to the current and previous tokens



Sampling: Generating text from a decoder
• The autoregressive language model is a generative model.

• Start with an input sequence of text, beginning with a <start> token.

• The outputs are the probabilities over possible subsequent tokens. We 
can either pick the most likely token or sample from this probability 
distribution.

• The new extended sequence can be fed back into the decoder network 
that outputs the probability distribution over the next token.

• At each step, the decoder takes the entire sequence generated so far 
(including all previous tokens) as input and produces a probability 
distribution for the next token. Then, you typically select one token from 
that distribution and append it to the sequence. This updated sequence, 
now containing the newly generated token, is then fed back into the 
decoder for the next prediction.

• Other strategies (instead of greedy search): beam search and top-k 
sampling, etc.



Transformers
Large Language Models - 
Encoder-Decoder 
Transformer (briefly)



Encoder-decoder model example: machine translation

• Translation between languages is a sequence-to-sequence task.

• An encoder computes a good representation of the source 
sentence. A decoder generates the sentence in the target 
language.

• Consider a encoder-decoder model for English-French translation.

• The encoder receives the sentence in English and process it through 
a series of transformer layers to create an output rep. for each token.

• During training, the decoder receives the ground truth translation in 
French and passes it through a series of transformer layers that use 
masked self-attention and predict the following word at each position.

• However, the decoder layers also attend to the output of the encoder. 
Each French output word is conditioned on the previous output 
words and the source English sentence.

• This is the original setup which invented the transformer.



https://arxiv.org/abs/1706.03762



Transformers

Large Language Models - 
Fine Tuning



Fine Tuning Foundation Models
• A pre-trained LLM (or large transformer) is also called a “Foundation 

Model”. 

• We can then use supervised fine tuning for specific applications, often 

called “downstream tasks”.

• The fine-tuning can be done by adding extra layers to the outputs 

of the network or by replacing the last few layers with fresh 
parameters and then using the labelled data to train these final layers. 


• During the fine-tuning stage, the weights and biases in the main 
model can either be left unchanged or be allowed to undergo 
small levels of adaptation. Typically the cost of the fine-tuning is 
small compared to that of pretraining.



Fine Tuning with LoRA
• One very efficient approach to fine-tuning is called low-rank adaptation or LoRA 

(Hu et al., 2021). This approach is inspired by results which show that a trained 
overparameterized model has a low intrinsic dimensionality with respect to fine-
tuning.


• LoRa exploits this by freezing the weights of the original model and adding 
additional learnable weight matrices into each layer of the transformer in the form 
of low-rank products.



Fine Tuning and RLHF
• After training a decoder model model will “babble” text, trying to 

complete sequences. e.g. if you give it a question it might follow up 
with more questions.


• Chat Bots are then fine tuned in several steps to make them more 
useful:


• https://openai.com/index/chatgpt/ 

• Step 1: Fine tuning 

• They have thousands of question and answer pairs in a curated 

data set

• Step 2: Humans rank different answers (Reinforcement Learning 

with Human Feedback RLHF). Train a reward model. 

• Step 3: Use Reinforcement Learning using this reward model. 


• Roughly, this brings the model from a “document completer” to a 
“question answerer”

https://openai.com/index/chatgpt/


We will talk more about Reinforcement Learning later.



Transformers

Using LLMs



LLM Model Zoo
• https://lmarena.ai/ 

https://lmarena.ai/


Running them online
• Example: https://www.together.ai/ 

https://www.together.ai/


Running them locally
• Large Library of models and data sets: https://huggingface.co/ 

https://huggingface.co/


Running them locally
• My students use VLLM https://docs.vllm.ai/en/latest/ 

https://docs.vllm.ai/en/latest/


Quantization
• Models have large GPU memory requirements. 

• For example, on the 24GB memory GPUs in my group we can run 

(inference, not training) 7B Llama models.

• That’s because with 2 byte (16bit) precision the required memory for 

7B parameters is 14 GB (roughly speaking). 

• We also need some memory for the “KV Cache”, which depends on 

the sequence length.

• One can compress these models using a technique called 

“quantization”. This decreases their performance somewhat. 

• Quantization in large language models (LLMs) is a technique used 

to reduce the memory footprint and computational cost of 
inference by representing model parameters with lower-precision data 
types, such as 8-bit integers (INT8) or even lower, instead of the 
standard 16-bit (FP16) or 32-bit floating-point (FP32) representations.


• In this way we can use models that are two or four times larger. 



Prompt Engineering
• Prompt engineering is the practice of crafting effective prompts to 

guide AI models, such as large language models (LLMs).

• It involves structuring inputs in a way that optimizes the model's 

performance for specific tasks, such as text generation, code writing, 
or problem-solving.


• Example: Chain-of-Thought (CoT) Prompting – Encouraging step-
by-step reasoning improves logical accuracy.


• https://arxiv.org/abs/2201.11903 Chain-of-Thought Prompting Elicits 
Reasoning in Large Language Models


• Some people joke that AI research has been reduced to prompt 
engineering. 

https://arxiv.org/abs/2201.11903


Chain-of-Thought Prompting



Few-Shot Learning
• Few shot learning - The model is given a few examples of input-

output pairs before making a prediction.

• Few-shot learning enables models to adapt to new tasks without 

extensive retraining.

• One-Shot Learning – A special case of few-shot learning where only 

one example is provided.

• Zero-Shot Learning – The model makes predictions without any 

examples, relying solely on prior knowledge.


• https://arxiv.org/abs/2005.14165 Language Models are Few-Shot 
Learners

https://arxiv.org/abs/2005.14165




Multi-Agent Frameworks
• Many works explore combining LLMs to solve tasks.


• An example of this line of research is 


• https://arxiv.org/abs/2409.15254 Archon: An Architecture Search Framework for Inference-Time 
Techniques

https://arxiv.org/abs/2409.15254


• Reading for this lecture:  
• This lecture was based in part on the books by Bishop and Prince, linked 

on the website. Many figures were taken from these books. 

Course logistics


