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Abstract

We introduce a benchmark to evaluate the capability of Al to solve problems in theoretical physics,
focusing on high-energy theory and cosmology. The first iteration of our benchmark consists of 57
problems of varying difficulty, from undergraduate to research level. These problems are novel in the
sense that they do not come from public problem collections. We evaluate our data set on various
open and closed language models, including o3-mini, ol, DeepSeek-R1, GPT-40 and versions of Llama
and Qwen. While we find impressive progress in model performance with the most recent models, our
research-level difficulty problems are mostly unsolved. We address challenges of auto-verifiability and
grading, and discuss common failure modes. While currently state-of-the art models are still of limited
use for researchers, our results show that Al assisted theoretical physics research may become possible
in the near future. We discuss the main obstacles towards this goal and possible strategies to overcome
them. The public problems and solutions, results for various models, and updates to the data set and
score distribution, are available on the website of the dataset tpbench.org.

https://arxiv.org/abs/2502.15815

arXiv:2502.15815v1 [cs.LG| 19 Feb 2025



LLM progress on Math

* High-school and undergraduate math competition problems are now
basically solved.

MathArena:
Evaluating LLMs on Uncontaminated Math Competitions

Overall AIME 2025 | AIME 2025 11 HMMT February 2025
Model Acc Cost 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
03-mini (high) 93.33% $2.85
03-mini (medium) 80.00% $1.62
o1 (medium) 80.00%  $41.05
DeepSeek-R1 75.00% $4.69
DeepSeek-R1-Distill-Qwen-32B 65.00% N/A
DeepSeek-R1-Distill-Llama-70B 60.00% $1.21
gemini-2.0-flash-thinking 55.00% N/A
DeepSeek-R1-Distill-Qwen-14B 48.33% $1.26
03-mini (low) 43.33% $0.65
QwQ-32B-Preview 30.00% $0.62
gemini-2.0-pro 28.33% $1.02
gemini-2.0-flash 25.00% $0.08
DeepSeek-V3 21.67% $0.21
DeepSeek-R1-Distill-Qwen-1.5B 15.00% $0.21
gpt-4o 13.33% $0.55
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FrontierMath

First research-level math data set.

FRONTIERMATH: A BENCHMARK FOR EVALUATING ADVANCED
MATHEMATICAL REASONING IN Al
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ABSTRACT

We introduce FrontierMath, a benchmark of hundreds of original, exceptionally challenging math-
ematics problems crafted and vetted by expert mathematicians. The questions cover most major
branches of modern mathematics—from computationally intensive problems in number theory and
real analysis to abstract questions in algebraic geometry and category theory. Solving a typical
problem requires multiple hours of effort from a researcher in the relevant branch of mathematics,
and for the upper end questions, multiple days. FrontierMath uses new, unpublished problems and
automated verification to reliably evaluate models while minimizing risk of data contamination.
Current state-of-the-art Al models solve under 2% of problems, revealing a vast gap between Al capa-
bilities and the prowess of the mathematical community. As Al systems advance toward expert-level
mathematical abilities, FrontierMath offers a rigorous testbed that quantifies their progress.



FrontierMath Results

Pass@1 Pass@4 Pass@8
03-mini (high) 9.2% 16.6% 20.0%
ol-mini 5.8% 9.9% 12.8%
ol 5.5% 10% 12.8%

Research-level mathematics: OpenAl 03-mini with high reasoning performs better than its predecessor on FrontierMath. On FrontierMath, when prompted to use a Python tool,
03-mini with high reasoning effort solves over 32% of problems on the first attempt, including more than 28% of the challenging (T3) problems. These numbers are provisional, and

the chart above shows performance without tools or a calculator.

https://openai.com/index/openai-03-mini/



TPBench

* There is no comparable Benchmark for theoretical physics. Our goals
was to create one, and make it community owned (rather than industry
driven). TPBench is considerably smaller than FrontierMath, but
sufficiently large to gauge TP reasoning progress.

e \We wanted to answer:

* How good is the current state-of-the-art Al for problem-solving in TP?
Are existing models useful for research-level reasoning?

 What are the most common failure modes? For example, are models

performing correct reasoning but fail mostly at algebra (at which LLMs
are known to perform poorly)?



Differences between Math and Physics

* Mathematical reasoning tends to focus on establishing exact statements
constructed within a rigid logical framework, while TP reasoning mostly
deals with approximate statements constructed within a “softer” logical
framework in which some of the less quantitatively relevant details are left
unspecified but "most likely" can be filled in such that the statements can
be made arbitrarily precisely if desired.

* TP reasoning primarily relies on techniques of direct computations, while
mathematical reasoning tends to use more often indirect techniques such
as contradiction and induction. TP computations often utilize algorithmic
methods in calculus, linear algebra, complex analysis, differential equations,
differential geometry, and group representation theory.

* TP reasoning often focuses on derivations of formulas whose parametric
dependences as well as the overall normalization are implicitly defined in a
narrow domain of physical relevance.

* TP typically focuses on approximations whose quantitative uncertainties
are often left unspecified.



Properties of our data set

 What properties should problems in the dataset have?

* The problem is well-posed and the solution to the problem is

unambiguous. An expert in the field, after reading the solution, should
not have any objections.

* The problem is original. The solution to the problem cannot be easily
found in the existing literature.

 The answer should be auto-verifiable. This is easily achieved for
numerical answers or simple algebraic expressions, but more difficult
for tensor expressions. We discuss this property further below.

* |t should not be possible to guess the answer or remember it from
the literature, despite a wrong reasoning chain.



Auto-verification

We need to run a large number of problems many times, on many
models. Human grading is not feasible.

We did experiment with LLM grading, where the grader model gets the
answer from the solver model and the expert answer, compares them,
and assigns a grade. However, we found that this method is too noisy.

Instead, we constructed problems for which we can verify the answer
with code, ignoring the derivation.



Auto-verification

Problem Statement: A photon with the energy E scatters on an electron at rest at angle 6 in the electron’s reference

frame. Find the angular frequency w of the scattered photon.
Answer Requirements: Provide the answer in the form of a python function with the following signature:

#let ¢ be the speed of light, m_e - electron mass, h_bar - reduced Planck constant
def omega_scattered(E: float, m_e:float, theta:float, c:float, h_bar:float) -> float:
pass

Model Answer:

import math
def omega_scattered(E: float, m_e:float, theta:float, c:float, h_bar:float) -> float:

return 1/(h_bar/E + h_bar/(m_e*c**2)*(1-math.cos(theta)))

* Works well for algebraic expressions. Integral and derivative expressions
pose problems.



Results
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Results

* Progress has been very rapid with the most recent models. When we
initiated this project, GPT-40(released on May 2024) was state-of-the-art
and unable to solve almost any TP problem beyond undergraduate level.
When the o1-preview model (released on Sep 2024) appeared, it could
solve many easy graduate level problems, but rarely any harder ones.
The 03-mini series (released on Jan 2025), is able to solve about half of
our advanced graduate level problems and even a few research
problems.

* Nevertheless, research problems involving long mathematical
arguments are generally unsolved.

 Both symbolic calculation mistakes and logical reasoning mistakes are
common, but have decreased with the newest models.

 We provide a detailed error analysis in the paper.



Problem Samples

 Let’s look at some example problems, and model solutions.
https://tpbench.org/?page_id=2

2 Problem One-Pole Problem, Difficulty level: 5

Problem Text:
Consider the conformally coupled scalar field ¢

1 ny. " ; 1 ) |
L=5 [.(1' O — (mz = —,R) gbz] o
2 6

in curved spacetime
ds® = a*(n) ((17)2 - |(15;|2)

where the Ricci scalar is

"y,

_ 8 n) @)
a(n)

and a satisfies the differential equation

H

d I
—Ina=0(te —t)Hr +O(t —te) ————
q na= Ot —)Hr +6( )1+§H1(t/—t/&.)

with ¢. a finite positive number, the © function having the steplike behavior

1 t>t.

o(t-t.) z{ , (4)

0 otherwise

and ¢ being the comoving proper time related to n through
a
t=te+ f a(y)dy. (5)
Ne

The boundary condition for the differential equation (in comoving proper time) is ali=;, = a..
In the limit that k/(ae.H1) — oo, using the steepest descent approximation starting from the dominant pole 7

(with %) > 0) of the integrand factor wy.(n)/ (2wk(n)), compute the Bogoliubov coefficient magnitude |3(k)|
approximated as
Co wl‘ T —25 (M dn’wi(n'
|B(k)| ~ f dn- k() % e dn'wi () (6)
—o0 zwl\(’])
for particle production where the dispersion relationship given by
wi(n) = k> + m*a*(n) (7)

with 0 <m < Hr. Use a one pole approximation which dominates in this limit.



How can models be so strong?

 We agreed to summarize as follows: “In summary, current model
performance perhaps resembles a student with superhuman
literature knowledge but low intellectual rigor and technical
expertise.”

* However, superhuman literature knowledge is not cheating. Humans
use as much relevant literature as they can, and adapt it to their
problems. Models now are strong enough to recognize relevant
literature, and adapt it (including non-trivial modifications).

* Of course our problems are not “entirely new”. They are not from public
problem collections but they are constructed using research papers (at
high difficulty level). You can look up their origin for the public problems.

« Some problems are more independent from publications than others.
But to me it is absolutely clear that models are not just spitting out
text they remember without understanding.



Interesting followup directions

 Make larger benchmarks and larger training data.

* E.g. Problems extracted from very new arxiv papers that have not yet
been used in pre-training.

* Automatic verification for non-algebraic expressions.
* Difficult to solve in general.
* Improving reasoning methods for TP.
* Better training data for Reinforcement Learning
* Better tool usage such as Mathematica.
* Test time scaling, better inference algorithms.

e Is it possible to do truly novel research with these models?



Outlook for next lectures

* |n the next three lectures we want to understand better how reasoning
models can be built.

* We first core Reinforcement Learning in general (not specifically for
LLMs). Then we will discuss Reinforcement Learning for Reasoning
models, including the Deepseek R1 result (e.g. PPO, GRPO).

 We will also discuss other methods to improve reasoning (supervised
fine tuning, tool usage, test time scaling).

* While Reasoning is not (yet) in the mainstream of Al for physics, | think
these topics are exciting and important for the future.



Reinforcement Learning

Introduction



Introduction

Reinforcement leaning is a sequential decision making framework in which agents learned to
perform actions in an environment with the goal of maximizing rewards.

RL controls the actions of an agent in an environment to maximize the

RL applications: Go/Chess/Atari, robotics, financial trading, string theory, optimal experimental
design, robotics, reasoning, ....

RL is often used when problem involves searching a large configuration space.
References:

e Sutton and Barto: http://incompleteideas.net/book/the-book-2nd.html,

e Simon Prince, Understanding Deep Learning: https:/udibook.github.io/udibook/
(primary reference used here)

https://github.com/Farama-Foundation/Gymnasium (formerly https://github.com/openai/gym)



http://incompleteideas.net/book/the-book-2nd.html
https://udlbook.github.io/udlbook/
https://github.com/Farama-Foundation/Gymnasium
https://github.com/openai/gym

Challenges of RL

 lllustrate the challenges with chess game. A reward of +1, —1, or O is given at the end of
the game if the agent wins, loses, or draws and O at every other time step. The
challenges:

 The reward is sparse; we must play an entire game to receive feedback.

e Temporal credit assignment problem: The reward is temporally offset from the
action that caused it; a decisive advantage might be gained thirty moves before
victory. We must associate the reward with this critical action. (other examples?)

* The environment is stochastic; the opponent doesn’t always make the same move
in the same situation, so it’s hard to know if an action was truly good or just lucky.

 Exploration-exploitation trade-off: The agent must balance exploring the
environment (e.g., trying new opening moves) with exploiting what it already knows .



Reinforcement Learning

General Definitions



Markov Processes

In RL, we learn a policy that maximizes the
expected return in a Markov decision process.

The word Markov implies that the probability g 12 13 14
of being in a state depends only on the {

previous state and not on the states before. 5 |6 |1 P
The changes between states are captured by 9 |10 |11 |12
the transition probabilities Pr(s,, | s,) of |

moving to the next state s,, ; given the current A L e

state s,, where 7 indexes the time step.
T=[1,2,6,10,9,10,11, 15]

A Markov process is an evolving system that
produces a sequence sy, S,, 83, ... Of states.

T =[s1, s2, s3, . . .] is called the trajectory



Markov Reward Processes

« A Markov reward process also includes a distribution Pr(r,,|s,)over the
possible rewards r,_; received at the next step, given s..

o Introduce a discount factor y € (0,1] to compute the (cumulative) return G

o0
k
G = ZW Tt k+1-

k=0

a) Gr=047-044%-0+4°-0 b) Go=047-0442-044°-1 C) Gy=0+47-044%-1+7%-0
44t 14470498 1447 0=1.19 441 04+4% 14+4%-0=1.31 +4t 1447 0=1.47

,{_‘ 0 0 0 1 0 '(‘»O 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 /( 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0

81 12 S2 1383714 S84 T'5 S5T6 S¢ T't St T's S8 T9

r=[1,0,2,0,6,0,10,0,9,1,10,0,11, 1,15, 0]



Markov Decision Processes

o A Markov decision process (MDP) adds a set of possible action a, at
each step which changes the transition probabilities Pr(s,, | s,, a,).

« The rewards can also depend on the action: Pr(r,.|s, a,).

« MDP produces a sequence sy, dy, I, S5, 4y, '3, S3, A3, ... Of states,
actions & rewards. The entity that performs the actions is the agent.

Aig 2B F |V )1 o : K :
/ﬁ7 v 0.5 0.17 0.17 0.17
' 0 0 0 0
Actllons X X 0 0
0.17 0.17 0.17 0.5
5 6 D 7 D3 8 — 0 0 0 0
JAN 0.17 0.5 0.17 0.17
0 0 0 0
4 [Q |>J2 0 0 0 0
9 10> ]-]- ]-2 v 0.17 0.17 0.5 0.17
A — 0 0 0 0
3 0 0 0 0
0 0 0 0
13 (14 |15 |16 2 0 0 0 0
0 0 0 0
0 0 |0 0
51 T2 S2 I3 S3 T4 84 s S5 e Se r7 Pr(st+1|st:6,at:1) Pr(st+1\st:6,at:3)
72[1737072737076a2707 1072707 117170777 273] Pr(st+1|st:6,at:2) PT(St+1‘St:6,CLt:4)

Here: The penguin moves in the intended direction with 50% probability, but the ice is slippery, so it may
slide to one of the other adjacent positions with equal probability.



Policy

* The rules that determine the agent’s action are known as the policy.

* The policy can be deterministic (one action for a given state) or

stochastic (a probability distribution over each possible action):

Vg P PB_ P . p_F_ | Y P: B: Ba
/& v | D > /{<] 4| VvV | < {D P> S a_p
5v 6[> 7[> 8[> 5v 6v 74 8[> 54A[>64A A 8<],,[>

v v \V4 v

9 |10 11 |12 9 |10 11 |12 0 o |10n [11. [12a

> > A \V4 JAN > JAN > <]V[> <lvl> <v[> <]vl>

13 |14 [15 |16 13 |14 [15 |16 13. |14~ [15A |16a

> a D> D Vi ialv|b T I I R
Deterministic Stochastic




Reinforcement Learning Loop

* The environment and the agent form a loop:

Agent
Policy m[at|s¢]

Reward State State Action
Tt St St a¢

: sHl/Environ ment
: State transition
. Pr(s¢s1]|se, at)
: "t+1]  Reward function

K Pr(ryilse, ap) j

* The agent receives the state and reward from the last time step.
Based on the policy, the agent chooses the next action.

e The environment then assigns the next state according to
Pr(s,,(|s, a,) and the reward according to Pr(r,.{|s,, a,).



Expected return: state and action values

The return G, depends on the state s, and the policy z[a | s]

Characterize how “good” a state is under a given policy 7 by considering
the expected return v[s, | z]. State-value function (long-term return on
average from sequences that starts from s,):

vlse|7] :E[Gt\st,w}.

Action value or state-action value function g[s,, a, | 7] is the expected
return from executing action a, in state s:

q[st,at\w] — E[Gt‘St,CLt,TF} .

Through this quantity, RL algorithms connect future rewards to current
actions (i.e., resolve the temporal credit assignment problem).



Optimal Policy

We want a policy that maximizes the expected return.

For MDPs, there d a deterministic, stationary (depends only on the current
state, not the time step) policy that maximizes the value of every state.

If we know this optimal policy, then we get the optimal state-value function:
”U*[St] — INax [E [Gt\st, 7T:|] .
Similarly, the optimal state-action value function:

q"|St,at) = max [E [Gt\st,at,ﬂﬂ .

Turning this around, if we knew the optimal action-values, we can derive
the optimal policy.

mlat|st| < argmax {Q* St @t]} -



Consistency of state and action values

 We may not know the state values v or action values g for any policy.

However, we know that they must be consistent with one another, and
it's easy to write relations between these quantities.

* The state values are given by

vlst] = 3 _,, mlat|st] - qlst, at]
State Prob of Action
value action value

* The action values are given by

qlse, ae] = rlse, all + - 2siyy Pr(ses1lse, ar) - U[St41]

Action Reward Discount Prob of Value of
value for action  factor next state next state

* These relations lead to the “Bellman equations”, a central concept in
RL.



Reinforcement Learning

Tabular RL Methods



Tabular RL

"Tabular RL" refers to reinforcement learning methods that use
explicit tables to store value functions (or policies). This means
that every state (or state-action pair) is explicitly represented in a
lookup table rather than being approximated by a function (e.g., a
neural network).

This approach is feasible when the state space is small because
all possible states and actions can be stored explicitly.
We start with this setup.

We will later contrast tabular RL algorithms with the use of deep
learning in RL that does not require storing the large transition matrix.



Course logistics

e Reading for this lecture:

 This lecture was based in part on the book by Prince, linked on the website.
Many figures were taken from this book.



