
Moritz Münchmeyer

Physics 361 - Machine Learning in
Physics

Lecture 18 – Reinforcement Learning

March 20th 2025

Motivation

LLMs for Reasoning at the
example of TPBench
(example from my group)

Recently on Arxiv

https://arxiv.org/abs/2502.15815

LLM progress on Math
• High-school and undergraduate math competition problems are now

basically solved.

FrontierMath
• First research-level math data set.

FrontierMath Results

https://openai.com/index/openai-o3-mini/

TPBench
• There is no comparable Benchmark for theoretical physics. Our goals

was to create one, and make it community owned (rather than industry
driven). TPBench is considerably smaller than FrontierMath, but
sufficiently large to gauge TP reasoning progress.

• We wanted to answer:

• How good is the current state-of-the-art AI for problem-solving in TP?
Are existing models useful for research-level reasoning?

• What are the most common failure modes? For example, are models
performing correct reasoning but fail mostly at algebra (at which LLMs
are known to perform poorly)?

Differences between Math and Physics
• Mathematical reasoning tends to focus on establishing exact statements

constructed within a rigid logical framework, while TP reasoning mostly
deals with approximate statements constructed within a “softer” logical
framework in which some of the less quantitatively relevant details are left
unspecified but ``most likely" can be filled in such that the statements can
be made arbitrarily precisely if desired.

• TP reasoning primarily relies on techniques of direct computations, while
mathematical reasoning tends to use more often indirect techniques such
as contradiction and induction. TP computations often utilize algorithmic
methods in calculus, linear algebra, complex analysis, differential equations,
differential geometry, and group representation theory.

• TP reasoning often focuses on derivations of formulas whose parametric
dependences as well as the overall normalization are implicitly defined in a
narrow domain of physical relevance.

• TP typically focuses on approximations whose quantitative uncertainties
are often left unspecified.

Properties of our data set
• What properties should problems in the dataset have?

• The problem is well-posed and the solution to the problem is
unambiguous. An expert in the field, after reading the solution, should
not have any objections.

• The problem is original. The solution to the problem cannot be easily
found in the existing literature.

• The answer should be auto-verifiable. This is easily achieved for
numerical answers or simple algebraic expressions, but more difficult
for tensor expressions. We discuss this property further below.

• It should not be possible to guess the answer or remember it from
the literature, despite a wrong reasoning chain.

Auto-verification
• We need to run a large number of problems many times, on many

models. Human grading is not feasible.

• We did experiment with LLM grading, where the grader model gets the
answer from the solver model and the expert answer, compares them,
and assigns a grade. However, we found that this method is too noisy.

• Instead, we constructed problems for which we can verify the answer
with code, ignoring the derivation.

Auto-verification

• Works well for algebraic expressions. Integral and derivative expressions
pose problems.

Results

Results
• Progress has been very rapid with the most recent models. When we

initiated this project, GPT-4o(released on May 2024) was state-of-the-art
and unable to solve almost any TP problem beyond undergraduate level.
When the o1-preview model (released on Sep 2024) appeared, it could
solve many easy graduate level problems, but rarely any harder ones.
The o3-mini series (released on Jan 2025), is able to solve about half of
our advanced graduate level problems and even a few research
problems.

• Nevertheless, research problems involving long mathematical
arguments are generally unsolved.

• Both symbolic calculation mistakes and logical reasoning mistakes are
common, but have decreased with the newest models.

• We provide a detailed error analysis in the paper.

Problem Samples
• Let’s look at some example problems, and model solutions.

https://tpbench.org/?page_id=2

How can models be so strong?
• We agreed to summarize as follows: “In summary, current model

performance perhaps resembles a student with superhuman
literature knowledge but low intellectual rigor and technical
expertise.”

• However, superhuman literature knowledge is not cheating. Humans
use as much relevant literature as they can, and adapt it to their
problems. Models now are strong enough to recognize relevant
literature, and adapt it (including non-trivial modifications).

• Of course our problems are not “entirely new”. They are not from public
problem collections but they are constructed using research papers (at
high difficulty level). You can look up their origin for the public problems.

• Some problems are more independent from publications than others.
But to me it is absolutely clear that models are not just spitting out
text they remember without understanding.

Interesting followup directions
• Make larger benchmarks and larger training data.

• E.g. Problems extracted from very new arxiv papers that have not yet
been used in pre-training.

• Automatic verification for non-algebraic expressions.

• Difficult to solve in general.

• Improving reasoning methods for TP.

• Better training data for Reinforcement Learning

• Better tool usage such as Mathematica.

• Test time scaling, better inference algorithms.

• Is it possible to do truly novel research with these models?

Outlook for next lectures
• In the next three lectures we want to understand better how reasoning

models can be built.

• We first core Reinforcement Learning in general (not specifically for
LLMs). Then we will discuss Reinforcement Learning for Reasoning
models, including the Deepseek R1 result (e.g. PPO, GRPO).

• We will also discuss other methods to improve reasoning (supervised
fine tuning, tool usage, test time scaling).

• While Reasoning is not (yet) in the mainstream of AI for physics, I think
these topics are exciting and important for the future.

Reinforcement Learning

Introduction

Introduction

• Reinforcement leaning is a sequential decision making framework in which agents learned to
perform actions in an environment with the goal of maximizing rewards.

• RL controls the actions of an agent in an environment to maximize the reward.

• RL applications: Go/Chess/Atari, robotics, financial trading, string theory, optimal experimental
design, robotics, reasoning, ….

• RL is often used when problem involves searching a large configuration space.

• References:

• Sutton and Barto: http://incompleteideas.net/book/the-book-2nd.html,

• Simon Prince, Understanding Deep Learning: https://udlbook.github.io/udlbook/
(primary reference used here)

• https://github.com/Farama-Foundation/Gymnasium (formerly https://github.com/openai/gym)

http://incompleteideas.net/book/the-book-2nd.html
https://udlbook.github.io/udlbook/
https://github.com/Farama-Foundation/Gymnasium
https://github.com/openai/gym

Challenges of RL

• Illustrate the challenges with chess game. A reward of +1, −1, or 0 is given at the end of
the game if the agent wins, loses, or draws and 0 at every other time step. The
challenges:

• The reward is sparse; we must play an entire game to receive feedback.

• Temporal credit assignment problem: The reward is temporally offset from the
action that caused it; a decisive advantage might be gained thirty moves before
victory. We must associate the reward with this critical action. (other examples?)

• The environment is stochastic; the opponent doesn’t always make the same move
in the same situation, so it’s hard to know if an action was truly good or just lucky.

• Exploration-exploitation trade-off: The agent must balance exploring the
environment (e.g., trying new opening moves) with exploiting what it already knows .

Reinforcement Learning

General Definitions

Markov Processes

• In RL, we learn a policy that maximizes the
expected return in a Markov decision process.

• The word Markov implies that the probability
of being in a state depends only on the
previous state and not on the states before.

• The changes between states are captured by
the transition probabilities of
moving to the next state given the current
state , where indexes the time step.

• A Markov process is an evolving system that
produces a sequence of states.

• τ = [s1, s2, s3, . . .] is called the trajectory

Pr(st+1 |st)
st+1

st t

s1, s2, s3, …

374 19 Reinforcement learning

Figure 19.1 Markov process. A Markov process consists of a set of states and tran-
sition probabilities Pr(st+1|st) that define the probability of moving to state st+1

given the current state is st. a) The penguin can visit 16 different positions
(states) on the ice. b) The ice is slippery, so at each time, it has an equal proba-
bility of moving to any adjacent state. For example, in position 6, it has a 25%
chance of moving to states 2, 5, 7, and 10. A trajectory τ = [s1, s2, s3, . . .] from
this process consists of a sequence of states.

19.1.1 Markov process

A Markov process assumes that the world is always in one of a set of possible states.
The word Markov implies that the probability of being in a state depends only on the
previous state and not on the states before. The changes between states are captured by
the transition probabilities Pr(st+1|st) of moving to the next state st+1 given the current
state st, where t indexes the time step. Hence, a Markov process is an evolving system
that produces a sequence s1, s2, s3 . . . of states (figure 19.1).

19.1.2 Markov reward process

A Markov reward process also includes a distribution Pr(rt+1|st) over the possible re-Problem 19.1 wards rt+1 received at the next time step, given that we are in state st. This produces
a sequence s1, r2, s2, r3, s3, r4 . . . of states and the associated rewards (figure 19.2).

The Markov reward process also includes a discount factor γ ∈ (0, 1] that is used to
compute the return Gt at time t:

Gt =
∞∑

k=0

γkrt+k+1. (19.1)

The return is the sum of the cumulative discounted future rewards; it measures the future
benefit of being on this trajectory. A discount factor of less than one makes rewards that
are closer in time more valuable than rewards that are further away.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Markov Reward Processes

• A Markov reward process also includes a distribution over the
possible rewards received at the next step, given .

• Introduce a discount factor to compute the (cumulative) return :

Pr(rt+1 |st)
rt+1 st

γ ∈ (0,1] Gt

374 19 Reinforcement learning

Figure 19.1 Markov process. A Markov process consists of a set of states and tran-
sition probabilities Pr(st+1|st) that define the probability of moving to state st+1

given the current state is st. a) The penguin can visit 16 different positions
(states) on the ice. b) The ice is slippery, so at each time, it has an equal proba-
bility of moving to any adjacent state. For example, in position 6, it has a 25%
chance of moving to states 2, 5, 7, and 10. A trajectory τ = [s1, s2, s3, . . .] from
this process consists of a sequence of states.

19.1.1 Markov process

A Markov process assumes that the world is always in one of a set of possible states.
The word Markov implies that the probability of being in a state depends only on the
previous state and not on the states before. The changes between states are captured by
the transition probabilities Pr(st+1|st) of moving to the next state st+1 given the current
state st, where t indexes the time step. Hence, a Markov process is an evolving system
that produces a sequence s1, s2, s3 . . . of states (figure 19.1).

19.1.2 Markov reward process

A Markov reward process also includes a distribution Pr(rt+1|st) over the possible re-Problem 19.1 wards rt+1 received at the next time step, given that we are in state st. This produces
a sequence s1, r2, s2, r3, s3, r4 . . . of states and the associated rewards (figure 19.2).

The Markov reward process also includes a discount factor γ ∈ (0, 1] that is used to
compute the return Gt at time t:

Gt =
∞∑

k=0

γkrt+k+1. (19.1)

The return is the sum of the cumulative discounted future rewards; it measures the future
benefit of being on this trajectory. A discount factor of less than one makes rewards that
are closer in time more valuable than rewards that are further away.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

19.1 Markov decision processes, returns, and policies 375

Figure 19.2 Markov reward process. This associates a distribution Pr(rt+1|st)
of rewards rt+1 with each state st. a) Here, the rewards are deterministic; the
penguin will receive a reward of +1 if it lands on a fish and 0 otherwise. The
trajectory τ now consists of a sequence s1, r2, s2, r3, s3, r4 . . . of alternating states
and rewards, terminating after eight steps. The return Gt of the sequence is the
sum of discounted future rewards, here with discount factor γ = 0.9. b-c) As the
penguin proceeds along the trajectory and gets closer to reaching the rewards,
the return increases.

Figure 19.3 Markov decision process. a) The agent (penguin) can perform one
of a set of actions in each state. The action influences both the probability of
moving to the successor state and the probability of receiving rewards. b) Here,
the four actions correspond to moving up, right, down, and left. c) For any state
(here, state 6), the action changes the probability of moving to the next state.
The penguin moves in the intended direction with 50% probability, but the ice is
slippery, so it may slide to one of the other adjacent positions with equal prob-
ability. Accordingly, in panel (a), the action taken (gray arrows) doesn’t always
line up with the trajectory (orange line). Here, the action does not affect the
reward, so Pr(rt+1|st, at) = Pr(rt+1|st). The trajectory τ from an MDP consists
of a sequence s1, a1, r2, s2, a2, r3, s3, a3, r4 . . . of alternating states st, actions at,
and rewards, rt+1. Note that here the penguin receives the reward when it leaves
a state with a fish (i.e., the reward is received for passing through the fish square,
regardless of whether the penguin arrived there intentionally or not).

Draft: please send errata to udlbookmail@gmail.com.

Markov Decision Processes

• A Markov decision process (MDP) adds a set of possible action at
each step which changes the transition probabilities .

• The rewards can also depend on the action: .

• MDP produces a sequence of states,
actions & rewards. The entity that performs the actions is the agent.

at
Pr(st+1 |st, at)

Pr(rt+1 |st, at)
s1, a1, r2, s2, a2, r3, s3, a3, …

19.1 Markov decision processes, returns, and policies 375

Figure 19.2 Markov reward process. This associates a distribution Pr(rt+1|st)
of rewards rt+1 with each state st. a) Here, the rewards are deterministic; the
penguin will receive a reward of +1 if it lands on a fish and 0 otherwise. The
trajectory τ now consists of a sequence s1, r2, s2, r3, s3, r4 . . . of alternating states
and rewards, terminating after eight steps. The return Gt of the sequence is the
sum of discounted future rewards, here with discount factor γ = 0.9. b-c) As the
penguin proceeds along the trajectory and gets closer to reaching the rewards,
the return increases.

Figure 19.3 Markov decision process. a) The agent (penguin) can perform one
of a set of actions in each state. The action influences both the probability of
moving to the successor state and the probability of receiving rewards. b) Here,
the four actions correspond to moving up, right, down, and left. c) For any state
(here, state 6), the action changes the probability of moving to the next state.
The penguin moves in the intended direction with 50% probability, but the ice is
slippery, so it may slide to one of the other adjacent positions with equal prob-
ability. Accordingly, in panel (a), the action taken (gray arrows) doesn’t always
line up with the trajectory (orange line). Here, the action does not affect the
reward, so Pr(rt+1|st, at) = Pr(rt+1|st). The trajectory τ from an MDP consists
of a sequence s1, a1, r2, s2, a2, r3, s3, a3, r4 . . . of alternating states st, actions at,
and rewards, rt+1. Note that here the penguin receives the reward when it leaves
a state with a fish (i.e., the reward is received for passing through the fish square,
regardless of whether the penguin arrived there intentionally or not).

Draft: please send errata to udlbookmail@gmail.com.

Here: The penguin moves in the intended direction with 50% probability, but the ice is slippery, so it may
slide to one of the other adjacent positions with equal probability.

Policy

• The rules that determine the agent’s action are known as the policy.

• The policy can be deterministic (one action for a given state) or
stochastic (a probability distribution over each possible action):

376 19 Reinforcement learning

Figure 19.4 Partially observable Markov
decision process (POMDP). In a
POMDP, the agent does not have access
to the entire state. Here, the penguin
is in state three and can only see the
region in the dashed box. This is
indistinguishable from what it would see
in state nine. In the first case, moving
right leads to the hole in the ice (with
-2 reward) and, in the latter, to the fish
(with +3 reward).

Figure 19.5 Policies. a) A deterministic policy always chooses the same action in
each state (indicated by arrow). Some policies are better than others. This policy
is not optimal but still generally steers the penguin from top-left to bottom-right
where the reward lies. b) This policy is more random. c) A stochastic policy has
a probability distribution over actions for each state (probability indicated by
size of arrows). This has the advantage that the agent explores the states more
thoroughly and can be necessary for optimal performance in partially observable
Markov decision processes.

Figure 19.6 Reinforcement learning
loop. The agent takes an action at at
time t based on the state st, according
to the policy π[at|st]. This triggers
the generation of a new state st+1 (via
the state transition function) and a
reward rt+1 (via the reward function).
Both are passed back to the agent,
which then chooses a new action.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Deterministic Stochastic

Reinforcement Learning Loop
• The environment and the agent form a loop:

• The agent receives the state and reward from the last time step.
Based on the policy, the agent chooses the next action.

• The environment then assigns the next state according to
 and the reward according to . Pr(st+1 |st, at) Pr(rt+1 |st, at)

376 19 Reinforcement learning

Figure 19.4 Partially observable Markov
decision process (POMDP). In a
POMDP, the agent does not have access
to the entire state. Here, the penguin
is in state three and can only see the
region in the dashed box. This is
indistinguishable from what it would see
in state nine. In the first case, moving
right leads to the hole in the ice (with
-2 reward) and, in the latter, to the fish
(with +3 reward).

Figure 19.5 Policies. a) A deterministic policy always chooses the same action in
each state (indicated by arrow). Some policies are better than others. This policy
is not optimal but still generally steers the penguin from top-left to bottom-right
where the reward lies. b) This policy is more random. c) A stochastic policy has
a probability distribution over actions for each state (probability indicated by
size of arrows). This has the advantage that the agent explores the states more
thoroughly and can be necessary for optimal performance in partially observable
Markov decision processes.

Figure 19.6 Reinforcement learning
loop. The agent takes an action at at
time t based on the state st, according
to the policy π[at|st]. This triggers
the generation of a new state st+1 (via
the state transition function) and a
reward rt+1 (via the reward function).
Both are passed back to the agent,
which then chooses a new action.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Expected return: state and action values

• The return depends on the state and the policy

• Characterize how “good” a state is under a given policy by considering
the expected return . State-value function (long-term return on
average from sequences that starts from):

• Action value or state-action value function is the expected
return from executing action in state :

• Through this quantity, RL algorithms connect future rewards to current
actions (i.e., resolve the temporal credit assignment problem).

Gt st π[a |s]
π

v[st |π]
st

q[st, at |π]
at st

378 19 Reinforcement learning

Figure 19.7 State and action values. a) The value v[st|π] of a state st (number at
each position) is the expected return for this state for a given policy π (gray ar-
rows). It is the average sum of discounted rewards received over many trajectories
started from this state. Here, states closer to the fish are more valuable. b) The
value q[st, at,π] of an action at in state st (four numbers at each position/state
corresponding to four actions) is the expected return given that this particular
action is taken in this state. In this case, it gets larger as we get closer to the fish
and is larger for actions that head in the direction of the fish. c) If we know the
action values at a state, then the policy can be modified so that it chooses the
maximum of these values (red numbers in panel b).

π[at|st], the state transitions Pr(st+1|st, at), and the rewards issued Pr(rt+1|st, at) are
all stochastic.

We can characterize how “good” a state is under a given policy π by consideringAppendix C.2
Expectation the expected return v[st|π]. This is the return that would be received on average from

sequences that start from this state and is termed the state value or state-value function
(figure 19.7a):

v[st|π] = E
[
Gt|st,π

]
. (19.2)

Informally, the state value tells us the long-term reward we can expect on average if
we start in this state and follow the specified policy thereafter. It is highest for states
where it’s probable that subsequent transitions will bring large rewards soon (assuming
the discount factor γ is less than one).

Similarly, the action value or state-action value function q[st, at|π] is the expected
return from executing action at in state st (figure 19.7b):

q[st, at|π] = E
[
Gt|st, at,π

]
. (19.3)

The action value tells us the long-term reward we can expect on average if we start in this
state, take this action, and follow the specified policy thereafter. Through this quantity,
reinforcement learning algorithms connect future rewards to current actions (i.e., resolve
the temporal credit assignment problem).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

378 19 Reinforcement learning

Figure 19.7 State and action values. a) The value v[st|π] of a state st (number at
each position) is the expected return for this state for a given policy π (gray ar-
rows). It is the average sum of discounted rewards received over many trajectories
started from this state. Here, states closer to the fish are more valuable. b) The
value q[st, at,π] of an action at in state st (four numbers at each position/state
corresponding to four actions) is the expected return given that this particular
action is taken in this state. In this case, it gets larger as we get closer to the fish
and is larger for actions that head in the direction of the fish. c) If we know the
action values at a state, then the policy can be modified so that it chooses the
maximum of these values (red numbers in panel b).

π[at|st], the state transitions Pr(st+1|st, at), and the rewards issued Pr(rt+1|st, at) are
all stochastic.

We can characterize how “good” a state is under a given policy π by consideringAppendix C.2
Expectation the expected return v[st|π]. This is the return that would be received on average from

sequences that start from this state and is termed the state value or state-value function
(figure 19.7a):

v[st|π] = E
[
Gt|st,π

]
. (19.2)

Informally, the state value tells us the long-term reward we can expect on average if
we start in this state and follow the specified policy thereafter. It is highest for states
where it’s probable that subsequent transitions will bring large rewards soon (assuming
the discount factor γ is less than one).

Similarly, the action value or state-action value function q[st, at|π] is the expected
return from executing action at in state st (figure 19.7b):

q[st, at|π] = E
[
Gt|st, at,π

]
. (19.3)

The action value tells us the long-term reward we can expect on average if we start in this
state, take this action, and follow the specified policy thereafter. Through this quantity,
reinforcement learning algorithms connect future rewards to current actions (i.e., resolve
the temporal credit assignment problem).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

• We want a policy that maximizes the expected return.

• For MDPs, there a deterministic, stationary (depends only on the current
state, not the time step) policy that maximizes the value of every state.

• If we know this optimal policy, then we get the optimal state-value function:

• Similarly, the optimal state-action value function:

• Turning this around, if we knew the optimal action-values, we can derive
the optimal policy.

∃

Optimal Policy
19.2 Expected return 379

19.2.2 Optimal policy

We want a policy that maximizes the expected return. For MDPs (but not POMDPs),
there is always a deterministic, stationary policy that maximizes the value of every state.
If we know this optimal policy, then we get the optimal state-value function v∗[st]:

v∗[st] = max
π

[
E
[
Gt|st,π

]]
. (19.4)

Similarly, the optimal state-action value function is obtained under the optimal policy:

q∗[st, at] = max
π

[
E
[
Gt|st, at,π

]]
. (19.5)

Turning this on its head, if we knew the optimal action-values q∗[st, at], then we can
derive the optimal policy by choosing the action at with the highest value (figure 19.7c):1

π[at|st]← argmax
at

[
q∗[st, at]

]
. (19.6)

Indeed, some reinforcement learning algorithms are based on alternately estimating the
action values and the policy (see section 19.3).

19.2.3 Bellman equations

We may not know the state values v[st] or action values q[st, at] for any policy.2 However,
we know that they must be consistent with one another, and it’s easy to write relations
between these quantities. The state value v[st] can be found by taking a weighted sum
of the action values q[st, at], where the weights depend on the probability under the
policy π[at|st] of taking that action (figure 19.8):

v[st] =
∑

at

π[at|st]q[st, at]. (19.7)

Similarly, the value of an action is the immediate reward rt+1 = r[st, at] generated by
taking the action, plus the value v[st+1] of being in the subsequent state st+1 discounted
by γ (figure 19.9).3 Since the assignment of st+1 is not deterministic, we weight the
values v[st+1] according to the transition probabilities Pr(st+1|st, at):

q[st, at] = r[st, at] + γ ·
∑

st+1

Pr(st+1|st, at)v[st+1]. (19.8)

Substituting equation 19.8 into equation 19.7 provides a relation between the state
value at time t and t+ 1:

1The notation π[at|st]← a in equations 19.6, 19.12, and 19.13 means set π[at|s] to one for action a
and π[at|s] to zero for other actions.

2For simplicity, we will just write v[st] and q[st, at] instead of v[st|π] and q[st, at|π] from now on.
3We also assume from now on that the rewards are deterministic and can be written as r[st, at].

Draft: please send errata to udlbookmail@gmail.com.

19.2 Expected return 379

19.2.2 Optimal policy

We want a policy that maximizes the expected return. For MDPs (but not POMDPs),
there is always a deterministic, stationary policy that maximizes the value of every state.
If we know this optimal policy, then we get the optimal state-value function v∗[st]:

v∗[st] = max
π

[
E
[
Gt|st,π

]]
. (19.4)

Similarly, the optimal state-action value function is obtained under the optimal policy:

q∗[st, at] = max
π

[
E
[
Gt|st, at,π

]]
. (19.5)

Turning this on its head, if we knew the optimal action-values q∗[st, at], then we can
derive the optimal policy by choosing the action at with the highest value (figure 19.7c):1

π[at|st]← argmax
at

[
q∗[st, at]

]
. (19.6)

Indeed, some reinforcement learning algorithms are based on alternately estimating the
action values and the policy (see section 19.3).

19.2.3 Bellman equations

We may not know the state values v[st] or action values q[st, at] for any policy.2 However,
we know that they must be consistent with one another, and it’s easy to write relations
between these quantities. The state value v[st] can be found by taking a weighted sum
of the action values q[st, at], where the weights depend on the probability under the
policy π[at|st] of taking that action (figure 19.8):

v[st] =
∑

at

π[at|st]q[st, at]. (19.7)

Similarly, the value of an action is the immediate reward rt+1 = r[st, at] generated by
taking the action, plus the value v[st+1] of being in the subsequent state st+1 discounted
by γ (figure 19.9).3 Since the assignment of st+1 is not deterministic, we weight the
values v[st+1] according to the transition probabilities Pr(st+1|st, at):

q[st, at] = r[st, at] + γ ·
∑

st+1

Pr(st+1|st, at)v[st+1]. (19.8)

Substituting equation 19.8 into equation 19.7 provides a relation between the state
value at time t and t+ 1:

1The notation π[at|st]← a in equations 19.6, 19.12, and 19.13 means set π[at|s] to one for action a
and π[at|s] to zero for other actions.

2For simplicity, we will just write v[st] and q[st, at] instead of v[st|π] and q[st, at|π] from now on.
3We also assume from now on that the rewards are deterministic and can be written as r[st, at].

Draft: please send errata to udlbookmail@gmail.com.

19.2 Expected return 379

19.2.2 Optimal policy

We want a policy that maximizes the expected return. For MDPs (but not POMDPs),
there is always a deterministic, stationary policy that maximizes the value of every state.
If we know this optimal policy, then we get the optimal state-value function v∗[st]:

v∗[st] = max
π

[
E
[
Gt|st,π

]]
. (19.4)

Similarly, the optimal state-action value function is obtained under the optimal policy:

q∗[st, at] = max
π

[
E
[
Gt|st, at,π

]]
. (19.5)

Turning this on its head, if we knew the optimal action-values q∗[st, at], then we can
derive the optimal policy by choosing the action at with the highest value (figure 19.7c):1

π[at|st]← argmax
at

[
q∗[st, at]

]
. (19.6)

Indeed, some reinforcement learning algorithms are based on alternately estimating the
action values and the policy (see section 19.3).

19.2.3 Bellman equations

We may not know the state values v[st] or action values q[st, at] for any policy.2 However,
we know that they must be consistent with one another, and it’s easy to write relations
between these quantities. The state value v[st] can be found by taking a weighted sum
of the action values q[st, at], where the weights depend on the probability under the
policy π[at|st] of taking that action (figure 19.8):

v[st] =
∑

at

π[at|st]q[st, at]. (19.7)

Similarly, the value of an action is the immediate reward rt+1 = r[st, at] generated by
taking the action, plus the value v[st+1] of being in the subsequent state st+1 discounted
by γ (figure 19.9).3 Since the assignment of st+1 is not deterministic, we weight the
values v[st+1] according to the transition probabilities Pr(st+1|st, at):

q[st, at] = r[st, at] + γ ·
∑

st+1

Pr(st+1|st, at)v[st+1]. (19.8)

Substituting equation 19.8 into equation 19.7 provides a relation between the state
value at time t and t+ 1:

1The notation π[at|st]← a in equations 19.6, 19.12, and 19.13 means set π[at|s] to one for action a
and π[at|s] to zero for other actions.

2For simplicity, we will just write v[st] and q[st, at] instead of v[st|π] and q[st, at|π] from now on.
3We also assume from now on that the rewards are deterministic and can be written as r[st, at].

Draft: please send errata to udlbookmail@gmail.com.

Consistency of state and action values
• We may not know the state values v or action values q for any policy.

However, we know that they must be consistent with one another, and
it’s easy to write relations between these quantities.

• The state values are given by

• The action values are given by

• These relations lead to the “Bellman equations”, a central concept in
RL.

Reinforcement Learning

Tabular RL Methods

Tabular RL

• "Tabular RL" refers to reinforcement learning methods that use
explicit tables to store value functions (or policies). This means
that every state (or state-action pair) is explicitly represented in a
lookup table rather than being approximated by a function (e.g., a
neural network).

• This approach is feasible when the state space is small because
all possible states and actions can be stored explicitly.

• We start with this setup.

• We will later contrast tabular RL algorithms with the use of deep
learning in RL that does not require storing the large transition matrix.

• Reading for this lecture:
• This lecture was based in part on the book by Prince, linked on the website.

Many figures were taken from this book.

Course logistics

