Physics 361 - Machine Learning In
Physics

Lecture 16 - Large Language Models

March 13th 2025

Moritz Munchmeyer



Transformers

Recall: Transformers



Transformer Processing

Input data is a set of vectors {X,} of dimensionality D, n = 1,..., N.

These data vectors are known as tokens (e.g., a word within a
sentence, a patch within an image, or an amino acid within a protein).

The elements x, ; of the tokens are called features.

Transformers can handle a mix of different data types by combining
the data variables into a joint set of tokens.

Combining the data vectors into a matrix X of dimensions N X D.

X = TransformerLayer [X]

|

same dimensionality as X

SH

N (tokens)
<

Apply multiple transformer layer
to learn rich internal representations.

D (features)



Network Parameters

* Define query, key, & value matrices each w/ different transformations:

Q= XW (@)
K =XW®
V=XWW

the weight matrices W@, W W) represent parameters that will be
learned during the training of the transformer architecture.

. WO, WY W™ are matrices of dim. D x D, D X D, D X D,. Setting
D, = D, allows for dot-products between query and key while D, = D
allows multiple transformer layers to be stacked. We set
D,=D,=D,=D.

v

* Note: E.g. in GPT-3, the embedding dimension is divided among multiple attention heads but the
overall dimensional consistency is maintained.



Network Parameters

* The transformation is now generalized to:

O
Y — SOftma;X [QKT] V Y = Softmax < QK > X Vv
\ /
N x D, N x N N x Dy

whereas the dot-product can be computed by:

X W (@ = Q
/ D x D \

N x D

NXD\X wo | = | K / N x N

D x D

bias parameters are implicit
N x D



Algorithm 12.1: Scaled dot-product self-attention

Input: Set of tokens X € RV*P : {x,, ..., xn}
Weight matrices {W (@, Wk} ¢ RP*Px agnd W) ¢ RP*Dv
Output: Attention(Q,K,V) € RV*DPv . {y ... yn}

Q= XW(@ // compute queries Q € RV*Px
K=XWk // compute keys K € RV*Px
V=XWW // compute values V € RV*P

. QK"
return Attention(Q, K, V) = Softmax . \'%




Multi-head attention

There might be multiple patterns of attention relevant at the same time,
e.g., some associated with tenses, some with vocabulary.

Single “attention head” averages out these effects. Instead use multiple
attention heads in parallel; analogous to channels in CNN.

Suppose we have H heads indexedby h = 1,..., H:
H; = Attention(Qp, Ky, V)

The heads are concatenated into a single matrix, and the result is then
linearly transformed to give a combined output:

Y/(X) = Concat [Hy,... Hy W [sfe =t - Jwo] - |5

N x HD, N x D
HD, x D

The matrix W is learned along with the weight matrices W@, W®_ WM



Algorithm 12.2: Multi-head attention

Input: Set of tokens X € RVXP : {x;,...,xn}
Query weight matrices {W(O‘) .. ,Wg)} c RDxD
Key weight matrices {W(k) .. ,W%‘)} c RDxD
Value weight matrices {W1 e Wg)} e RDPXDy
Output weight matrix W(©) ¢ RHDvxD

Output: Y € RV*P : {y,, ..., xn}

// compute self-attention for each head (Algorithm 12.1)
forh=1,...,Hdo

Qr=XW? K,=xXxwW¥ v,=xw

H;, = Attention (Qp,Kpn,Vy) // Hy € RV*P

end for

H = Concat [Hy,...,HN| // concatenate heads

return Y(X) = HW(©)




Transformer Layers

NNs benefit greatly from depth, so we
can stack self-attention layers (like the
right) on top of each other.

Y

!

linear

*

> { concat

—/ ) S
A

To improve efficiency, transformer
layers are followed by layer
normalization: https://arxiv.org/abs/
1607.06450

Output of an attention layer are )

[ self-attention self-attention e self-attention ]

! ¢ i 14 i 4

constrained to be linear combinations )

of the inputs, though non-linearities ([asaram J

enter through the attention weights. ( wp )
% S

Enhance flexibility by post-processing
the output of each layer using non-
linear network denoted by MLP (same | mutihead |-

self-attention

for each vector). — ? -

p
add & norm |
\ J

\
w

X


https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450

Algorithm 12.3: Transformer layer

Input: Set of tokens X € RV*P : {x;,...,xn}
Multi-head self-attention layer parameters
Feed-forward network parameters
Output: X € RV*D . {X;,...,Xn}
Z = LayerNorm [Y(X) 4+ X]| // Y(X) from Algorithm 12.2

X = LayerNorm [MLP [Z] + Z] // shared neural network
return X




Transformers

Large Language Models



Transformer for NLP

* Atypical NLP pipeline starts with a tokenizer that splits the text into
words or word fragments.

 Then each of the tokens is mapped to a learned embedding.

« The whole vocabulary is stored in a matrix 2, € RPXI71 where
| 7| is the vocabulary size; this vocabulary matrix is learned.

* These embeddings are passed through a series of transformer
layers.



Learned Embeddings

 Each token is mapped to a unigue word embedding; the embeddings
for the whole vocabulary are storied in a matrix 2, € RDXI7]

-~ ue
JIeapiee
oje

~—— ue

- Jue

~—®
JIeApree
ajeqe

- I10)Rqq®

— ATe

— wre

Input, X Vocabulary embeddings, €2,

“an aardvark ate an ant”

Token indices, T

« The matrix 2, can be learned like any other network parameter.

« Atypical embedding size D is 1024 and a typical total vocabulary size
| 7| is 30,000. Many parameters in €2, to learn.



Transformer Encoders and Decoders

e The embedding matrix X representing the text is passed through a
series of K transformer layers, called a transformer model.

* Three types of transformer models:

* An encoder transforms the text embeddings into a representation
that can support a variety of tasks (e.g., sentiment analysis).

* A decoder predicts the next token to continue the input text.

e Encoder-decoder used in sequence-to-sequence tasks, where
one text string is converted into another, e.g., machine translation.

* A hands-on tutorial on transformers in pytorch can be found here:
https://peterbloem.nl/blog/transformers



https://peterbloem.nl/blog/transformers

Transformers

Large Language Models -
Encoders



Encoder model example: BERT

https://arxiv.org/abs/1810.04805v2

BERT is an encoder model that uses a vocabulary of 30,000 tokens.

Input tokens are converted to 1024 dimensional word embeddings
and passed through 24 transformer layers.

Each contains a self-attention mechanism with 16 heads.

The weight matrices Q,, K;,, V, for each head are 1024 X 64.

The total number of parameters is ~ 340 million, but it is now much
smaller than state-of-the-art models.

Encoder models like BERT exploit transfer learning: parameters of
the ML model are learned during pre-training using self-supervision
from a large corpus of data, followed by a fine-tuning stage to adapt
for specific task using a smaller body of supervised training data.


https://arxiv.org/abs/1810.04805v2

Pre-training

 For BERT, the self-supervision task consists of predicting missing
words from sentences from a large internet corpus.

Word Linear + Probability of
embeddings Transformer softmax masked token

——————————————

?

/) 7
f
3

% "v»;«'»f RO
XX »0«‘» 4y (AN
N\

)

7

(151 /X 8
i\‘« Y ‘
R

\\

A/
9.5
O\ N

1
<mask>—|
1

\\/ /
a

\ “ ’
ON“¢Q A/

(x K)

&
T
* @

9

4»:«‘\

N/

;
/ ,%N’~

DNROPLERLP

Q,

*
Q‘
K/
7

S R D R
A,»
5
o
XK
AN
)

"1
\
9,
(0%
( V////

N P*"’)o

&
»’\‘7, NORT /2
DT IRKIX
s
(/
\(

1
INtO —j
1

\/
X

1
<mask>—=|
1

station _>i|

\

|
|
|
pulled —i[]
|
|
|

______________

yIeaper
snoeqe
019Z
©)oZ

* Predicting missing words forces the transformer model to understand
some syntax. For example, red is often found before car or dress
than swim. In the above example, train is more likely than lasagna.



Fine-tuning

* In the fine-tuning stage, the model parameters are adjusted to
specialize the network to a particular task.

 An extra layer is appended onto the transformer network to convert
the output vectors to the desired output format.

e Specific tasks include:

 Text classification: <cls> token is added to the start of each string
during pre-training. sentiment analysis, the vector associated with
<cls> is mapped to a number & passed through a logistic sigmoid.

e Word classification: e.g., to classify a word into entity types
(person, place, organization, or no-entry). Input is mapped to a
E X 1 vector where E = entry types, then Softmax for probabilities.



Fine-tuning

Text classification

a) Word MLP + Probability of
embeddings Transformer sigmoid positive review
<cls>—[TTTTT 1] ~ ) ]
The—[ T T T T T 11+ ~
soup—{[ T T T T 111+ ~
tasted—>i| HEREN |§_ ~
like—[T T T T 111~ ~
socks—>:‘|-_|_“|__|“|___|__|“'E— —
b) Word Word classification Linear + Probability of
embeddings Transformer softmax entity type
<cls>—TTTIT T 10N B
Zara—[ T TTTTT1- - - ——Imm
works—[ T T T T T[]~ Nans : - ——mme
: | n (XK)
at—[TTTTTT] - — — . —mm
Chanel [T T T T - Sans i - ) ——Dhnm
in—{[TTTT T Sans | - ——mmm
Victoria—={ T T T[]~ J Ld U - —Imm

uostad
ooe[d

UoI)eZIuesdIo
Ajus ou



Transformers

Large Language Models -
Decoders



Autoregressive text generation

The basic architecture is similar to the encoder model & comprises a
series of transformer layers that operate on learned word embeddings.

Different goal: to generate the next token in a sequence (and generate
a coherent text passage by feeding the sequence back into the model).

Autoregressive language model: factors the joint probability of a
sequence of observed tokens into an autoregressive sequence.

Consider e.g.: “It takes great courage to let yourself appear weak.”

Pr(It takes great courage to let yourself appear weak) =
r(It) x Pr(takes|It) x Pr(great|lt takes) x Pr(courage|lt takes great) x

T

Pr(to|lt takes great courage) x Pr(let|It takes great courage to) x

T

(
(
Pr(yourself|It takes great courage to let) x
r(appear|lt takes great courage to let yourself) x
(

Pr(weak|It takes great Courage to let yourself appear).

Generally: Pr(ti,ts,...,tn) = Pr(t1) HPH 1, 1)
n=2



Decoder model example: GPT3

To train a decoder, we maximize the log probability of the input text under
the autoregressive model defined above.

This poses a problem: if we pass the full sentence, the term computing
log | Pr(great | It takes) has access to the rest of the sentence.

The system can cheat rather than learn to predict, and thus will not train
properly.

Masked self-attention: setting the dot products with future tokens in the
self-attention computation to — oo before passing through softmax.

The transformer layers use masked self-attention so that only attention to
the current and previous tokens are allowed.

During training, we aim to maximize the sum of the log probabilities of the
next token using a standard multiclass cross-entropy loss.



Masked self-attention

Word Transformer with
embeddings masked attention
<start>—{ TTTT 1T | N 1 N

. .

—TTTTTIH ! - §

takes— T TTTT1H ! Nt i
great— T T T T T T+ D

courage —TTTTTIH | - | |

. .

to—[TTTTTI ! ~O- ;

let—{TTTTTIH | J o U

attend only to the current and previous tokens

© X
5

Linear +
softmax

Probability of

target token

e

JIeApIer

snoeqe
0197

©OZ

It

takes
great
courage
to

let

yourself



Sampling: Generating text from a decoder

The autoregressive language model is a generative model.
Start with an input sequence of text, beginning with a <start> token.

The outputs are the probabilities over possible subsequent tokens. We
can either pick the most likely token or sample from this probability
distribution.

The new extended sequence can be fed back into the decoder network
that outputs the probability distribution over the next token.

At each step, the decoder takes the entire sequence generated so far
(including all previous tokens) as input and produces a probability
distribution for the next token. Then, you typically select one token from
that distribution and append it to the sequence. This updated sequence,
now containing the newly generated token, is then fed back into the
decoder for the next prediction.

Other strategies (instead of greedy search): beam search and top-k
sampling, etc.



Transformers

Large Language Models -
Encoder-Decoder
Transformer (briefly)



Encoder-decoder model example: machine translation

* Translation between languages is a sequence-to-sequence task.

 An encoder computes a good representation of the source
sentence. A decoder generates the sentence in the target
language.

 Consider a encoder-decoder model for English-French translation.

* The encoder receives the sentence in English and process it through
a series of transformer layers to create an output rep. for each token.

 During training, the decoder receives the ground truth translation in
French and passes it through a series of transformer layers that use
masked self-attention and predict the following word at each position.

* However, the decoder layers also attend to the output of the encoder.
Each French output word is conditioned on the previous output
words and the source English sentence.

 This is the original setup which invented the transformer.



https://arxiv.org/abs/1706.03762

NeurlPS
https://papers.neurips.cc » paper » 7181-attention...

Attention is All you Need

by A Vaswani - Cited by 171064 — We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions entirely.
11 pages

PDF

—

Add & Norm

Forward

Feed

Qutput
Probabilities

1

Softmax

t

Linear

4

|
Add & Norm

Feed
Forward

)

Add & Norm

Multi-Head
Attention

A

Add & Norm

Multi-Head
Attention

\

—t

\.

Positional
Encoding

Sai

Embedding

Input

T

Inputs

7 7 7

N x

Add & Norm

Masked
Multi-Head
Attention

J

J

Output
Embedding

T

Outputs

(shifted right)

Positional
Encoding

Figure 1: The Transformer - model architecture.



Transformers

Large Language Models -
Fine Tuning



Fine Tuning Foundation Models

* A pre-trained LLM (or large transformer) is also called a “Foundation
Model”.

* We can then use supervised fine tuning for specific applications, often
called “downstream tasks”.

* The fine-tuning can be done by adding extra layers to the outputs
of the network or by replacing the last few layers with fresh
parameters and then using the labelled data to train these final layers.

* During the fine-tuning stage, the weights and biases in the main
model can either be left unchanged or be allowed to undergo
small levels of adaptation. Typically the cost of the fine-tuning is
small compared to that of pretraining.



Fine Tuning with LoRA

One very efficient approach to fine-tuning is called low-rank adaptation or LORA
(Hu et al., 2021). This approach is inspired by results which show that a trained
overparameterized model has a low intrinsic dimensionality with respect to fine-

tuning.

LoRa exploits this by freezing the weights of the original model and adding
additional learnable weight matrices into each layer of the transformer in the form

of low-rank products.

,

N x D

D x D

AN
/

B

D xR

Rx D

+—

XWjy

XAB

N x D

Schematic illustration low-rank adaptation showing a weight matrix W, from one of the
attention layers in a pre-trained transformer. Additional weights given by matrices A and
B are adapted during fine-tuning and their product AB is then added to the original matrix

for subsequent inference.



Fine Tuning and RLHF

e After training a decoder model model will “babble” text, trying to
complete sequences. e.qg. if you give it a question it might follow up
with more questions.

e (Chat Bots are then fine tuned in several steps to make them more
useful:

e https://openai.com/index/chatgpt/

 Step 1: Fine tuning

* They have thousands of question and answer pairs in a curated
data set

e Step 2: Humans rank different answers (Reinforcement Learning
with Human Feedback RLHF). Train a reward model.

e Step 3: Use Reinforcement Learning using this reward model.

* Roughly, this brings the model from a “document completer” to a
“guestion answerer”


https://openai.com/index/chatgpt/

Step 1

Collect demonstration data
and train a supervised policy.

P
A prompt is sample from ./

our prompt dataset. Explain reinforcement
learning to a 6 year old.

;

A labeler demonstrates @

the desired output 2
behavior. ,
We give treats and
punishments to teach...
SFT
o._O
/ AN

This data is used to 0\35;/0
fine-tune GPT-3.5 with LA
supervised learning. V4

Step 2

Collect comparison data and
train a reward model.

~
A prompt and several {L b

model outputs are Explain reinforcement
sampled. learning to a 6 year old.

(A o

In reinforcement Explain rewards...
learing, the

agentis.

(C) 0]

In machine We give treats and
punishments to

learning... teach
each..

. >

A labeler ranks the
outputs from best

to worst. Q’G’O’Q

RM
°.__0
This data is used to o<)?o$\>o
train our reward model. ?52{

We will talk more about Reinforcement Learning later.

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is Vv g
sampled from Write a story
the dataset. about otters.
. PPO
The PPO model is o o
initialized from the ./)?7\.\.
supervised policy. =

The policy generates

an output.

RM
The reward model N
calculates a reward ./)?7\.\.
for the output. N\

The reward is used
to update the policy rk
using PPO.




Transformers

Using LLMs



LLM Model Zoo

e https://Imarena.ai/

‘Y’ Chatbot Arena LLM Leaderboard: Community-driven Evaluation for Best LLM and Al chatbots
Discord | Twitter | /J\2I 9 | Blog | GitHub | Paper | Dataset | Kaggle Competition

Chatbot Arena is an open platform for crowdsourced Al benchmarking, developed by researchers at UC Berkeley SkyLab and LMArena. With over 1,000,000 user votes, the platform ranks best LLM and Al chatbots using the Bradley-Terry model to generate live leaderboards. For technical details, check out our

paper.

Chatbot Arena thrives on community engagement — cast your vote to help improve Al evaluation!

New Launch! WebDev Arena: web.lmarena.ai - Al Battle to build the best website!

- Language Se > B oo ® =

Total #models: 212. Total #votes: 2,768,389. Last updated: 2025-03-10.

Code to recreate leaderboard tables and plots in this notebook. You can contribute your vote at Imarena.ai!
Category Apply filter Overall Questions

Overall - Style Control Stowbepoecated #models: 212 (100%) #votes: 2,768,389 (100%)

Rank* (UB) Rank (StyleCtrl) Model Arena Score 95% CI Votes Organization License
1 2 Grok:-3:-Preview:-02:24 1407 +7/-7 7580 XAI Proprietary
1 1 GPT-4.5-Preview 1404 +7/-9 6024 OpenAIl Proprietary
3 6 Genini-2.0:-FElash-Thinking-Exp:01:21 1384 +5/-5 19837 Google Proprietary
3 3 Gemini-2.9-Pro-Exp-02-05 1380 +4/-4 17695 Google Proprietary
3 2 ChatGPT-40-latest. (2025:01:29). 1375 +4/-5 19587 OpenAI Proprietary
6 4 DReepSeek:R1 1361 +5/-6 10474 DeepSeek MIT
6 10 Gemini-2.0:Flash-001 1355 +4/-5 15416 Google Proprietary
6 3 01-2024-12-17 1353 +4/-4 22010 OpenAl Proprietary
9 10 Gemma=3:27B-it 1339 +9/-11 3870 Google Gemma
9 10 Quen2.5:-Max 1338 +5/-5 14258 Alibaba Proprietary
9 7 0ol-preview 1335 +4/-4 33195 OpenAIl Proprietary
9 10 03:-minizhigh 1328 +6/-5 11409 OpenAl Proprietary

13 12 DeepsSeek:-V3 1319 +4/-4 23079 DeepSeek DeepSeek


https://lmarena.ai/

Running them online

 Example: https://www.together.ai/

together.ai DASHBOARD ~ PLAYGROUNDS -~  GPUCLUSTERS  MODELS ~ JOBS  ANALYTICS  DOCS Q

by

0 Al models may provide inaccurate information. Verify important details. X

® CHAT meta-llama/Llama-3.3-70B-Instruct-Turbo (]

= Ul <> API ¢ MODEL
Meta Llama 3.3 70B Instruct Turbo v
What is LoRA?
PARAMETERS -
LoRA (Low-Rank Adaptation) is a technique used in artificial intelligence, specifically in the field of natural language processing (NLP) and computer System Prompt
vision. It's a method for fine-tuning pre-trained models, such as language models or image classification models, to adapt to new tasks or datasets.
Default -
The main idea behind LoRA is to update only a small subset of the model's parameters, rather than retraining the entire model from scratch. This is
done by adding low-rank matrices to the original model's weights, which allows the model to adapt to new information without requiring significant
changes to the underlying architecture. Auto-set output length
LoRA has several benefits, including: Output Length 204¢ @
1. Efficient adaptation: LoRA allows models to adapt to new tasks or datasets with minimal additional training data and computational
resources.
2. Preservation of pre-trained knowledge: By updating only a small subset of the model's parameters, LoRA preserves the knowledge and Temperature 07
representations learned during pre-training. (]
3. Flexibility: LoRA can be applied to a wide range of models and tasks, making it a versatile technique for transfer learning and domain
adaptation. Top-P 07
LoRA has been successfully applied in various areas, including: oassssss———
1. Language modeling: LoRA has been used to adapt language models to new languages, domains, or tasks, such as sentiment analysis or
Top-K 50

question answering.
2. Computer vision: LoRA has been used to adapt image classification models to new datasets, such as adapting a model trained on ImageNet ——

to a new dataset with different classes or distributions.

3. Multimodal learning: LoRA has been used to adapt models to new modalities, such as adapting a model trained on text data to work with Repetition Penalty 1
image or audio data. .

Overall, LoRA is a powerful technique for adapting pre-trained models to new tasks and datasets, and has the potential to improve the efficiency
and effectiveness of Al systems in a wide range of applications. Safety Models

G Q) [E] 13 IN | 387 OUT | 145.38 TOKENS/S None -


https://www.together.ai/

Running them locally

e Large Library of models and data sets: https://huggingface.co/

~ | Hugging Face

Hugging Face is way more fun with friends and colleagues! (&

Libraries Datasets Languages Licenses Other

Multimodal
Audio-Text-to-Text % Image-Text-to-Text
Visual Question Answering

Document Question Answering Video-Text-to-Text

Visual Document Retrieval Any-to-Any

Computer Vision
Depth Estimation Image Classification

Object Detection Image Segmentation

Text-to-Image % Image-to-Text B Image-to-lmage
tS  Image-to-Video Unconditional Image Generation
Video Classification i Text-to-Video
Zero-Shot Image Classification Mask Generation
Zero-Shot Object Detection Text-to-3D

Image-to-3D [S  Image Feature Extraction

Keypoint Detection

Natural Language Processing
Text Classification Token Classification

Table Question Answering Question Answering

Zero-Shot Classification 2 Translation
Summarization 3 Feature Extraction
Text Generation Text2Text Generation
Fill-Mask Sentence Similarity
Audio
Text-to-Speech Text-to-Audio
Automatic Speech Recognition i*  Audio-to-Audio
Audio Classification Voice Activity Detection
Tabular

Tabular Classification Tabular Regression

Models

Join an organization

Models

% Qwen/QwQ-32B

~ deepseek-ai/DeepSeek-R1

@® RekaAI/reka-flash-3

@ tencent/HunyuanVideo-I2V

G google/gemma-3-12b-it

& black-forest-labs/FLUX.1-dev

G google/gemma-3-1b-it

@ perplexity-ai/r1-1776

< CohereForAI/aya-vision-8b

# open-xr1/0lympicCodexr-7B

® lodestones/Chroma

stabilityai/stable-diffusion-3.5-1large

GSAI-ML/LLaDA-8B-Instruct

Spaces Posts Docs Enterprise  Pricing = ,

Dismiss this message

Full-text search T4 Sort: Trending

G google/gemma-3-27b-it

@ SparkAudio/Spark-TTS-0.5B

" microsoft/Phi-4-multimodal-instruct

s Wan-AI/Wan2.1-T2V-14B

G google/gemma-3-4b-it

< CohereForAI/c4ai-command-a-03-2025

@ allenai/olmOCR-7B-0225-preview

» hexgrad/Kokoro-82M

3% Qwen/QwQ-32B-GGUF

Comfy-Org/Wan_2.1_ComfyUI_repackaged

@& bartowski/Qwen_QwQ-32B-GGUF

#" microsoft/Phi-4-mini-instruct

P microsoft/OmniParser-v2.0


https://huggingface.co/

Running them locally

e My students use VLLM https://docs.vlim.ai/en/latest/

= O & D Q i=Contents

’ L L M Documentation

Welcome to VLLM Indices and tables

Getting Started

Installation v
Quickstart
Examples v

Troubleshooting

Frequently Asked Questions .
Easy, fast, and cheap LLM serving for everyone

Models
C)star 41,349 @©Watch % Fork

Generative Models

Pooling Models VLLM is a fast and easy-to-use library for LLM inference and serving.

List of Supported Models Originally developed in the Sky Computing Lab at UC Berkeley, vLLM has evolved into a community-driven

Built-in Extensions v project with contributions from both academia and industry.
Features VLLM is fast with:
Quantization v

+ State-of-the-art serving throughput

LoRA Adapters « Efficient management of attention key and value memory with PagedAttention

Tool Calling * Continuous batching of incoming requests

Reasoning Outputs « Fast model execution with CUDA/HIP graph

Structured Outputs « Quantization: GPTQ, AWQ, INT4, INT8, and FP8
Automatic Prefix Caching » Optimized CUDA kernels, including integration with FlashAttention and Flashinfer.
Disaggregated Prefilling » Speculative decoding

(experimental) « Chunked prefil


https://docs.vllm.ai/en/latest/

Quantization

 Models have large GPU memory requirements.

 For example, on the 24GB memory GPUs in my group we can run
(inference, not training) 7B Llama models.

* That’s because with 2 byte (16bit) precision the required memory for
/B parameters is 14 GB (roughly speaking).

 We also need some memory for the “KV Cache”, which depends on
the sequence length.

 One can compress these models using a technique called
“quantization”. This decreases their performance somewhat.

 Quantization in large language models (LLMSs) is a technique used
to reduce the memory footprint and computational cost of
inference by representing model parameters with lower-precision data
types, such as 8-bit integers (INT8) or even lower, instead of the
standard 16-bit (FP16) or 32-bit floating-point (FP32) representations.

* In this way we can use models that are two or four times larger.



Prompt Engineering

Prompt engineering is the practice of crafting effective prompts to
guide Al models, such as large language models (LLMs).

It involves structuring inputs in a way that optimizes the model's
performance for specific tasks, such as text generation, code writing,
or problem-solving.

Example: Chain-of-Thought (CoT) Prompting — Encouraging step-
by-step reasoning improves logical accuracy.

https://arxiv.org/abs/2201.11903 Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models

Some people joke that Al research has been reduced to prompt
engineering.



https://arxiv.org/abs/2201.11903

Chain-of-Thought Prompting

Standard Prompting

/( Model Input )

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

Model Output

A: The answer is 27. x

\_ J Co they have? j

(( Model Output
A.

Chain-of-Thought Prompting

N
Model Input ) X

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each Is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 =9. The

Kanswer is9. &

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic,
commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.



Few-Shot Learning

 Few shot learning - The model is given a few examples of input-
output pairs before making a prediction.

* Few-shot learning enables models to adapt to new tasks without
extensive retraining.

* One-Shot Learning — A special case of few-shot learning where only
one example is provided.

 Zero-Shot Learning — The model makes predictions without any
examples, relying solely on prior knowledge.

e https://arxiv.org/abs/2005.14165 Language Models are Few-Shot
Learners



https://arxiv.org/abs/2005.14165

Zero-shot Few-shot

In addition to the task description, the model sees a few

The model predicts the answer given only a natural language
examples of the task. No gradient updates are performed.

description of the task. No gradient updates are performed.

Translate English to French: task description
Translate English to French: task description
sea otter => loutre de mer examples
cheese => prompt peppermint => menthe poivrée
plush girafe => girafe peluche
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer example

cheese => prompt



Multi-Agent Frameworks

. Many works explore combining LLMs to solve tasks.
«  An example of this line of research is

«  https://arxiv.org/abs/2409.15254 Archon: An Architecture Search Framework for Inference-Time
Techniques

oo—
Generator Fuser

GPT 40 p \ Qwen1.5-110B
S — ——
\
Generator Fuser

3

Claude 3.5 Sonnet \ Llama3-70B 2
— \
CEEEEE— CEEEE——
Generator [ Critic Ranker / Fuser Verifier Fuser %
Prompt % Qwen2-72B 3 Qwen2-72B Claude 3.5 Sonnet Mixtral 8x22 / GPT 40 Llama 3.1 4058 OUtPUt
S — —

/

Generator
Llama 3.1 4058
10

Figure 2: Example ARCHON Architecture: The architecture starts with ten generator models, followed by
a critic model, a ranker model, one layer of six fuser models, a verifier model, and finishing with a fuser model.


https://arxiv.org/abs/2409.15254

Course logistics

e Reading for this lecture:

 This lecture was based in part on the books by Bishop and Prince, linked
on the website. Many figures were taken from these books.



