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Transformers

Recall: LLM Encoders and
Decoders



Encoder Pre-training

 For BERT, the self-supervision task consists of predicting missing
words from sentences from a large internet corpus.
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* Predicting missing words forces the transformer model to understand
some syntax. For example, red is often found before car or dress
than swim. In the above example, train is more likely than lasagna.

Above plots are from Prince Deep Learning book



Encoder Fine-tuning

Text classification
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Decoder Pre-Training

Word Transformer with
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Decoder: Text generation via Sampling

The autoregressive language model is a generative model.
Start with an input sequence of text, beginning with a <start> token.

The outputs are the probabilities over possible subsequent tokens. We
can either pick the most likely token or sample from this probability
distribution.

The new extended sequence can be fed back into the decoder network
that outputs the probability distribution over the next token.

At each step, the decoder takes the entire sequence generated so far
(including all previous tokens) as input and produces a probability
distribution for the next token. Then, you typically select one token from
that distribution and append it to the sequence. This updated sequence,
now containing the newly generated token, is then fed back into the
decoder for the next prediction.

Other strategies (instead of greedy search): beam search and top-k
sampling, etc.



Transformers

Multimodal Transformers



Multi-modality

Due to their generality, transformers have become the state-of-the-
art for many different modalities, including text, image, video,
point cloud, and audio data, and have been used for both
discriminative and generative applications within each of these.

The core architecture of the transformer layer has remained relatively
constant, both over time and across applications. Therefore, the key
innovations that enabled the use of transformers in areas other
than natural language have largely focused on the representation
and encoding of the inputs and outputs.

One big advantage of a single architecture that is capable of
processing many different kinds of data is that it makes multimodal
computation relatively straightforward.

For example, we may wish to generate an image from a text prompit.



Vision Transformer (Encoder)
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Figure 12.17 Vision transformer. The Vision Transformer (ViT) breaks the image
into a grid of patches (16x16 in the original implementation). Each of these
is projected via a learned linear transformation to become a patch embedding.
These patch embeddings are fed into a transformer encoder network, and the
<cls> token is used to predict the class probabilities.

Input vectors:

Each patch has dimension: 16 x 16 x 3 = 768 (flattened into a vector).

Each patch is not a discrete token from a fixed vocabulary (like words in NLP) but rather a continuous-valued vector.
Positional embeddings are learned. The length of the sequence is fixed.



Generating images (Decoder)

lllustration of a raster scan that defines a specific linear
ordering of the pixels in a two-dimensional image.
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Figure 12.24 An illustration of how an image can be sampled from an autoregressive model. The first pixel is
sampled from the marginal distribution p(x,,), the second pixel from the conditional distribution p(x;2|x;,), and

so on in raster scan order until we have a complete image.



Text-to-speech
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Figure 12.26 A diagram showing the high-level architecture of Vall-E. The input to the transformer model con-
sists of standard text tokens, which prompt the model as to what words the synthesized speech should contain,
together with acoustic prompt tokens that determine the speaker style and tone information. The sampled model
output tokens are decoded back to speech with the learned decoder. For simplicity, the positional encodings and
linear projections are not shown.

Above plots are from Bishop Deep Learning book



Transformers

Foundation Models for
Science



Foundation Models for Science

Like we do for language (LLMs), we can pre-train large multimodal
transformers with scientific data from simulations, publications,
experiments etc.

After self-supervised pre-training, the model should have some
understanding of the data. It will have found useful representations
and connections between them.

We can then fine-tune the model for various “downstream tasks”, as
we did for the transformer encoder BERT.

There is a lot of ongoing research in this area.



Potential benefits

* Foundation models for science provide a powerful, general-purpose
framework for accelerating discovery across multiple scientific
domains.

e Some potential benefits

* Foundation models (FMs) can be trained on vast amounts of
structured and unstructured scientific data, including research
papers, experimental results, and simulations.

* FMs can speed up traditional simulations by acting as efficient
surrogates for computationally expensive processes

* They can optimize lab experiments by recommending parameters to
test, reducing time and costs.

* Models may suggest novel hypotheses, design experiments, and
even predict unknown scientific relationships by leveraging their
training data and making connections that humans may have
overlooked.

 We will look at a few examples now.



Towards Foundation Models for Scientific Machine Learning: https://arxiv.org/pdf/2306.00258
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Shashank Subramanian Peter Harrington Kurt Keutzer
shashanksubramanian@lbl.gov pharrington@Ibl.gov keutzer@eecs.berkeley.edu
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Figure 1: Our setup consists of creating diverse training datasets, sampling both PDE coefficients and source functions simultaneously with
different PDE operators and input data (coefficients, sources) distributions for pre-training. A neural operator is then pre-trained to predict the
PDE solutions given these inputs and the ground truth solutions (computed through PDE solvers). The pre-trained model is then adapted with
minimal fine-tuning (zero-shot or few-shot), and it is used in various downstream tasks (PDE systems) that can be in-domain or out-of-domain
from the pre-training datasets. The pre-training with multiple solution operators allows the same model to transfer to several very different
systems. For instance, PDE 2 (Helmholtz) manifests highly oscillatory solutions compared to, say, PDE 1 (Advection-Diffusion) or PDE 3 (Poisson’s).
We further characterize the scaling and transfer properties of this model as a function of downstream data scale and model size scale.




Computer Science > Machine Learning

[Submitted on 4 Oct 2023 (v1), last revised 10 Dec 2024 (this version, v2)]

Multiple Physics Pretraining for Physical Surrogate

Models

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben

Ohana,

Miles Cranmer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik,
Francois Lanusse, Mariel Pettee, Tiberiu Tesileanu, Kyunghyun Cho, Shirley Ho
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Figure 2: (Left) MPP works by individually normalizing each example using Reversible Instance
Normalization (RevIN) then embedding each field individually into a shared, normalized space. A
single transformer backbone can then predict the next step for multiple sets of physics. We use an
AViT backbone which attends over space and time axis sequentially. Spatial attention is further split
by axis, though these share linear projection weights. (Right) The embedding and reconstruction
matrices are formed by subsampling a larger 1 X 1 convolutional filter based on input fields.



JOURNAL ARTICLE

AstroCLIP: a cross-modal foundation model for _ .
galaxies d https://arxiv.org/abs/2310.03024

Liam Parker ™, Francois Lanusse, Siavash Golkar, Leopoldo Sarra, Miles Cranmer,

Alberto Bietti, Michael Eickenberg, Geraud Krawezik, Michael McCabe, Rudy Morel ...
Show more

Author Notes

Monthly Notices of the Royal Astronomical Society, Volume 531, Issue 4, July 2024, Pages
4990-5011, https://doi.org/10.1093/mnras/stael450
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Figure 1. Illustration of the AstroCLIP cross-modal training strategy. This approach consists of two steps. First, galaxy images and spectra are embedded
separately by pretraining both an image and a spectrum encoder in a SSL setting. Then, these encoders are aligned using a cross-modal contrastive loss. Once
aligned, these embeddings allow us to connect and compare cross-modal representations. Moreover, they possess physically meaningful high-level information
which can be used for a variety of downstream tasks on which the model was neither trained nor fine-tuned.



JOURNAL ARTICLE

AstroCLIP: a cross-modal foundation model for .
galaxies d https://arxiv.org/abs/2310.03024

Liam Parker ™, Francois Lanusse, Siavash Golkar, Leopoldo Sarra, Miles Cranmer,
Alberto Bietti, Michael Eickenberg, Geraud Krawezik, Michael McCabe, Rudy Morel ...
Show more

Author Notes

Monthly Notices of the Royal Astronomical Society, Volume 531, Issue 4, July 2024, Pages
4990-5011, https://doi.org/10.1093/mnras/stael450
Published: 21 June2024  Article history v

The main contributions of our work are:

e We develop the first self-supervised transformer-based models
for galaxy spectra and images.

e We apply a cross-modal training regime to align the pre-trained
image and spectrum encoders around shared physical semantics,
creating a unified latent space for spectra and images.

e We empirically demonstrate that our cross-modal embeddings
capture core physical properties of the underlying galaxies. This
enables, with only minimal downstream processing, AstroCLIP to
be used for:

— In-modal and cross-modal galaxy similarity searches.
— Photometric redshift estimation

— Galaxy property estimation from images

— Galaxy property estimation from spectra

— Galaxy morphology classification from images.



Cross-Modal Contrastive Techniques

* There are several techniques to combine representations across modalities

A popular one is Contrastive Language—Image Pretraining (CLIP), designed to align language-
based descriptions with their corresponding images. CLIP learns general visual concepts by
contrasting correct image-text pairs against incorrect ones.

Training Pipeline:
« Encoders. CLIP uses two separate models:
* Image Encoder (Vision Transformer or ResNet): Converts an image into an embedding.
 Text Encoder (Transformer like GPT): Converts a caption into an embedding.
« Contrastive Learning Objective:
 For agiven batch of N image-text pairs:
« Compute embeddings for all N images and N text captions.
 Compute the similarity (dot product) between every image-text pair.
Optimize the model such that:
 Correct (image, caption) pairs have high similarity.
* Incorrect pairs have low similarity.

 This is done using a contrastive loss function (e.g., INfoNCE loss).



Py Proceedings of Machine Learning Research
u https://proceedings.mlir.press> ... PDF

Learning Transferable Visual Models From Natural Language ...
- - by A Radford - Cited by 30876 — At the core of our work is the idea of learning perception from the
O e c Ive supervision contained in natural language paired with images. In the following subsections ...
16 pages

e Assume we have the observations X and Y from two different modalities.

« We would like to find a new shared embedding space where these observations are mapped to
embeddings x and y.

* Inthis new embedding space, we want x and y to be close if they come from the same sample
(e.g. matching text and image).

e Closeness can be measured by the normalized cosine similarity:
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 We want to optimize the normalized cosine similarity on the training data set. More precisely, we
use the InfoNCE loss, which is a lower bound on the mutual information:
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Here tau is a smoothing parameter called the temperature.

« Intuitively, the InfoNCE objective works by bringing together points in the embedding space
that correspond to the same underlying physical object and pushing points in the
embedding space away from each other if they correspond to different underlying physical
objects.



Contrastive learning of Representations

* As we have seen, contrastive learning can be used in multimodal
training to align different modalities.

* |tis also used in “single modal” applications with the goal of learning
better representations, especially when training data is sparse.

* |n this case the model learns to differentiate augmented views of the
same input from different samples.

* This can be useful in physics. We can corrupt the same image by
different “systematics” and learn representations that are
invariant under these systematics.

A% arxiv

’ https://arxiv.org» cs *

A Simple Framework for Contrastive Learning of Visual ...

by T Chen - 2020 - Cited by 22749 — This paper presents SImCLR: a simple framework for contrastive
learning of visual representations. We simplify recently proposed contrastive self-supervised ...



AlphaFold

Industrial scale Al for science example (involving
hundreds of scientists)

AlphaFold is a deep learning-based foundation model
for predicting protein 3D structures from amino acid
sequences. Developed by DeepMind, it has
revolutionized computational biology by providing
near-experimental accuracy predictions, solving a
decades-old scientific challenge.

Trained on massive protein databases, AlphaFold can
predict structures for almost any protein without task-
specific fine-tuning.

Uses a modified Transformer architecture (Evoformer)
to model residue-residue interactions.

AlphaFold is largely pretrained in a self-supervised
manner, but it also incorporates supervised learning
elements.

For example it uses Contrastive Learning on Protein
Representations: AlphaFold learns to distinguish
between physically plausible and implausible protein
structures based on data-driven constraints.

NOBEL PRIZE
EMISTRY 2024

David Demis John M.
Baker Hassabis Jumper

“for computational “for protein structure prediction”

protein design”

THE ROYAL SWEDISH ACADEMY OF SCIENCES



/PNM

Ground truth shown in gray

7PNM - Spike protein of a common cold virus (Coronavirus OC43): AlphaFold 3's structural prediction for a spike
protein (blue) of a cold virus as it interacts with antibodies (turquoise) and simple sugars (yellow), accurately
matches the true structure (gray). The animation shows the protein interacting with an antibody, then a sugar.
Advancing our knowledge of such immune-system processes helps better understand coronaviruses, including

COVID-19, raising possibilities for improved treatments.



Transformers

Examples of Transformers
for Math



Famous early work

DEEP LEARNING FOR SYMBOLIC MATHEMATICS

Guillaume Lample* Francois Charton”

Facebook Al Research Facebook AI Research

glample@fb.com fcharton@fb.com
ABSTRACT

Neural networks have a reputation for being better at solving statistical or approxi-
mate problems than at performing calculations or working with symbolic data. In
this paper, we show that they can be surprisingly good at more elaborated tasks
in mathematics, such as symbolic integration and solving differential equations.
We propose a syntax for representing mathematical problems, and methods for
generating large datasets that can be used to train sequence-to-sequence models.
We achieve results that outperform commercial Computer Algebra Systems such
as Matlab or Mathematica.

https://arxiv.org/pdf/1912.01412

The paper includes methods to tokenize mathematical expressions and numbers.

Side note: For practically useful problems the above approach cannot replace CAS systems



Guessing the answer

« A common problem setup where transformers are helpful is the
following:

 For some mathematical problems, it is hard to find a solution, but
easy to check if a solution is correct once it is found.

A famous example of that sort is the RSA algorithm based on prime
factoring prime numbers.

* |nsuch cases, we can try to train a transformer on pairs of problems
and solutions of similar sort. The transformer may be able to see
patterns in this data and get good at guessing answers to new
problems.

* We can then let the transformer make lots of guesses, and hopefully
find some correct ones.

 More than that, we may be able to interpret the patterns that the
transformer found theoretically. This can be considered
“experimental mathematics”.



An example of this sort from UW Physics

Transforming the Bootstrap: Using Transformers to Compute
Scattering Amplitudes in Planar A/ = 4 Super Yang-Mills
Theory

Tianji Cai®*T, Garrett W. Merz?* T, Francois Charton®*, Niklas Nolte¢,
Matthias Wilhelm?, Kyle Cranmer?, Lance J. Dixon®

“ SLAC National Accelerator Laboratory
b Data Science Institute, University of Wisconsin-Madison
¢ FAIR, Meta

4 Niels Bohr Institute, University of Copenhagen

tianji@slac.stanford.edu, garrett.merz@Qwisc.edu, fcharton@meta.com, nolte@meta.com,
matthias.wilhelm@nbi.ku.dk, kyle.cranmer@Qwisc.edu, lance@slac.stanford.edu
Sept 2024

Abstract. We pursue the use of deep learning methods to improve state-of-the-art
computations in theoretical high-energy physics. Planar N = 4 Super Yang-Mills
theory is a close cousin to the theory that describes Higgs boson production at the
Large Hadron Collider; its scattering amplitudes are large mathematical expressions
containing integer coefficients. In this paper, we apply Transformers to predict these
coefficients. The problem can be formulated in a language-like representation amenable
to standard cross-entropy training objectives. We design two related experiments and
show that the model achieves high accuracy (> 98%) on both tasks. Our work shows
that Transformers can be applied successfully to problems in theoretical physics that
require exact solutions.

https://arxiv.org/abs/2405.06107



FunSearch (also including UW)

Article | Open access | Published: 14 December 2023

Mathematical discoveries from program search with
large language models

Bernardino Romera-Paredes &3, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M. Pawan

Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang, Omar Fawzi,

Pushmeet Kohli &2 & Alhussein Fawzi &

Nature 625, 468-475 (2024) | Cite this article

241k Accesses | 70 Citations | 10256 Altmetric | Metrics

FunSearch is a method to search for new solutions in mathematics and computer science.
FunSearch works by pairing a pre-trained LLM, whose goal is to provide creative solutions in
the form of computer code, with an automated “evaluator”, which guards against
hallucinations and incorrect ideas. By iterating back-and-forth between these two
components, initial solutions “evolve” into new knowledge. The system searches for
“functions” written in computer code; hence the name FunSearch.



FunSearch
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Fig.1|Overview of FunSearch. Theinput to FunSearchis aspecification of the
probleminthe form of an‘evaluate’ function, aninitialimplementation of the
functionto evolve, which canbetrivial,and potentially a skeleton. At each
iteration, FunSearch buildsapromptby combining several programs sampled
fromthe programs database (favouring high-scoring ones). The promptis then
fedtothepretrained LLM and new programs are created. Newly created
programsarethenscored and storedinthe programs database (if correct),
thus closing theloop. The user canatany pointretrieve the highest-scoring
programs discovered so far.
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Formal Theorem Proving

 Mathematical theorems can be formalized in languages and proof assistants such as LEAN,
which allow proofs to be verified automatically.

 In principle, LLMs can come up with new candidate proofs, and then the proof can be
automatically verified.
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| theorem exists_infinite_primes (n : N) : 3 p, ns p A Prime p :=

| let p := minFac (n ! + 1)

| have f1 : n! + 1 # 1 := ne_of_gt <| succ_lt_succ <| factorial_pos _
| have pp : Prime p := minFac_prime f1
|

|

I
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Theorem 1. There exists an infinite number of primes.

Proof. Let n be an arbitrary positive integer, and let
p € Z* be a prime factor of n!+1. We can derive p > n
by noting that n! + 1 cannot be divided by positive
integers from 2 to n. Since n is arbitrary, we have
proved that the number of primes is infinite. O

have np : ns p :=
le_of_not_ge fun h =>
have h. : p | n ! := dvd_factorial (minFac_pos _) h
have h: : p | 1 := (Nat.dvd_add_iff_right hi).2 (minFac_dvd _)
pp.not_dvd_one h:
N o e e o e - - - - - - — s’ (p, np, pp)

U

arXiv:2412.16075v1

e (Can this be useful for physics too? Open question.
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Course logistics

* This lecture did not follow a particular book.



