
Moritz Münchmeyer

Physics 361 - Machine Learning in
Physics

Lecture 19 – Reinforcement Learning 2

April 1st 2025

Huge day for AI in Science ;)

Reinforcement Learning

Introduction

Introduction

• Reinforcement leaning is a sequential decision making framework in which agents learned to
perform actions in an environment with the goal of maximizing rewards.

• RL controls the actions of an agent in an environment to maximize the reward.

• RL applications: Go/Chess/Atari, robotics, financial trading, string theory, optimal experimental
design, robotics, reasoning, ….

• RL is often used when problem involves searching a large configuration space.

• References:

• Sutton and Barto: http://incompleteideas.net/book/the-book-2nd.html,

• Simon Prince, Understanding Deep Learning: https://udlbook.github.io/udlbook/
(primary reference used here)

• https://github.com/Farama-Foundation/Gymnasium (formerly https://github.com/openai/gym)

http://incompleteideas.net/book/the-book-2nd.html
https://udlbook.github.io/udlbook/
https://github.com/Farama-Foundation/Gymnasium
https://github.com/openai/gym

Challenges of RL

• Illustrate the challenges with chess game. A reward of +1, −1, or 0 is given at the end of
the game if the agent wins, loses, or draws and 0 at every other time step. The
challenges:

• The reward is sparse; we must play an entire game to receive feedback.

• Temporal credit assignment problem: The reward is temporally offset from the
action that caused it; a decisive advantage might be gained thirty moves before
victory. We must associate the reward with this critical action. (other examples?)

• The environment is stochastic; the opponent doesn’t always make the same move
in the same situation, so it’s hard to know if an action was truly good or just lucky.

• Exploration-exploitation trade-off: The agent must balance exploring the
environment (e.g., trying new opening moves) with exploiting what it already knows .

Reinforcement Learning

General Definitions

Markov Processes

• In RL, we learn a policy that maximizes the
expected return in a Markov decision process.

• The word Markov implies that the probability
of being in a state depends only on the
previous state and not on the states before.

• The changes between states are captured by
the transition probabilities of
moving to the next state given the current
state , where indexes the time step.

• A Markov process is an evolving system that
produces a sequence of states.

• τ = [s1, s2, s3, . . .] is called the trajectory

Pr(st+1 |st)
st+1

st t

s1, s2, s3, …

374 19 Reinforcement learning

Figure 19.1 Markov process. A Markov process consists of a set of states and tran-
sition probabilities Pr(st+1|st) that define the probability of moving to state st+1

given the current state is st. a) The penguin can visit 16 different positions
(states) on the ice. b) The ice is slippery, so at each time, it has an equal proba-
bility of moving to any adjacent state. For example, in position 6, it has a 25%
chance of moving to states 2, 5, 7, and 10. A trajectory τ = [s1, s2, s3, . . .] from
this process consists of a sequence of states.

19.1.1 Markov process

A Markov process assumes that the world is always in one of a set of possible states.
The word Markov implies that the probability of being in a state depends only on the
previous state and not on the states before. The changes between states are captured by
the transition probabilities Pr(st+1|st) of moving to the next state st+1 given the current
state st, where t indexes the time step. Hence, a Markov process is an evolving system
that produces a sequence s1, s2, s3 . . . of states (figure 19.1).

19.1.2 Markov reward process

A Markov reward process also includes a distribution Pr(rt+1|st) over the possible re-Problem 19.1 wards rt+1 received at the next time step, given that we are in state st. This produces
a sequence s1, r2, s2, r3, s3, r4 . . . of states and the associated rewards (figure 19.2).

The Markov reward process also includes a discount factor γ ∈ (0, 1] that is used to
compute the return Gt at time t:

Gt =
∞∑

k=0

γkrt+k+1. (19.1)

The return is the sum of the cumulative discounted future rewards; it measures the future
benefit of being on this trajectory. A discount factor of less than one makes rewards that
are closer in time more valuable than rewards that are further away.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Markov Reward Processes

• A Markov reward process also includes a distribution over the
possible rewards received at the next step, given .

• Introduce a discount factor to compute the (cumulative) return :

Pr(rt+1 |st)
rt+1 st

γ ∈ (0,1] Gt

374 19 Reinforcement learning

Figure 19.1 Markov process. A Markov process consists of a set of states and tran-
sition probabilities Pr(st+1|st) that define the probability of moving to state st+1

given the current state is st. a) The penguin can visit 16 different positions
(states) on the ice. b) The ice is slippery, so at each time, it has an equal proba-
bility of moving to any adjacent state. For example, in position 6, it has a 25%
chance of moving to states 2, 5, 7, and 10. A trajectory τ = [s1, s2, s3, . . .] from
this process consists of a sequence of states.

19.1.1 Markov process

A Markov process assumes that the world is always in one of a set of possible states.
The word Markov implies that the probability of being in a state depends only on the
previous state and not on the states before. The changes between states are captured by
the transition probabilities Pr(st+1|st) of moving to the next state st+1 given the current
state st, where t indexes the time step. Hence, a Markov process is an evolving system
that produces a sequence s1, s2, s3 . . . of states (figure 19.1).

19.1.2 Markov reward process

A Markov reward process also includes a distribution Pr(rt+1|st) over the possible re-Problem 19.1 wards rt+1 received at the next time step, given that we are in state st. This produces
a sequence s1, r2, s2, r3, s3, r4 . . . of states and the associated rewards (figure 19.2).

The Markov reward process also includes a discount factor γ ∈ (0, 1] that is used to
compute the return Gt at time t:

Gt =
∞∑

k=0

γkrt+k+1. (19.1)

The return is the sum of the cumulative discounted future rewards; it measures the future
benefit of being on this trajectory. A discount factor of less than one makes rewards that
are closer in time more valuable than rewards that are further away.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

19.1 Markov decision processes, returns, and policies 375

Figure 19.2 Markov reward process. This associates a distribution Pr(rt+1|st)
of rewards rt+1 with each state st. a) Here, the rewards are deterministic; the
penguin will receive a reward of +1 if it lands on a fish and 0 otherwise. The
trajectory τ now consists of a sequence s1, r2, s2, r3, s3, r4 . . . of alternating states
and rewards, terminating after eight steps. The return Gt of the sequence is the
sum of discounted future rewards, here with discount factor γ = 0.9. b-c) As the
penguin proceeds along the trajectory and gets closer to reaching the rewards,
the return increases.

Figure 19.3 Markov decision process. a) The agent (penguin) can perform one
of a set of actions in each state. The action influences both the probability of
moving to the successor state and the probability of receiving rewards. b) Here,
the four actions correspond to moving up, right, down, and left. c) For any state
(here, state 6), the action changes the probability of moving to the next state.
The penguin moves in the intended direction with 50% probability, but the ice is
slippery, so it may slide to one of the other adjacent positions with equal prob-
ability. Accordingly, in panel (a), the action taken (gray arrows) doesn’t always
line up with the trajectory (orange line). Here, the action does not affect the
reward, so Pr(rt+1|st, at) = Pr(rt+1|st). The trajectory τ from an MDP consists
of a sequence s1, a1, r2, s2, a2, r3, s3, a3, r4 . . . of alternating states st, actions at,
and rewards, rt+1. Note that here the penguin receives the reward when it leaves
a state with a fish (i.e., the reward is received for passing through the fish square,
regardless of whether the penguin arrived there intentionally or not).

Draft: please send errata to udlbookmail@gmail.com.

Markov Decision Processes

• A Markov decision process (MDP) adds a set of possible action at
each step which changes the transition probabilities .

• The rewards can also depend on the action: .

• MDP produces a sequence of states,
actions & rewards. The entity that performs the actions is the agent.

at
Pr(st+1 |st, at)

Pr(rt+1 |st, at)
s1, a1, r2, s2, a2, r3, s3, a3, …

19.1 Markov decision processes, returns, and policies 375

Figure 19.2 Markov reward process. This associates a distribution Pr(rt+1|st)
of rewards rt+1 with each state st. a) Here, the rewards are deterministic; the
penguin will receive a reward of +1 if it lands on a fish and 0 otherwise. The
trajectory τ now consists of a sequence s1, r2, s2, r3, s3, r4 . . . of alternating states
and rewards, terminating after eight steps. The return Gt of the sequence is the
sum of discounted future rewards, here with discount factor γ = 0.9. b-c) As the
penguin proceeds along the trajectory and gets closer to reaching the rewards,
the return increases.

Figure 19.3 Markov decision process. a) The agent (penguin) can perform one
of a set of actions in each state. The action influences both the probability of
moving to the successor state and the probability of receiving rewards. b) Here,
the four actions correspond to moving up, right, down, and left. c) For any state
(here, state 6), the action changes the probability of moving to the next state.
The penguin moves in the intended direction with 50% probability, but the ice is
slippery, so it may slide to one of the other adjacent positions with equal prob-
ability. Accordingly, in panel (a), the action taken (gray arrows) doesn’t always
line up with the trajectory (orange line). Here, the action does not affect the
reward, so Pr(rt+1|st, at) = Pr(rt+1|st). The trajectory τ from an MDP consists
of a sequence s1, a1, r2, s2, a2, r3, s3, a3, r4 . . . of alternating states st, actions at,
and rewards, rt+1. Note that here the penguin receives the reward when it leaves
a state with a fish (i.e., the reward is received for passing through the fish square,
regardless of whether the penguin arrived there intentionally or not).

Draft: please send errata to udlbookmail@gmail.com.

Here: The penguin moves in the intended direction with 50% probability, but the ice is slippery, so it may
slide to one of the other adjacent positions with equal probability.

Policy

• The rules that determine the agent’s action are known as the policy.

• The policy can be deterministic (one action for a given state) or
stochastic (a probability distribution over each possible action):

376 19 Reinforcement learning

Figure 19.4 Partially observable Markov
decision process (POMDP). In a
POMDP, the agent does not have access
to the entire state. Here, the penguin
is in state three and can only see the
region in the dashed box. This is
indistinguishable from what it would see
in state nine. In the first case, moving
right leads to the hole in the ice (with
-2 reward) and, in the latter, to the fish
(with +3 reward).

Figure 19.5 Policies. a) A deterministic policy always chooses the same action in
each state (indicated by arrow). Some policies are better than others. This policy
is not optimal but still generally steers the penguin from top-left to bottom-right
where the reward lies. b) This policy is more random. c) A stochastic policy has
a probability distribution over actions for each state (probability indicated by
size of arrows). This has the advantage that the agent explores the states more
thoroughly and can be necessary for optimal performance in partially observable
Markov decision processes.

Figure 19.6 Reinforcement learning
loop. The agent takes an action at at
time t based on the state st, according
to the policy π[at|st]. This triggers
the generation of a new state st+1 (via
the state transition function) and a
reward rt+1 (via the reward function).
Both are passed back to the agent,
which then chooses a new action.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Deterministic Stochastic

Reinforcement Learning Loop
• The environment and the agent form a loop:

• The agent receives the state and reward from the last time step.
Based on the policy, the agent chooses the next action.

• The environment then assigns the next state according to
 and the reward according to . Pr(st+1 |st, at) Pr(rt+1 |st, at)

376 19 Reinforcement learning

Figure 19.4 Partially observable Markov
decision process (POMDP). In a
POMDP, the agent does not have access
to the entire state. Here, the penguin
is in state three and can only see the
region in the dashed box. This is
indistinguishable from what it would see
in state nine. In the first case, moving
right leads to the hole in the ice (with
-2 reward) and, in the latter, to the fish
(with +3 reward).

Figure 19.5 Policies. a) A deterministic policy always chooses the same action in
each state (indicated by arrow). Some policies are better than others. This policy
is not optimal but still generally steers the penguin from top-left to bottom-right
where the reward lies. b) This policy is more random. c) A stochastic policy has
a probability distribution over actions for each state (probability indicated by
size of arrows). This has the advantage that the agent explores the states more
thoroughly and can be necessary for optimal performance in partially observable
Markov decision processes.

Figure 19.6 Reinforcement learning
loop. The agent takes an action at at
time t based on the state st, according
to the policy π[at|st]. This triggers
the generation of a new state st+1 (via
the state transition function) and a
reward rt+1 (via the reward function).
Both are passed back to the agent,
which then chooses a new action.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Expected return: state and action values

• The return depends on the state and the policy

• Characterize how “good” a state is under a given policy by considering
the expected return . State-value function (long-term return on
average from sequences that starts from):

• Action value or state-action value function is the expected
return from executing action in state :

• Through this quantity, RL algorithms connect future rewards to current
actions (i.e., resolve the temporal credit assignment problem).

Gt st π[a |s]
π

v[st |π]
st

q[st, at |π]
at st

378 19 Reinforcement learning

Figure 19.7 State and action values. a) The value v[st|π] of a state st (number at
each position) is the expected return for this state for a given policy π (gray ar-
rows). It is the average sum of discounted rewards received over many trajectories
started from this state. Here, states closer to the fish are more valuable. b) The
value q[st, at,π] of an action at in state st (four numbers at each position/state
corresponding to four actions) is the expected return given that this particular
action is taken in this state. In this case, it gets larger as we get closer to the fish
and is larger for actions that head in the direction of the fish. c) If we know the
action values at a state, then the policy can be modified so that it chooses the
maximum of these values (red numbers in panel b).

π[at|st], the state transitions Pr(st+1|st, at), and the rewards issued Pr(rt+1|st, at) are
all stochastic.

We can characterize how “good” a state is under a given policy π by consideringAppendix C.2
Expectation the expected return v[st|π]. This is the return that would be received on average from

sequences that start from this state and is termed the state value or state-value function
(figure 19.7a):

v[st|π] = E
[
Gt|st,π

]
. (19.2)

Informally, the state value tells us the long-term reward we can expect on average if
we start in this state and follow the specified policy thereafter. It is highest for states
where it’s probable that subsequent transitions will bring large rewards soon (assuming
the discount factor γ is less than one).

Similarly, the action value or state-action value function q[st, at|π] is the expected
return from executing action at in state st (figure 19.7b):

q[st, at|π] = E
[
Gt|st, at,π

]
. (19.3)

The action value tells us the long-term reward we can expect on average if we start in this
state, take this action, and follow the specified policy thereafter. Through this quantity,
reinforcement learning algorithms connect future rewards to current actions (i.e., resolve
the temporal credit assignment problem).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

378 19 Reinforcement learning

Figure 19.7 State and action values. a) The value v[st|π] of a state st (number at
each position) is the expected return for this state for a given policy π (gray ar-
rows). It is the average sum of discounted rewards received over many trajectories
started from this state. Here, states closer to the fish are more valuable. b) The
value q[st, at,π] of an action at in state st (four numbers at each position/state
corresponding to four actions) is the expected return given that this particular
action is taken in this state. In this case, it gets larger as we get closer to the fish
and is larger for actions that head in the direction of the fish. c) If we know the
action values at a state, then the policy can be modified so that it chooses the
maximum of these values (red numbers in panel b).

π[at|st], the state transitions Pr(st+1|st, at), and the rewards issued Pr(rt+1|st, at) are
all stochastic.

We can characterize how “good” a state is under a given policy π by consideringAppendix C.2
Expectation the expected return v[st|π]. This is the return that would be received on average from

sequences that start from this state and is termed the state value or state-value function
(figure 19.7a):

v[st|π] = E
[
Gt|st,π

]
. (19.2)

Informally, the state value tells us the long-term reward we can expect on average if
we start in this state and follow the specified policy thereafter. It is highest for states
where it’s probable that subsequent transitions will bring large rewards soon (assuming
the discount factor γ is less than one).

Similarly, the action value or state-action value function q[st, at|π] is the expected
return from executing action at in state st (figure 19.7b):

q[st, at|π] = E
[
Gt|st, at,π

]
. (19.3)

The action value tells us the long-term reward we can expect on average if we start in this
state, take this action, and follow the specified policy thereafter. Through this quantity,
reinforcement learning algorithms connect future rewards to current actions (i.e., resolve
the temporal credit assignment problem).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

• We want a policy that maximizes the expected return.

• For MDPs, there a deterministic, stationary (depends only on the current
state, not the time step) policy that maximizes the value of every state.

• If we know this optimal policy, then we get the optimal state-value function:

• Similarly, the optimal state-action value function:

• Turning this around, if we knew the optimal action-values, we can derive
the optimal policy.

∃

Optimal Policy
19.2 Expected return 379

19.2.2 Optimal policy

We want a policy that maximizes the expected return. For MDPs (but not POMDPs),
there is always a deterministic, stationary policy that maximizes the value of every state.
If we know this optimal policy, then we get the optimal state-value function v∗[st]:

v∗[st] = max
π

[
E
[
Gt|st,π

]]
. (19.4)

Similarly, the optimal state-action value function is obtained under the optimal policy:

q∗[st, at] = max
π

[
E
[
Gt|st, at,π

]]
. (19.5)

Turning this on its head, if we knew the optimal action-values q∗[st, at], then we can
derive the optimal policy by choosing the action at with the highest value (figure 19.7c):1

π[at|st]← argmax
at

[
q∗[st, at]

]
. (19.6)

Indeed, some reinforcement learning algorithms are based on alternately estimating the
action values and the policy (see section 19.3).

19.2.3 Bellman equations

We may not know the state values v[st] or action values q[st, at] for any policy.2 However,
we know that they must be consistent with one another, and it’s easy to write relations
between these quantities. The state value v[st] can be found by taking a weighted sum
of the action values q[st, at], where the weights depend on the probability under the
policy π[at|st] of taking that action (figure 19.8):

v[st] =
∑

at

π[at|st]q[st, at]. (19.7)

Similarly, the value of an action is the immediate reward rt+1 = r[st, at] generated by
taking the action, plus the value v[st+1] of being in the subsequent state st+1 discounted
by γ (figure 19.9).3 Since the assignment of st+1 is not deterministic, we weight the
values v[st+1] according to the transition probabilities Pr(st+1|st, at):

q[st, at] = r[st, at] + γ ·
∑

st+1

Pr(st+1|st, at)v[st+1]. (19.8)

Substituting equation 19.8 into equation 19.7 provides a relation between the state
value at time t and t+ 1:

1The notation π[at|st]← a in equations 19.6, 19.12, and 19.13 means set π[at|s] to one for action a
and π[at|s] to zero for other actions.

2For simplicity, we will just write v[st] and q[st, at] instead of v[st|π] and q[st, at|π] from now on.
3We also assume from now on that the rewards are deterministic and can be written as r[st, at].

Draft: please send errata to udlbookmail@gmail.com.

19.2 Expected return 379

19.2.2 Optimal policy

We want a policy that maximizes the expected return. For MDPs (but not POMDPs),
there is always a deterministic, stationary policy that maximizes the value of every state.
If we know this optimal policy, then we get the optimal state-value function v∗[st]:

v∗[st] = max
π

[
E
[
Gt|st,π

]]
. (19.4)

Similarly, the optimal state-action value function is obtained under the optimal policy:

q∗[st, at] = max
π

[
E
[
Gt|st, at,π

]]
. (19.5)

Turning this on its head, if we knew the optimal action-values q∗[st, at], then we can
derive the optimal policy by choosing the action at with the highest value (figure 19.7c):1

π[at|st]← argmax
at

[
q∗[st, at]

]
. (19.6)

Indeed, some reinforcement learning algorithms are based on alternately estimating the
action values and the policy (see section 19.3).

19.2.3 Bellman equations

We may not know the state values v[st] or action values q[st, at] for any policy.2 However,
we know that they must be consistent with one another, and it’s easy to write relations
between these quantities. The state value v[st] can be found by taking a weighted sum
of the action values q[st, at], where the weights depend on the probability under the
policy π[at|st] of taking that action (figure 19.8):

v[st] =
∑

at

π[at|st]q[st, at]. (19.7)

Similarly, the value of an action is the immediate reward rt+1 = r[st, at] generated by
taking the action, plus the value v[st+1] of being in the subsequent state st+1 discounted
by γ (figure 19.9).3 Since the assignment of st+1 is not deterministic, we weight the
values v[st+1] according to the transition probabilities Pr(st+1|st, at):

q[st, at] = r[st, at] + γ ·
∑

st+1

Pr(st+1|st, at)v[st+1]. (19.8)

Substituting equation 19.8 into equation 19.7 provides a relation between the state
value at time t and t+ 1:

1The notation π[at|st]← a in equations 19.6, 19.12, and 19.13 means set π[at|s] to one for action a
and π[at|s] to zero for other actions.

2For simplicity, we will just write v[st] and q[st, at] instead of v[st|π] and q[st, at|π] from now on.
3We also assume from now on that the rewards are deterministic and can be written as r[st, at].

Draft: please send errata to udlbookmail@gmail.com.

19.2 Expected return 379

19.2.2 Optimal policy

We want a policy that maximizes the expected return. For MDPs (but not POMDPs),
there is always a deterministic, stationary policy that maximizes the value of every state.
If we know this optimal policy, then we get the optimal state-value function v∗[st]:

v∗[st] = max
π

[
E
[
Gt|st,π

]]
. (19.4)

Similarly, the optimal state-action value function is obtained under the optimal policy:

q∗[st, at] = max
π

[
E
[
Gt|st, at,π

]]
. (19.5)

Turning this on its head, if we knew the optimal action-values q∗[st, at], then we can
derive the optimal policy by choosing the action at with the highest value (figure 19.7c):1

π[at|st]← argmax
at

[
q∗[st, at]

]
. (19.6)

Indeed, some reinforcement learning algorithms are based on alternately estimating the
action values and the policy (see section 19.3).

19.2.3 Bellman equations

We may not know the state values v[st] or action values q[st, at] for any policy.2 However,
we know that they must be consistent with one another, and it’s easy to write relations
between these quantities. The state value v[st] can be found by taking a weighted sum
of the action values q[st, at], where the weights depend on the probability under the
policy π[at|st] of taking that action (figure 19.8):

v[st] =
∑

at

π[at|st]q[st, at]. (19.7)

Similarly, the value of an action is the immediate reward rt+1 = r[st, at] generated by
taking the action, plus the value v[st+1] of being in the subsequent state st+1 discounted
by γ (figure 19.9).3 Since the assignment of st+1 is not deterministic, we weight the
values v[st+1] according to the transition probabilities Pr(st+1|st, at):

q[st, at] = r[st, at] + γ ·
∑

st+1

Pr(st+1|st, at)v[st+1]. (19.8)

Substituting equation 19.8 into equation 19.7 provides a relation between the state
value at time t and t+ 1:

1The notation π[at|st]← a in equations 19.6, 19.12, and 19.13 means set π[at|s] to one for action a
and π[at|s] to zero for other actions.

2For simplicity, we will just write v[st] and q[st, at] instead of v[st|π] and q[st, at|π] from now on.
3We also assume from now on that the rewards are deterministic and can be written as r[st, at].

Draft: please send errata to udlbookmail@gmail.com.

Consistency of state and action values
• We may not know the state values v or action values q for any policy.

However, we know that they must be consistent with one another, and
it’s easy to write relations between these quantities.

• The state values are given by

• The action values are given by

• These relations lead to the “Bellman equations”, a central concept in
RL.

Reinforcement Learning

Tabular RL Methods

Tabular RL

• "Tabular RL" refers to reinforcement learning methods that use
explicit tables to store value functions (or policies). This means
that every state (or state-action pair) is explicitly represented in a
lookup table rather than being approximated by a function (e.g., a
neural network).

• This approach is feasible when the state space is small because
all possible states and actions can be stored explicitly.

• We start with this setup.

• We will later contrast tabular RL algorithms with the use of deep
learning in RL that does not require storing the large lookup table.

Model Based vs Model-Free Methods

• Model-based methods use the MDP structure explicitly and find the
best policy from the transition matrix and rewards

.

• If the transition matrix & reward are known, this optimization
problem can be solved with dynamic programming, which is an
algorithm that iteratively evaluates and improves the policy
(see Prince book for details).

Pr(st+1 |st, at)
r[s, a]

Model Based vs Model-Free Methods
• Model-free methods do not use transition probabilities and reward

structure explicitly. Instead, they learn from interactions with the
environment. They fall into two classes:

• Value estimation - estimate the optimal state-action value q and then
assign the policy according to the action with the greatest value.

• Policy estimation - estimate the optimal policy using gradient descent
w/o the intermediate steps of estimating the model or values.

• Example of Model-free method applications:

• Playing computer games: The agent interacts with the environment
and learns what actions lead to higher scores, without knowing the
game's internal rules.

Monte Carlo vs Temporal Difference

• Monte Carlo methods simulate many trajectories through the MDP for
a given policy to gather information to improve this policy.

• Temporal difference methods update the value estimates and policy
while the agent traverses the MDP, one step at a time.

• More details for both methods will be in the following slides.

Monte Carlo Value Estimation Methods

• Alternate between computing the action values (based on
repeatedly sampling trajectories) & updating the policy (based on
action values).

• To estimate the action values q[s, a], a series of episodes are run.
Each starts with a given state and action and thereafter follows the
current policy, producing a series of actions, states, and rewards. The
action value for a given state-action pair under the current policy is
estimated as the average of the empirical returns that follow it.

• The policy is updated by choosing the action with the maximum value
at each state:

19.3 Tabular reinforcement learning 383

Figure 19.11 Monte Carlo methods. a) The policy (arrows) is initialized ran-
domly. The MDP is repeatedly simulated, and the trajectories of these episodes
are stored (orange and brown paths represent two trajectories). b) The action
values are empirically estimated based on the observed returns averaged over
these trajectories. In this case, the action values were all initially zero and have
been updated where an action was observed. c) The policy can then be updated
according to the action which received the best (or least bad) reward.

These two steps are iterated until the policy converges (figure 19.10). Problems 19.2–19.3
There are many variations of this approach. In policy iteration, the policy evaluation

step is iterated until convergence before policy improvement. The values can be updated
either in place or synchronously in each sweep. In value iteration, the policy evaluation Notebook 19.2

Dynamic
programming

procedure sweeps through the values just once before policy improvement. Asynchronous
dynamic programming algorithms don’t have to systematically sweep through all the
values at each step but can update a subset of the states in place in an arbitrary order.

19.3.2 Monte Carlo methods

Unlike dynamic programming algorithms, Monte Carlo methods don’t assume knowledge
of the MDP’s transition probabilities and reward structure. Instead, they gain experience
by repeatedly sampling trajectories from the MDP and observing the rewards. They
alternate between computing the action values (based on this experience) and updating
the policy (based on the action values).

To estimate the action values q[s, a], a series of episodes are run. Each starts with
a given state and action and thereafter follows the current policy, producing a series of
actions, states, and returns (figure 19.11a). The action value for a given state-action
pair under the current policy is estimated as the average of the empirical returns that
follow after each time this pair is observed (figure 19.11b). Then the policy is updated
by choosing the action with the maximum value at every state (figure 19.11c):

π[a|s]← argmax
a

[
q[s, a]

]
. (19.13)

Draft: please send errata to udlbookmail@gmail.com.

On-policy vs off-policy methods
• In an On-policy method the current best policy is used to guide the agent

through the environment.

• It is not possible to estimate the value of actions that have not been used,
& there is nothing to encourage the algorithm to explore them.

• -greedy policy: random action is taken with probability and optimal
action with probability (exploitation/exploration trade-off).

• Off-policy method: the optimal policy (the target policy) is learned based
on episodes generated by a different behavior policy . Typically, the
target policy is deterministic, and the behavior policy is stochastic.

• We want to explore the environment (stochastic) and the learned policy
 to be efficient.

• The on/off policy distinction applies both to Monte Carlo and Temporal
Difference methods.

ϵ ϵ
1 − ϵ

π
π′￼

π′￼

π

Temporal difference (TD) methods
• Update the values/policy while the agent traverses the states of MDP.

• SARSA (State-Action-Reward-State-Action) is an on-policy value
estimation algorithm with update:

where is the learning rate. The bracketed term is TD error.

• Q-learning is an off-policy value estimation algorithm with update:

It estimates the value of the next state assuming an optimal followup
action.

α ∈ ℝ+

384 19 Reinforcement learning

This is an on-policy method; the current best policy is used to guide the agent
through the environment. This policy is based on the observed action values in every
state, but of course, it’s not possible to estimate the value of actions that haven’t been
used, and there is nothing to encourage the algorithm to explore these. One solution is
to use exploring starts. Here, episodes with all possible state-action pairs are initiated, so
every combination is observed at least once. However, this is impractical if the number
of states is large or the starting point cannot be controlled. A different approach isProblem 19.4 to use an epsilon greedy policy, in which a random action is taken with probability ϵ,
and the optimal action is allotted the remaining probability. The choice of ϵ trades off
exploitation and exploration. Here, an on-policy method will seek the best policy from
this epsilon-greedy family, which will not generally be the best overall policy.

Conversely, in off-policy methods, the optimal policy π (the target policy) is learned
based on episodes generated by a different behavior policy π′. Typically, the target
policy is deterministic, and the behavior policy is stochastic (e.g., an epsilon-greedy
policy). Hence, the behavior policy can explore the environment, but the learned targetNotebook 19.3

Monte Carlo
methods

policy remains efficient. Some off-policy methods explicitly use importance sampling
(section 17.8.1) to estimate the action value under policy π using samples from π′.
Others, such as Q-learning (described in the next section), estimate the values based
on the greedy action, even though this is not necessarily what was chosen.

19.3.3 Temporal difference methods

Dynamic programming methods use a bootstrapping process to update the values to
make them self-consistent under the current policy. Monte Carlo methods sampled the
MDP to acquire information. Temporal difference (TD) methods combine both boot-
strapping and sampling. However, unlike Monte Carlo methods, they update the values
and policy while the agent traverses the states of the MDP instead of afterward.

SARSA (State-Action-Reward-State-Action) is an on-policy algorithm with update:

q[st, at]← q[st, at] + α
(
r[st, at] + γ · q[st+1, at+1]− q[st, at]

)
, (19.14)

where α ∈ R+ is the learning rate. The bracketed term is called the TD error and
measures the consistency between the estimated action value q[st, at] and the esti-
mate r[st, at]+γ · q[st+1, at+1] after taking a single step.

By contrast, Q-Learning is an off-policy algorithm with update (figure 19.12):

q[st, at]← q[st, at] + α
(
r[st, at] + γ ·max

a

[
q[st+1, a]

]
− q[st, at]

)
, (19.15)

where now the choice of action at each step is derived from a different behavior policy π′.Notebook 19.4
Temporal difference

methods In both cases, the policy is updated by taking the maximum of the action values
at each state (equation 19.13). It can be shown that these updates are contraction

Problem 19.5 mappings (see equation 16.20); the action values will eventually converge, assuming that
every state-action pair is visited an infinite number of times.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

384 19 Reinforcement learning

This is an on-policy method; the current best policy is used to guide the agent
through the environment. This policy is based on the observed action values in every
state, but of course, it’s not possible to estimate the value of actions that haven’t been
used, and there is nothing to encourage the algorithm to explore these. One solution is
to use exploring starts. Here, episodes with all possible state-action pairs are initiated, so
every combination is observed at least once. However, this is impractical if the number
of states is large or the starting point cannot be controlled. A different approach isProblem 19.4 to use an epsilon greedy policy, in which a random action is taken with probability ϵ,
and the optimal action is allotted the remaining probability. The choice of ϵ trades off
exploitation and exploration. Here, an on-policy method will seek the best policy from
this epsilon-greedy family, which will not generally be the best overall policy.

Conversely, in off-policy methods, the optimal policy π (the target policy) is learned
based on episodes generated by a different behavior policy π′. Typically, the target
policy is deterministic, and the behavior policy is stochastic (e.g., an epsilon-greedy
policy). Hence, the behavior policy can explore the environment, but the learned targetNotebook 19.3

Monte Carlo
methods

policy remains efficient. Some off-policy methods explicitly use importance sampling
(section 17.8.1) to estimate the action value under policy π using samples from π′.
Others, such as Q-learning (described in the next section), estimate the values based
on the greedy action, even though this is not necessarily what was chosen.

19.3.3 Temporal difference methods

Dynamic programming methods use a bootstrapping process to update the values to
make them self-consistent under the current policy. Monte Carlo methods sampled the
MDP to acquire information. Temporal difference (TD) methods combine both boot-
strapping and sampling. However, unlike Monte Carlo methods, they update the values
and policy while the agent traverses the states of the MDP instead of afterward.

SARSA (State-Action-Reward-State-Action) is an on-policy algorithm with update:

q[st, at]← q[st, at] + α
(
r[st, at] + γ · q[st+1, at+1]− q[st, at]

)
, (19.14)

where α ∈ R+ is the learning rate. The bracketed term is called the TD error and
measures the consistency between the estimated action value q[st, at] and the esti-
mate r[st, at]+γ · q[st+1, at+1] after taking a single step.

By contrast, Q-Learning is an off-policy algorithm with update (figure 19.12):

q[st, at]← q[st, at] + α
(
r[st, at] + γ ·max

a

[
q[st+1, a]

]
− q[st, at]

)
, (19.15)

where now the choice of action at each step is derived from a different behavior policy π′.Notebook 19.4
Temporal difference

methods In both cases, the policy is updated by taking the maximum of the action values
at each state (equation 19.13). It can be shown that these updates are contraction

Problem 19.5 mappings (see equation 16.20); the action values will eventually converge, assuming that
every state-action pair is visited an infinite number of times.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

SARSA update rule details
Agent choses an action from the policy (which includes exploration). Then we update the q function:

SARSA is an on policy method:

Q-learning update rule details

Reinforcement Learning

Value-based RL with Neural
Networks

From tabular RL to Machine Learning based RL

• The tabular Monte Carlo and TD algorithms described above repeatedly
traverse the entire MDP and update the action values. However, this is
only practical if the state action space is small. Unfortunately, this is
rarely the case; even for the constrained environment of a chessboard,
there are more than 1040 possible legal states.

• Instead of discrete state indices st, we now use a state vector st, and we
replace discrete value function and policies with machine learning
models that take in the state vector.

• There are two main approaches to RL for this situation:

• Value-based methods (e.g., Deep Q-Networks): These estimate a

value function q(s,a) that represents the expected reward for taking
action a in state s.

• Policy-based methods (e.g., REINFORCE, Trust Region Policy
Optimization TRPO, PPO): These directly optimize the policy . π

• Replace the action values by a ML model .

• Loss function which measures consistency of adjacent action
values:

• This is the same method as we did for Q-learning. Instead of
updating a table of Q values, we minimize a loss that pushes the
networks output towards the target.

q[st, at] q[st, at, ϕ]

Fitted Q-learning

19.4 Fitted Q-learning 385

Figure 19.12 Q-learning. a) The agent starts in state st and takes action at = 2
according to the policy. It does not slip on the ice and moves downward, receiving
reward r[st, at] = 0 for leaving the original state. b) The maximum action value
at the new state is found (here 0.43). c) The action value for action 2 in the
original state is updated to 1.12 based on the current estimate of the maximum
action value at the subsequent state, the reward, discount factor γ = 0.9, and
learning rate α = 0.1. This changes the highest action value at the original state,
so the policy changes.

19.4 Fitted Q-learning

The tabular Monte Carlo and TD algorithms described above repeatedly traverse the
entire MDP and update the action values. However, this is only practical if the state-
action space is small. Unfortunately, this is rarely the case; even for the constrained
environment of a chessboard, there are more than 1040 possible legal states.

In fitted Q-learning, the discrete representation q[st, at] of the action values is replaced
by a machine learning model q[st, at,φ], where now the state is represented by a vector
st rather than just an index. We then define a least squares loss based on the consistency
of adjacent action values (similarly to in Q-learning, see equation 19.15):

L[φ] =

(
r[st, at] + γ ·max

a

[
q[st+1, a,φ]

]
− q[st, at,φ]

)2

, (19.16)

which in turn leads to the update:

φ← φ+ α

(
r[st, at] + γ ·max

a

[
q[st+1, a,φ]

]
− q[st, at,φ]

)
∂q[st, at,φ]

∂φ
. (19.17)

Fitted Q-learning differs from Q-Learning in that convergence is no longer guar-
anteed. A change to the parameters potentially modifies both the target r[st, at] + γ ·
maxat+1 [q[st+1, at+1,φ]] (the maximum value may change) and the prediction q[st, at,φ].
This can be shown both theoretically and empirically to damage convergence.

Draft: please send errata to udlbookmail@gmail.com.

Fitted Q-learning loss function details

Deep Q-networks

• Use deep NN for fitted Q-learning. Q stands for action-value .

• Deep Q-network was a RL architecture that exploited deep NN to
learn to play ATARI 2600 games.

q[st, at, ϕ]

386 19 Reinforcement learning

Figure 19.13 Atari Benchmark. The Atari benchmark consists of 49 Atari 2600
games, including Breakout (pictured), Pong, and various shoot-em-up, platform,
and other types of games. a-d) Even for games with a single screen, the state
is not fully observable from a single frame because the velocity of the objects is
unknown. Consequently, it is usual to use several adjacent frames (here, four)
to represent the state. e) The action simulates the user input via a joystick. f)
There are eighteen actions corresponding to eight directions of movement or no
movement, and for each of these nine cases, the button being pressed or not.

19.4.1 Deep Q-networks for playing ATARI games

Deep networks are ideally suited to making predictions from a high-dimensional state
space, so they are a natural choice for the model in fitted Q-learning. In principle, they
could take both state and action as input and predict the values, but in practice, the
network takes only the state and simultaneously predicts the values for each action.

The Deep Q-Network was a breakthrough reinforcement learning architecture that
exploited deep networks to learn to play ATARI 2600 games. The observed data com-
prises 220×160 images with 128 possible colors at each pixel (figure 19.13). This was
reshaped to size 84×84, and only the brightness value was retained. Unfortunately, the
full state is not observable from a single frame. For example, the velocity of game ob-
jects is unknown. To help resolve this problem, the network ingests the last four frames
at each time step to form st. It maps these frames through three convolutional layers
followed by a fully connected layer to predict the value of every action (figure 19.14).

Several modifications were made to the standard training procedure. First, the re-
wards (which were driven by the score in the game) were clipped to −1 for a negative
change and +1 for a positive change. This compensates for the wide variation in scores
between different games and allows the same learning rate to be used. Second, the
system exploited experience replay. Rather than update the network based on the tu-
ple <st, at, rt+1, st+1> at the current step or with a batch of the last I tuples, all recent

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Single frame does not specify
velocity 4 adjacent frames

to represent a state
⇒

18 possible actions
(9 directions, on/off)

Deep Q-networks
• The data comprises 220 x 160 images with 128 possible colors at each

pixel. Reshaped to 84 x 84 and only brightness value was kept.19.4 Fitted Q-learning 387

Figure 19.14 Deep Q-network architec-
ture. The input st consists of four adja-
cent frames of the ATARI game. Each
is resized to 84×84 and converted to
grayscale. These frames are represented
as four channels and processed by an 8×8
convolution with stride four, followed by
a 4×4 convolution with stride 2, followed
by two fully connected layers. The final
output predicts the action value q[st, at]
for each of the 18 actions in this state.

tuples were stored in a buffer. This buffer was sampled randomly to generate a batch
at each step. This approach reuses data samples many times and reduces correlations
between the samples in the batch that arise due to the similarity of adjacent frames.

Finally, the issue of convergence in fitted Q-Networks was tackled by fixing the target
parameters to values φ− and only updating them periodically. This gives the update:

φ← φ+ α

(
r[st, at] + γ ·max

a

[
q[st+1, a,φ

−]
]
− q[st, at,φ]

)
∂q[st, at,φ]

∂φ
. (19.18)

Now the network no longer chases a moving target and is less prone to oscillation.
Using these and other heuristics and with an ϵ-greedy policy, Deep Q-Networks per-

formed at a level comparable to a professional game tester across a set of 49 games using
the same network (trained separately for each game). It should be noted that the train-
ing process was data-intensive. It took around 38 full days of experience to learn each
game. In some games, the algorithm exceeded human performance. On other games
like “Montezuma’s Revenge,” it barely made any progress. This game features sparse
rewards and multiple screens with quite different appearances.

19.4.2 Double Q-learning and double deep Q-networks

One potential flaw of Q-Learning is that the maximization over the actions in the update:

q[st, at]← q[st, at] + α
(
r[st, at] + γ ·max

a

[
q[st+1, a]

]
− q[st, at]

)
(19.19)

leads to a systematic bias in the estimated state values q[st, at]. Consider two actions
that provide the same average reward, but one is stochastic and the other deterministic.
The stochastic reward will exceed the average roughly half of the time and be chosen
by the maximum operation, causing the corresponding action value q[st, at] to be over-
estimated. A similar argument can be made about random inaccuracies in the output of
the network q[st, at,φ] or random initializations of the q-function.

Draft: please send errata to udlbookmail@gmail.com.

Experience replay: store recent states,
action, and rewards in a buffer, reuses
data samples many times. Helps with
training stability.

Rewards instead of raw scores
of different games, can keep the
same learning rate.

±1

Reinforcement Learning

Policy-based RL with Neural
Networks

This section is mostly based on https://rlhfbook.com/

• Recall the notions of value estimation vs policy estimation. Q-learning
is an example of value estimation: estimate and update .

• Policy-based methods directly learn a stochastic policy .

• For MDP, there is always an optimal deterministic policy in principle.

• However there are three reasons to use a stochastic policy:

• Exploration of the action-state space: not obliged to take the
best action at each step.

• Loss function changes smoothly: can use gradient descent.

• Knowledge of the state is often incomplete: two locations may
look locally the same but nearby reward structure is different.
Stochastic policy: taking different actions until ambiguity resolved.

q[st, at, ϕ] π
π[at |st, θ]

Policy Gradient Methods

Value based vs policy based methods

Source of this table: GPT-4o (apologies)

“Vanilla” Policy Gradient
• We want to find the optimal policy by maximizing the expected future reward:

• We are summing over all steps t in the trajectory/episode of length T.

∇θJ(πθ) = 𝔼τ [
T

∑
t=0

∇θlog πθ(at |st)Gt]

“Vanilla” Policy Gradient
• We want to find the optimal policy by maximizing the expected future reward:

Here the expectation value is over trajectories drawn according to the policy.

• How to estimate the expectation value? Use Monte Carlo over N trajectories. This
algorithm is called REINFORCE.

∇θJ(πθ) = 𝔼τ [
T

∑
t=0

∇θlog πθ(at |st)Gt]

Subtracting a baseline
• A common problem with vanilla policy gradient algorithms is the high

variance in gradient updates, which can be mitigated in multiple ways. In
order to alleviate this, various techniques are used to normalize the value
estimation, called baselines.

• We then have:

• A simple baseline is the average return per trajectory, across a batch of
sampled episodes:

Value network
• A better baseline is to subtract an estimate of the value function. We now

need an additional neural network, the value network, which estimates it.
This is an example of Actor-Critic RL, where the critic is the value network.
The value network also gets trained, with a different loss function.

• The policy gradient is then:

• The quantity is called the advantage.

• We now have two neural networks:

PPO
• PPO improves over standard REINFORCE with a value network

baseline by using a more stable, constrained update rule with
mini-batch training, reducing variance while maintaining sample
efficiency.

• For practical tasks, PPO is usually preferred over REINFORCE
due to its stability and efficiency.

• Discussing this in detail goes too far. For completeness, the
training objective is:

RLHF of LLMs often uses PPO
• To fine-tune LLMs with RLHF (Reinforcement Learning with Human

Feedback), people often use PPO. The actions are now the prompt
completions (i.e. the answers the model writes to the queries).

• But what is the reward? The common approach is to train a “reward model”
where humans compare different answers and compare them (“preference
learning”). The reward model then learns to “rate like a human”, and can then
be used for training the LLM.

Source: rlhfbook.com

http://rlhfbook.com

GRPO
• A new policy RL algorithm called Group Relative Policy Optimization

(GRPO) is getting very popular, due to its success in training the
Deepseek Reasoning model.

• It works similar to the PPO, but it does NOT not require a value
network. This makes the approach simpler.

• The advantage A in this algorithm is calculated by comparing multiple
answers to a single question (“group relative”).

• For completeness, the training objective is

• The advantage is estimated from the responses r as

Direct Preference Optimization (DPO)
• There is one more algorithm that you should have heard about when it comes to LLM fine-

tuning with reinforcement learning.

• Direct Alignment Algorithms (DAAs) allow one to update models to solve the same

RLHF objective without ever training an intermediate reward model or using reinforcement
learning optimizers.

• The most prominent DAA and one that catalyzed an entire academic movement of
aligning language models is Direct Preference Optimization (DPO). Paper: https://
arxiv.org/abs/2305.18290

• It allows to solve the standard RLHF problem with only a simple classification loss.

https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290

https://anukriti-ranjan.medium.com/preference-tuning-llms-ppo-dpo-grpo-a-simple-guide-135765c87090

Reinforcement Learning

Combining RL and Search

Combining RL and Search
• If you can simulate the environment and rewards are sparse, a powerful

technique is to combine RL techniques with search methods.

• In particular, AlphaZero and MuZero, both developed by DeepMind,

are powerful examples of reinforcement learning (RL) combined with
search, specifically Monte Carlo Tree Search (MCTS).

• Alpha Zero
• It trains a neural network using self-play; the network learns a policy

(what move to make) and a value function (how good the position
is).

• It uses Search (MCTS) during both training and evaluation to plan
moves.

• Think of it as an RL+search loop: the neural net helps the search,
and the search helps improve the neural net.

• In MuZero, in addition the environment is also learned by a neural
network. E.g. it learns to play chess without having the rules for chess
coded in.

• Monte Carlo Tree Search is a decision-making algorithm used for
planning, especially in games like Go, chess, or general AI problems.

• It's great when:

• The search space is huge.

• You don’t have a perfect evaluation function (e.g. chess space is too
large to be able to perfectly evaluate every position).

• You can simulate how things might play out (even randomly).

• MCTS builds a search tree incrementally and uses random
simulations (Monte Carlo rollouts) to guide which parts of the tree to
explore.

Monte Carlo Tree Search (MCTS)

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

Monte Carlo Tree Search

• We build a tree of actions iteratively. Each iteration of MCTS has four phases:

• Selection: Navigate from the root to a leaf using a tree policy.

• Expansion: If the leaf node is not terminal, expand one or more children.

• Simulation: Simulate a random playout from the new node.

• Backpropagation: Propagate the result back up to update the stats of all

nodes in the path.

Q refers to the reward (or estimated value) obtained from a simulation that
starts from a new node and proceeds until the end of the episode (or a depth
cutoff).

Alpha Zero, Mu Zero
• Alpha Zero press release:

• https://deepmind.google/discover/blog/alphazero-shedding-new-light-on-

chess-shogi-and-go/

• Alpha Zero paper:

• https://www.science.org/doi/full/10.1126/science.aar6404

• Mu Zero paper:

• https://www.nature.com/articles/s41586-020-03051-4.epdf?

sharing_token=kTk-
xTZpQOF8Ym8nTQK6EdRgN0jAjWel9jnR3ZoTv0PMSWGj38iNIyNOw_ooNp
2BvzZ4nIcedo7GEXD7UmLqb0M_V_fop31mMY9VBBLNmGbm0K9jETKkZn
J9SgJ8Rwhp3ySvLuTcUr888puIYbngQ0fiMf45ZGDAQ7fUI66-u7Y%3D

• Mu Zero press release:

• https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-

and-atari-without-rules/

• Mu Zero is a powerful general approach to learn to play games and other

environments.

https://deepmind.google/discover/blog/alphazero-shedding-new-light-on-chess-shogi-and-go/
https://deepmind.google/discover/blog/alphazero-shedding-new-light-on-chess-shogi-and-go/
https://www.science.org/doi/full/10.1126/science.aar6404
https://www.nature.com/articles/s41586-020-03051-4.epdf?sharing_token=kTk-xTZpQOF8Ym8nTQK6EdRgN0jAjWel9jnR3ZoTv0PMSWGj38iNIyNOw_ooNp2BvzZ4nIcedo7GEXD7UmLqb0M_V_fop31mMY9VBBLNmGbm0K9jETKkZnJ9SgJ8Rwhp3ySvLuTcUr888puIYbngQ0fiMf45ZGDAQ7fUI66-u7Y%3D
https://www.nature.com/articles/s41586-020-03051-4.epdf?sharing_token=kTk-xTZpQOF8Ym8nTQK6EdRgN0jAjWel9jnR3ZoTv0PMSWGj38iNIyNOw_ooNp2BvzZ4nIcedo7GEXD7UmLqb0M_V_fop31mMY9VBBLNmGbm0K9jETKkZnJ9SgJ8Rwhp3ySvLuTcUr888puIYbngQ0fiMf45ZGDAQ7fUI66-u7Y%3D
https://www.nature.com/articles/s41586-020-03051-4.epdf?sharing_token=kTk-xTZpQOF8Ym8nTQK6EdRgN0jAjWel9jnR3ZoTv0PMSWGj38iNIyNOw_ooNp2BvzZ4nIcedo7GEXD7UmLqb0M_V_fop31mMY9VBBLNmGbm0K9jETKkZnJ9SgJ8Rwhp3ySvLuTcUr888puIYbngQ0fiMf45ZGDAQ7fUI66-u7Y%3D
https://www.nature.com/articles/s41586-020-03051-4.epdf?sharing_token=kTk-xTZpQOF8Ym8nTQK6EdRgN0jAjWel9jnR3ZoTv0PMSWGj38iNIyNOw_ooNp2BvzZ4nIcedo7GEXD7UmLqb0M_V_fop31mMY9VBBLNmGbm0K9jETKkZnJ9SgJ8Rwhp3ySvLuTcUr888puIYbngQ0fiMf45ZGDAQ7fUI66-u7Y%3D
https://www.nature.com/articles/s41586-020-03051-4.epdf?sharing_token=kTk-xTZpQOF8Ym8nTQK6EdRgN0jAjWel9jnR3ZoTv0PMSWGj38iNIyNOw_ooNp2BvzZ4nIcedo7GEXD7UmLqb0M_V_fop31mMY9VBBLNmGbm0K9jETKkZnJ9SgJ8Rwhp3ySvLuTcUr888puIYbngQ0fiMf45ZGDAQ7fUI66-u7Y%3D
https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/
https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/

• Reading for this lecture:
• This lecture was based in part on the book by Prince, linked on the website.
• We also used rlhfbook.com

Course logistics

http://rlhfbook.com

