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Transformers

Recall: LLM Encoders and 
Decoders



Encoder Pre-training

• For BERT, the self-supervision task consists of predicting missing 
words from sentences from a large internet corpus. 

• Predicting missing words forces the transformer model to understand 
some syntax. For example, red is often found before car or dress 
than swim. In the above example, train is more likely than lasagna.
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Figure 12.10 Pre-training for BERT-like encoder. The input tokens (and a spe-
cial <cls> token denoting the start of the sequence) are converted to word em-
beddings. Here, these are represented as rows rather than columns, so the box
labeled “word embeddings” is XT . These embeddings are passed through a series
of transformer layers (orange connections indicate that every token attends to
every other token in these layers) to create a set of output embeddings. A small
fraction of the input tokens is randomly replaced with a generic <mask> token.
In pre-training, the goal is to predict the missing word from the associated output
embedding. As such, the output embeddings are passed through a softmax func-
tion, and the multiclass classification loss (section 5.24) is used. This task has
the advantage that it uses both the left and right context to predict the missing
word but has the disadvantage that it does not make efficient use of data; here,
seven tokens need to be processed to add two terms to the loss function.

12.6.1 Pre-training

In the pre-training stage, the network is trained using self-supervision. This allows the
use of enormous amounts of data without the need for manual labels. For BERT, the self-
supervision task consists of predicting missing words from sentences from a large internetProblem 12.6 corpus (figure 12.10).1 During training, the maximum input length is 512 tokens, and
the batch size is 256. The system is trained for a million steps, corresponding to roughly
50 epochs of the 3.3-billion word corpus.

Predicting missing words forces the transformer network to understand some syntax.
For example, it might learn that the adjective red is often found before nouns like house
or car but never before a verb like shout. It also allows the model to learn superficial
common sense about the world. For example, after training, the model will assign a
higher probability to the missing word train in the sentence The <mask> pulled into
the station than it would to the word peanut. However, the degree of “understanding”
this type of model can ever have is limited.

1BERT also uses a secondary task that predicts whether two sentences were originally adjacent in
the text or not, but this only marginally improves performance.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Above plots are from Prince Deep Learning book



Encoder Fine-tuning
12.6 Encoder model example: BERT 221

Figure 12.11 After pre-training, the encoder is fine-tuned using manually labeled
data to solve a particular task. Usually, a linear transformation or a multi-layer
perceptron (MLP) is appended to the encoder to produce whatever output is
required. a) Example text classification task. In this sentiment classification
task, the <cls> token embedding is used to predict the probability that the
review is positive. b) Example word classification task. In this named entity
recognition problem, the embedding for each word is used to predict whether the
word corresponds to a person, place, or organization, or is not an entity.

12.6.2 Fine-tuning

In the fine-tuning stage, the model parameters are adjusted to specialize the network to
a particular task. An extra layer is appended onto the transformer network to convert
the output vectors to the desired output format. Examples include:

Text classification: In BERT, a special token known as the classification or <cls>
token is placed at the start of each string during pre-training. For text classification
tasks like sentiment analysis (in which the passage is labeled as having a positive or
negative emotional tone), the vector associated with the <cls> token is mapped to a
single number and passed through a logistic sigmoid (figure 12.11a). This contributes to
a standard binary cross-entropy loss (section 5.4).

Draft: please send errata to udlbookmail@gmail.com.

Text classification

Word classification



Decoder Pre-Training
224 12 Transformers

Figure 12.12 Training GPT3-type decoder network. The tokens are mapped to
word embeddings with a special <start> token at the beginning of the sequence.
The embeddings are passed through a series of transformer layers that use masked
self-attention. Here, each position in the sentence can only attend to its own
embedding and those of tokens earlier in the sequence (orange connections). The
goal at each position is to maximize the probability of the following ground truth
token in the sequence. In other words, at position one, we want to maximize the
probability of the token It; at position two, we want to maximize the probability
of the token takes; and so on. Masked self-attention ensures the system cannot
cheat by looking at subsequent inputs. The autoregressive task has the advantage
of making efficient use of the data since every word contributes a term to the loss
function. However, it only exploits the left context of each word.

the masked self-attention. Hence, much of the earlier computation can be recycled as weProblem 12.7 generate subsequent tokens.
In practice, many strategies can make the output text more coherent. For example,Notebook 12.4

Decoding
strategies

beam search keeps track of multiple possible sentence completions to find the overall most
likely (which is not necessarily found by greedily choosing the most likely next word at
each step). Top-k sampling randomly draws the next word from only the top-K most
likely possibilities to prevent the system from accidentally choosing from the long tail of
low-probability tokens and leading to an unnecessary linguistic dead end.

12.7.4 GPT3 and few-shot learning

Large language models like GPT3 apply these ideas on a massive scale. In GPT3, the
sequence lengths are 2048 tokens long, and the total batch size is 3.2 million tokens.
There are 96 transformer layers (some of which implement a sparse version of attention),
each processing a word embedding of size 12288. There are 96 heads in the self-attention
layers, and the value, query, and key dimension is 128. It is trained with 300 billion
tokens and contains 175 billion parameters.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

attend only to the current and previous tokens



Decoder: Text generation via Sampling
• The autoregressive language model is a generative model.

• Start with an input sequence of text, beginning with a <start> token.

• The outputs are the probabilities over possible subsequent tokens. We 
can either pick the most likely token or sample from this probability 
distribution.

• The new extended sequence can be fed back into the decoder network 
that outputs the probability distribution over the next token.

• At each step, the decoder takes the entire sequence generated so far 
(including all previous tokens) as input and produces a probability 
distribution for the next token. Then, you typically select one token from 
that distribution and append it to the sequence. This updated sequence, 
now containing the newly generated token, is then fed back into the 
decoder for the next prediction.

• Other strategies (instead of greedy search): beam search and top-k 
sampling, etc.



Transformers

Multimodal Transformers



Multi-modality
• Due to their generality, transformers have become the state-of-the-

art for many different modalities, including text, image, video, 
point cloud, and audio data, and have been used for both 
discriminative and generative applications within each of these.


• The core architecture of the transformer layer has remained relatively 
constant, both over time and across applications. Therefore, the key 
innovations that enabled the use of transformers in areas other 
than natural language have largely focused on the representation 
and encoding of the inputs and outputs.


• One big advantage of a single architecture that is capable of 
processing many different kinds of data is that it makes multimodal 
computation relatively straightforward.


• For example, we may wish to generate an image from a text prompt.



Vision Transformer (Encoder)

Input vectors: 
Each patch has dimension: 16 × 16 × 3 = 768 (flattened into a vector).
Each patch is not a discrete token from a fixed vocabulary (like words in NLP) but rather a continuous-valued vector.
Positional embeddings are learned. The length of the sequence is fixed. 



Generating images (Decoder)



Text-to-speech

Above plots are from Bishop Deep Learning book
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Foundation Models for Science
• Like we do for language (LLMs), we can pre-train large multimodal 

transformers with scientific data from simulations, publications, 
experiments etc. 

• After self-supervised pre-training, the model should have some 
understanding of the data. It will have found useful representations 
and connections between them. 


• We can then fine-tune the model for various “downstream tasks”, as 
we did for the transformer encoder BERT. 


• There is a lot of ongoing research in this area. 



Potential benefits
• Foundation models for science provide a powerful, general-purpose 

framework for accelerating discovery across multiple scientific 
domains. 


• Some potential benefits

• Foundation models (FMs) can be trained on vast amounts of 

structured and unstructured scientific data, including research 
papers, experimental results, and simulations.


• FMs can speed up traditional simulations by acting as efficient 
surrogates for computationally expensive processes


• They can optimize lab experiments by recommending parameters to 
test, reducing time and costs.


• Models may suggest novel hypotheses, design experiments, and 
even predict unknown scientific relationships by leveraging their 
training data and making connections that humans may have 
overlooked.


• We will look at a few examples now.



https://arxiv.org/pdf/2306.00258





https://arxiv.org/abs/2310.03024



https://arxiv.org/abs/2310.03024



Cross-Modal Contrastive Techniques
• There are several techniques to combine representations across modalities

• A popular one is Contrastive Language–Image Pretraining (CLIP), designed to align language-

based descriptions with their corresponding images. CLIP learns general visual concepts by 
contrasting correct image-text pairs against incorrect ones.


Training Pipeline: 

• Encoders. CLIP uses two separate models: 

• Image Encoder (Vision Transformer or ResNet): Converts an image into an embedding.

• Text Encoder (Transformer like GPT): Converts a caption into an embedding.


• Contrastive Learning Objective: 

• For a given batch of N image-text pairs:

• Compute embeddings for all N images and N text captions.

• Compute the similarity (dot product) between every image-text pair.

• Optimize the model such that:


• Correct (image, caption) pairs have high similarity.

• Incorrect pairs have low similarity.


• This is done using a contrastive loss function (e.g., InfoNCE loss).



CLIP objective 
• Assume we have the observations X and Y from two different modalities. 


• We would like to find a new shared embedding space where these observations are mapped to 
embeddings x and y. 


• In this new embedding space, we want x and y to be close if they come from the same sample 
(e.g. matching text and image).


• Closeness can be measured by the normalized cosine similarity: 


• We want to optimize the normalized cosine similarity on the training data set. More precisely, we 
use the InfoNCE loss, which is a lower bound on the mutual information: 


Here tau is a smoothing parameter called the temperature. 


• Intuitively, the InfoNCE objective works by bringing together points in the embedding space 
that correspond to the same underlying physical object and pushing points in the 
embedding space away from each other if they correspond to different underlying physical 
objects.



Contrastive learning of Representations
• As we have seen, contrastive learning can be used in multimodal 

training to align different modalities.

• It is also used in “single modal” applications with the goal of learning 

better representations, especially when training data is sparse. 

• In this case the model learns to differentiate augmented views of the 

same input from different samples.

• This can be useful in physics. We can corrupt the same image by 

different “systematics” and learn representations that are 
invariant under these systematics. 



AlphaFold
• Industrial scale AI for science example (involving 

hundreds of scientists) 
• AlphaFold is a deep learning-based foundation model 

for predicting protein 3D structures from amino acid 
sequences. Developed by DeepMind, it has 
revolutionized computational biology by providing 
near-experimental accuracy predictions, solving a 
decades-old scientific challenge.


• Trained on massive protein databases, AlphaFold can 
predict structures for almost any protein without task-
specific fine-tuning.


• Uses a modified Transformer architecture (Evoformer) 
to model residue-residue interactions.


• AlphaFold is largely pretrained in a self-supervised 
manner, but it also incorporates supervised learning 
elements.


• For example it uses Contrastive Learning on Protein 
Representations: AlphaFold learns to distinguish 
between physically plausible and implausible protein 
structures based on data-driven constraints.





Transformers

Examples of Transformers 
for Math



https://arxiv.org/pdf/1912.01412

Famous early work

Side note: For practically useful problems the above approach cannot replace CAS systems

The paper includes methods to tokenize mathematical expressions and numbers.



Guessing the answer
• A common problem setup where transformers are helpful is the 

following: 

• For some mathematical problems, it is hard to find a solution, but 

easy to check if a solution is correct once it is found.

• A famous example of that sort is the RSA algorithm based on prime 

factoring prime numbers. 

• In such cases, we can try to train a transformer on pairs of problems 

and solutions of similar sort. The transformer may be able to see 
patterns in this data and get good at guessing answers to new 
problems. 


• We can then let the transformer make lots of guesses, and hopefully 
find some correct ones. 


• More than that, we may be able to interpret the patterns that the 
transformer found theoretically. This can be considered 
“experimental mathematics”.



An example of this sort from UW Physics

https://arxiv.org/abs/2405.06107



FunSearch (also including UW)

FunSearch is a method to search for new solutions in mathematics and computer science. 
FunSearch works by pairing a pre-trained LLM, whose goal is to provide creative solutions in 
the form of computer code, with an automated “evaluator”, which guards against 
hallucinations and incorrect ideas. By iterating back-and-forth between these two 
components, initial solutions “evolve” into new knowledge. The system searches for 
“functions” written in computer code; hence the name FunSearch.





Formal Theorem Proving
• Mathematical theorems can be formalized in languages and proof assistants such as LEAN, 

which allow proofs to be verified automatically. 


• In principle, LLMs can come up with new candidate proofs, and then the proof can be 
automatically verified.


•  Can this be useful for physics too? Open question. 

arXiv:2412.16075v1



Course logistics
• This lecture did not follow a particular book. 


