Physics 361 - Machine Learning in
Physics

Lecture 19 - Reinforcement Learning 2

April 1st 2025

Moritz Munchmeyer

Huge day for Al in Science ;)

Alex Kontorovich ¢ O Timothy Gowers @wtgowers

| don’t believe it!! A new Al startup has a model called Clay 4.1 which will It's finally happened: after several unsuccessful attempts, | found a prompt
announce this afternoon that it has solved one of the Millennium Problems that got Grok to solve a maths problem (the well-known Dubnovy Blazen
in Lean, this is HUGE!!! Stay tuned for full announcement...

problem in graph theory) I've been working on for over a year. How long till
it's better than human mathematicians across the board?

A Search for “New Physics” “Beyond the Standard
Model” in Open Data with Machine Learning

April 1, 2025

Rikab Gambhir,*?

@(Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
®The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, USA

E-mail: rikab@mit.edu

ABSTRACT: In this new era of large data, it is important to make sure we do not miss
any signs of new physics. Using the publicly-available open data collected by the arXiv.org
experiment in the hep-ph channel, corresponding to a raw total integrated Literature of 65,276
papers, we perform a search for “New Physics” and related signals. In the worst-case, we are
able to detect “New Physics” with “the LHC” at a significance level of at least 6.50. This
“New Physics” signature is primarily “Dark” in nature, and is potentially axion(-like) dark
matter. We also show the potential for further improvement in the future, and that “New
Physics” can be found with “a Future Collider” at at least 8.90, as well as the potential to
find “New Physics” without any collider at all. This search is performed using code that was
80% written by Machine Learning methods.

Reinforcement Learning

Introduction

Introduction

Reinforcement leaning is a sequential decision making framework in which agents learned to
perform actions in an environment with the goal of maximizing rewards.

RL controls the actions of an agent in an environment to maximize the

RL applications: Go/Chess/Atari, robotics, financial trading, string theory, optimal experimental
design, robotics, reasoning,

RL is often used when problem involves searching a large configuration space.
References:

e Sutton and Barto: http://incompleteideas.net/book/the-book-2nd.html,

e Simon Prince, Understanding Deep Learning: https:/udibook.github.io/udibook/
(primary reference used here)

https://github.com/Farama-Foundation/Gymnasium (formerly https://github.com/openai/gym)

http://incompleteideas.net/book/the-book-2nd.html
https://udlbook.github.io/udlbook/
https://github.com/Farama-Foundation/Gymnasium
https://github.com/openai/gym

Challenges of RL

 lllustrate the challenges with chess game. A reward of +1, —1, or O is given at the end of
the game if the agent wins, loses, or draws and O at every other time step. The
challenges:

 The reward is sparse; we must play an entire game to receive feedback.

e Temporal credit assignment problem: The reward is temporally offset from the
action that caused it; a decisive advantage might be gained thirty moves before
victory. We must associate the reward with this critical action. (other examples?)

* The environment is stochastic; the opponent doesn’t always make the same move
in the same situation, so it’s hard to know if an action was truly good or just lucky.

 Exploration-exploitation trade-off: The agent must balance exploring the
environment (e.g., trying new opening moves) with exploiting what it already knows .

Reinforcement Learning

General Definitions

Markov Processes

In RL, we learn a policy that maximizes the
expected return in a Markov decision process.

The word Markov implies that the probability g 12 13 14
of being in a state depends only on the {

previous state and not on the states before. 5 |6 |1 P
The changes between states are captured by 9 |10 |11 |12
the transition probabilities Pr(s,, | s,) of |

moving to the next state s,, ; given the current A L e

state s,, where 7 indexes the time step.
T=[1,2,6,10,9,10,11, 15]

A Markov process is an evolving system that
produces a sequence sy, S,, 83, ... Of states.

T =[s1, s2, s3, . . .] is called the trajectory

Markov Reward Processes

« A Markov reward process also includes a distribution Pr(r,,|s,)over the
possible rewards r,_; received at the next step, given s..

o Introduce a discount factor y € (0,1] to compute the (cumulative) return G

o0
k
G = ZW Tt k+1-

k=0

a) Gr=047-044%-0+4°-0 b) Go=047-0442-044°-1 C) Gy=0+47-044%-1+7%-0
44t 14470498 1447 0=1.19 441 04+4% 14+4%-0=1.31 +4t 1447 0=1.47

,{_‘ 0 0 0 1 0 '(‘»O 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 /(0 0 0
1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0

81 12 S2 1383714 S84 T'5 S5T6 S¢ T't St T's S8 T9

r=[1,0,2,0,6,0,10,0,9,1,10,0,11, 1,15, 0]

Markov Decision Processes

o A Markov decision process (MDP) adds a set of possible action a, at
each step which changes the transition probabilities Pr(s,, | s,, a,).

« The rewards can also depend on the action: Pr(r,.|s, a,).

« MDP produces a sequence sy, dy, I, S5, 4y, '3, S3, A3, ... Of states,
actions & rewards. The entity that performs the actions is the agent.

Aig 2B F |V)1 o : K :
/ﬁ7 v 0.5 0.17 0.17 0.17
' 0 0 0 0
Actllons X X 0 0
0.17 0.17 0.17 0.5
5 6 D 7 D3 8 — 0 0 0 0
JAN 0.17 0.5 0.17 0.17
0 0 0 0
4 [Q |>J2 0 0 0 0
9 10>]-]-]-2 v 0.17 0.17 0.5 0.17
A — 0 0 0 0
3 0 0 0 0
0 0 0 0
13 (14 |15 |16 2 0 0 0 0
0 0 0 0
0 0 |0 0
51 T2 S2 I3 S3 T4 84 s S5 e Se r7 Pr(st+1|st:6,at:1) Pr(st+1\st:6,at:3)
72[1737072737076a2707 1072707 117170777 273] Pr(st+1|st:6,at:2) PT(St+1‘St:6,CLt:4)

Here: The penguin moves in the intended direction with 50% probability, but the ice is slippery, so it may
slide to one of the other adjacent positions with equal probability.

Policy

* The rules that determine the agent’s action are known as the policy.

* The policy can be deterministic (one action for a given state) or

stochastic (a probability distribution over each possible action):

Vg P PB_ P . p_F_ | Y P: B: Ba
/& v | D > /{<] 4| VvV | < {D P> S a_p
5v 6[> 7[> 8[> 5v 6v 74 8[> 54A[>64A A 8<],,[>

v v \V4 v

9 |10 11 |12 9 |10 11 |12 0 o |10n [11. [12a

> > A \V4 JAN > JAN > <]V[> <lvl> <v[> <]vl>

13 |14 [15 |16 13 |14 [15 |16 13. |14~ [15A |16a

> a D> D Vi ialv|b T I I R
Deterministic Stochastic

Reinforcement Learning Loop

* The environment and the agent form a loop:

Agent
Policy m[at|s¢]

Reward State State Action
Tt St St a¢

: sHl/Environ ment
: State transition
. Pr(s¢s1]|se, at)
: "t+1] Reward function

K Pr(ryilse, ap) j

* The agent receives the state and reward from the last time step.
Based on the policy, the agent chooses the next action.

e The environment then assigns the next state according to
Pr(s,,(|s, a,) and the reward according to Pr(r,.{|s,, a,).

Expected return: state and action values

The return G, depends on the state s, and the policy z[a | s]

Characterize how “good” a state is under a given policy 7 by considering
the expected return v[s, | z]. State-value function (long-term return on
average from sequences that starts from s,):

vlse|7] :E[Gt\st,w}.

Action value or state-action value function g[s,, a, | 7] is the expected
return from executing action a, in state s:

q[st,at\w] — E[Gt‘St,CLt,TF} .

Through this quantity, RL algorithms connect future rewards to current
actions (i.e., resolve the temporal credit assignment problem).

Optimal Policy

We want a policy that maximizes the expected return.

For MDPs, there d a deterministic, stationary (depends only on the current
state, not the time step) policy that maximizes the value of every state.

If we know this optimal policy, then we get the optimal state-value function:
”U*[St] — INax [E [Gt\st, 7T:|] .
Similarly, the optimal state-action value function:

q"|St,at) = max [E [Gt\st,at,ﬂﬂ .

Turning this around, if we knew the optimal action-values, we can derive
the optimal policy.

mlat|st| < argmax {Q* St @t]} -

Consistency of state and action values

 We may not know the state values v or action values g for any policy.

However, we know that they must be consistent with one another, and
it's easy to write relations between these quantities.

* The state values are given by

vlst] = 3 _,, mlat|st] - qlst, at]
State Prob of Action
value action value

* The action values are given by

qlse, ae] = rlse, all + - 2siyy Pr(ses1lse, ar) - U[St41]

Action Reward Discount Prob of Value of
value for action factor next state next state

* These relations lead to the “Bellman equations”, a central concept in
RL.

Reinforcement Learning

Tabular RL Methods

Tabular RL

"Tabular RL" refers to reinforcement learning methods that use
explicit tables to store value functions (or policies). This means
that every state (or state-action pair) is explicitly represented in a
lookup table rather than being approximated by a function (e.g., a
neural network).

This approach is feasible when the state space is small because
all possible states and actions can be stored explicitly.
We start with this setup.

We will later contrast tabular RL algorithms with the use of deep
learning in RL that does not require storing the large lookup table.

Model Based vs Model-Free Methods

e Model-based methods use the MDP structure explicitly and find the
best policy from the transition matrix Pr(s,, | s,, a,) and rewards

r|s, al.

e |f the transition matrix & reward are known, this optimization
problem can be solved with dynamic programming, which is an
algorithm that iteratively evaluates and improves the policy
(see Prince book for details).

Model Based vs Model-Free Methods

* Model-free methods do not use transition probabilities and reward
structure explicitly. Instead, they learn from interactions with the

environment. They fall into two classes:

e Value estimation - estimate the optimal state-action value q and then
assign the policy according to the action with the greatest value.

. - estimate the optimal policy using gradient descent
w/0 the intermediate steps of estimating the model or values.

e Example of Model-free method applications:

* Playing computer games: The agent interacts with the environment
and learns what actions lead to higher scores, without knowing the

game's internal rules.

Monte Carlo vs Temporal Difference

 Monte Carlo methods simulate many trajectories through the MDP for
a given policy to gather information to improve this policy.

e Temporal difference methods update the value estimates and policy
while the agent traverses the MDP, one step at a time.

* More details for both methods will be in the following slides.

Monte Carlo Value Estimation Methods

e Alternate between computing the action values (based on
repeatedly sampling trajectories) & updating the policy (based on
action values).

* To estimate the action values ([s, a], a series of episodes are run.
Each starts with a given state and action and thereafter follows the
current policy, producing a series of actions, states, and rewards. The
action value for a given state-action pair under the current policy is
estimated as the average of the empirical returns that follow it.

* The policy is updated by choosing the action with the maximum value
at each state:

mlals] < argmax [q[s, a]}

a

On-policy vs off-policy methods

In an On-policy method the current best policy is used to guide the agent
through the environment.

It is not possible to estimate the value of actions that have not been used,
& there is nothing to encourage the algorithm to explore them.

e-greedy policy: random action is taken with € probability and optimal
action with 1 — € probability (exploitation/exploration trade-off).

Off-policy method: the optimal policy 7 (the target policy) is learned based
on episodes generated by a different behavior policy z'. Typically, the
target policy is deterministic, and the behavior policy is stochastic.

We want 7z’ to explore the environment (stochastic) and the learned policy
7t to be efficient.

The on/off policy distinction applies both to Monte Carlo and Temporal
Difference methods.

Temporal difference (TD) methods

 Update the values/policy while the agent traverses the states of MDP.

e SARSA (State-Action-Reward-State-Action) is an on-policy value
estimation algorithm with update:

qlst, at] < qlst, ar] + &(T[Staat] + 7 q[St+1, Q1] — Q[Staat]),
where a € R™ is the learning rate. The bracketed term is TD error.
 Q-learning is an off-policy value estimation algorithm with update:
dlse, as] < qlse, as] + Oz(r[st, ai] +7 - max[qfse 41, a]] — qse, at]),

It estimates the value of the next state assuming an optimal followup
action.

SARSA update rule details

Agent choses an action from the policy (which includes exploration). Then we update the q function:

q(st,ar) < q(st,ar) + a(r(se, ar) + v - q(St1,0041) — q(s¢,a4))

qg\(S¢, Q¢):
(50, a2) Update Rule Breakdown:
e The current estimate of the Q-value for taking action a; in state s;.

¢ Compute the TD Target (what the Q-value should move toward):
e This represents the agent's expected return from this state-action pair.

(8¢, ap): (st as) +vq(S¢41, Gpi1)

e The reward received from the environment for taking action a; in state s;. * Compute the TD Error (difference between target and current estimate):
q(8t11,a141): (r(s¢, ar) +vq(st41, ar41) — q(5¢,ar))

» The Q-value of the next state-action pair, where a;. 1 is chosen according to the current

e Scale this difference by the learning rate a and update q(st, at).
policy.

* Unlike Q-learning (which uses max, q(s:11, a)), SARSA follows the policy's action

selection.
7 (Discount Factor):
e Determines how much the future reward is valued.

¢ A value closer to 1 makes the agent more future-focused, while a value closer to 0 makes it

focus on immediate rewards.
« (Learning Rate):
e Controls how much new information updates the existing Q-value.

* Alower a means slower learning, while a higher a makes updates more aggressive.

1. From state s;, the agent chooses action a; using its policy (e.g., e-greedy).

2. It executes ay, observes reward 74, and transitions to state Sy 1.

SARSA is an on pollcy Method: 3. it then selects the next action a;41 using the same policy.

4. The update uses q(stﬂ, atH) — the value of the actual action the policy did choose, not the
best possible one.

Q-learning update rule details

The Q-learning update rule is:

Qsty 1) < Q(s1,) + [y + ymax Q(sir, a) — Qsiy ar)|

where:

St, a; = current state and action
r++1 = reward received after taking action a;
S¢1+1 = next state

max, Q(stH, a) = maximum predicted reward from the next state s;, 1 (greedy action

selection)
« = learning rate (step size)

v = discount factor (determines the importance of future rewards)

How It Works

. The agent selects an action a;, usually based on an exploration strategy like e-greedy.

The environment provides a reward 7¢1 and the next state s;1.

Instead of following the current policy, the update uses the greedy action max, Q(stH, a)

assuming the best future reward.
The Q-table (or function) is updated with the rule above.

The process repeats until convergence.

That's why Q-learning is called an off-policy algorithm:

It updates the Q-values as if we're following the greedy (optimal) policy,

Even though the behavior might be exploring (e.g., e-greedy or completely random).

e This is the action the agent actually took in state s;.

e It was chosen according to the agent’s behavior policy (often

e-greedy — mostly greedy, sometimes random).
¢ It's the one we're updating in the Q-table.

maXg Q(5t+17 a’):

e This is the best possible action the agent could take in the

next state s;, 1, according to its current Q-values.

* |t represents the assumption that the agent will act optimally

from s;,.1 onward — even if it doesn't in reality.

e It's part of the target in the update, not what the agent

actually does.

Reinforcement Learning

Value-based RL with Neural
Networks

From tabular RL to Machine Learning based RL

The tabular Monte Carlo and TD algorithms described above repeatedly
traverse the entire MDP and update the action values. However, this is
only practical if the state action space is small. Unfortunately, this is

rarely the case; even for the constrained environment of a chessboard,
there are more than 1040 possible legal states.

Instead of discrete state indices si, we now use a state vector st, and we

replace discrete value function and policies with machine learning
models that take in the state vector.

There are two main approaches to RL for this situation:

Value-based methods (e.g., Deep Q-Networks): These estimate a

value function q(s,a) that represents the expected reward for taking
action a in state s.

Policy-based methods (e.g., REINFORCE, Trust Region Policy
Optimization TRPO, PPQO): These directly optimize the policy 7.

Fitted Q-learning

o Replace the action values ¢([s,, a,] by a ML model ¢g[s,, a,, ¢].

e | oss function which measures consistency of adjacent action
values:

Llg) = ([ar) +7 - max qlsi1,a,)| — alse.as, ¢])2,

[/—1/\ S

fa,jg'f r#(d/(%fﬁ-ﬁ

(whm‘ 7544410{ ét>

* This is the same method as we did for Q-learning. Instead of
updating a table of Q values, we minimize a loss that pushes the
networks output towards the target.

Fitted Q-learning loss function details

Lig] = (rlsrad + v - maxglsesr, a,6] — glse,ar ¢])

Q[staat)¢]:

 This is the current Q-value estimate for taking action a; in state s;, parameterized by ¢

(e.g., weights of a neural network).
e Itis the model's current prediction of how good this action is.
T[St ay):
» The reward received after taking action a; in state s;.
e This is provided by the environment.
Y - Mmax, q[8t11,a, P):
e This represents the discounted maximum future Q-value.

 The term max, q[s;.1, a, @] finds the best future Q-value by selecting the action that

maximizes q at the next state s;1.

e 7y (discount factor) determines how much future rewards are valued compared to immediate

rewards.

Target for Q-learning Update: e The function minimizes the difference between:

e The term inside the parentheses, * The estimated Q-value q[s;, a;,]

r[se, as] + 7 - max qsi11, a, @] * The target value r 4+ v max, q[s;+1, a, @|.

« By training a neural network using gradient descent, the parameters ¢ are updated to better

is the target Q-value (what we want the model to predict). predict future rewards.

Deep Q-networks

e Use deep NN for fitted Q-learning. Q stands for action-value ¢l[s,, a,, ¢].

e Deep Q-network was a RL architecture that exploited deep NN to

learn to play ATARI 2600 games.

a) b) c) d)

Single frame does not specify
velocity = 4 adjacent frames
to represent a state

vlelR 18 poss_ible actions
[H " " H' (9 directions, on/off)

" LR R

Deep Q-networks

 The data comprises 220 x 160 images with 128 possible colors at each
pixel. Reshaped to 84 x 84 and only brightness value was kept.

> (s, 1]
B ! _
S dlse.2) Rewards %1 instead of raw scores
274 ol .
1 r dlsi. 4] of different games, can keep the
q[st75] .
s 6 same learning rate.
%Qﬂ*x% C][St,7]
+
> ()‘/\%q} AD Q[S%’8] .
> P : - Experience replay: store recent states,
— Q[St717] . .

/52/ 7 Lﬂ o 150 action, and rewards in a buffer, reuses
e w77 Value data samples many times. Helps with
o R o™ ¢ ¢ of state

training stability.

Figure 19.14 Deep Q-network architec-
ture. The input s; consists of four adja-
cent frames of the ATARI game. Each
is resized to 84x84 and converted to
grayscale. These frames are represented
as four channels and processed by an 8 x8
convolution with stride four, followed by
a 4 x4 convolution with stride 2, followed
by two fully connected layers. The final
output predicts the action value g[s:, a]
for each of the 18 actions in this state.

Reinforcement Learning

Policy-based RL with Neural
Networks

This section is mostly based on https://rlhfbook.com/

Policy Gradient Methods

Recall the notions of value estimation vs policy estimation. Q-learning
is an example of value estimation: estimate q[s, a,, ¢] and update .

Policy-based methods directly learn a stochastic policy z[a, | s,, 0].

For MDP, there is always an optimal deterministic policy in principle.
However there are three reasons to use a stochastic policy:

 Exploration of the action-state space: not obliged to take the
best action at each step.

 Loss function changes smoothly: can use gradient descent.

* Knowledge of the state is often incomplete: two locations may
look locally the same but nearby reward structure is different.
Stochastic policy: taking different actions until ambiguity resolved.

Value based vs policy based methods

Summary: When to Choose What?

Scenario Value-Based RL (Q-learning, DQN) Policy-Based RL (REINFORCE, PPO)
Discrete action space Best choice X Less efficient

Continuous action space X Doesn't work well Best choice

Large state space X Struggles Works well

Sample efficiency needed More efficient X Requires more samples
Stochastic environments X Not ideal Can learn stochastic policies
Real-time decision making Fast lookups X Slower (sampling needed)
Stability in training X Can diverge More stable

Source of this table: GPT-40 (apologies)

“Vanilla” Policy Gradient

e We want to find the optimal policy by maximizing the expected future reward:

T
Vol(mg) = E, |) Vylog mya,|s)G,
_ =0

T .
Gt =) _,_, ry:return from time ¢

This equation tells us how to move the policy to improve expected reward.

e Each action's log-probability is nudged up or down depending on the return G that follows it.

o If G is high = increase log-prob of action a;

e If G, islow - decrease it

e We are summing over all steps t in the trajectory/episode of length T.

e The sum over t ensures that every action a; taken in the trajectory gets updated.

o The G, tells us how good that action turned out to be, based on what happened after time .

“Vanilla” Policy Gradient

e We want to find the optimal policy by maximizing the expected future reward:

T
Vef(n'g) = [ET Z Vglog ﬂg(at | St)Gt G = Zfzt ry: return from time ¢
_ =0

Here the expectation value is over trajectories drawn according to the policy.

e How to estimate the expectation value? Use Monte Carlo over N trajectories. This
algorithm is called REINFORCE.

Subtracting a baseline

A common problem with vanilla policy gradient algorithms is the high
variance in gradient updates, which can be mitigated in multiple ways. In
order to alleviate this, various techniques are used to normalize the value
estimation, called baselines.

We then have:

T
VyJ(6) = ETNM[nglogm(at ' 5,) (Gt—b)]
t=0

A simple baseline is the average return per trajectory, across a batch of
sampled episodes:
N

1 i
b = N;ay

Value network

e A better baseline is to subtract an estimate of the value function. We now
need an additional neural network, the value network, which estimates it.
This is an example of Actor-Critic RL, where the critic is the value network.
The value network also gets trained, with a different loss function.

 The policy gradient is then:

T
VoJ(mg) =E. | Y Vologmy(as | s¢) - (Gi — Vy(se))
| t=0

* The quantity A, = G; — V,(s;) Is called the advantage.

e We now have two neural networks: mg(a | s) is the policy network

Vs(s) is the value network

PPO

e PPO improves over standard REINFORCE with a value network
baseline by using a more stable, constrained update rule with
mini-batch training, reducing variance while maintaining sample

efficiency.

* For practical tasks, PPO is usually preferred over REINFORCE
due to its stability and efficiency.

* Discussing this in detail goes too far. For completeness, the
training objective is:

50 =i (2212 g i (1))

6,14 (a" 3)

RLHF of LLMs often uses PPO

* To fine-tune LLMs with RLHF (Reinforcement Learning with Human
Feedback), people often use PPO. The actions are now the prompt
completions (i.e. the answers the model writes to the queries).

 But what is the reward? The common approach is to train a “reward model”
where humans compare different answers and compare them (“preference

learning”). The reward model then learns to “rate like a human”, and can then
be used for training the LLM.

Reward
model

Source: rlhfbook.com

Or11 = 6; + aVeJ(mp)

http://rlhfbook.com

GRPO

A new policy RL algorithm called Group Relative Policy Optimization
(GRPO) is getting very popular, due to its success in training the
Deepseek Reasoning model.

It works similar to the PPO, but it does NOT not require a value
network. This makes the approach simpler.

The advantage A in this algorithm is calculated by comparing multiple
answers to a single question (“group relative”).

For completeness, the training objective is

J(6) = ég: (min (mo(ails)_ - clip (molails) 4 _ .14 c-:) Ai) - ﬁDKL(mllmef))

614 (a'i ‘ 3) 0,14 (a”i | 3) ’

The advantage is estimated from the responses r as

r; — mean(ri,r, -, 7q)

A; =

std(r1,72,: -+, 7q)

Direct Preference Optimization (DPO)

e There is one more algorithm that you should have heard about when it comes to LLM fine-
tuning with reinforcement learning.

« Direct Alignment Algorithms (DAAs) allow one to update models to solve the same

RLHF objective without ever training an intermediate reward model or using reinforcement
learning optimizers.

 The most prominent DAA and one that catalyzed an entire academic movement of

aligning language models is Direct Preference Optimization (DPO). Paper: https://
arxiv.org/abs/2305.18290

« |t allows to solve the standard RLHF problem with only a simple classification loss.

Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
x: “write me a poem about x: “write me a poem about
the history of jazz” la b@l. rewa rdS the history of jazz”
T\ —

—_ — .) — B — .
2 > | — —> reward model LM policy t_:‘ > — _ final LM

_—Yw Y Yw YL
preference data maximum sample completions preference data .

likelihood - .
ukeuhood reinforcement learning elinooc

Figure 1: DPO optimizes for human preferences while avoiding reinforcement learning. Existing methods
for fine-tuning language models with human feedback first fit a reward model to a dataset of prompts and
human preferences over pairs of responses, and then use RL to find a policy that maximizes the learned reward.
In contrast, DPO directly optimizes for the policy best satisfying the preferences with a simple classification
objective, fitting an implicit reward model whose corresponding optimal policy can be extracted in closed form.

https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290

‘Feature

Reward Model

'Value Function (Critic)

Optimization

Training Loop Complexity

Advantage Estimation

]Computational Efficiency

Implementation Simplicity

PPO (RLHF)

Explicitly trained neural
network

DPO (Direct Preference
Optimization)

Implicitly learned

Yes, separate neural network No

Direct Policy
Optimization

Reinforcement Learning (PPO (Classification-like

Algorithm)

Loss)

More complex (RL loop, critic Simpler (no RL loop,

training)

GAE (using Value Function)

Lower (critic, RL sampling)

More complex

direct optimization)

N/A (Implicit Reward)

Higher (no critic, no RL
sampling during
training)

Simpler

https://anukriti-ranjan.medium.com/preference-tuning-lims-ppo-dpo-grpo-a-simple-guide-135765c87090

GRPO (Group Relative
Policy Optimization)

Implicitly learned

No

Simplified RL (PPO-like,
but with GRAE)

Simplified RL loop (group
sampling, but no critic)

GRAE (Group Relative

Advantage Estimation)

Higher than PPO (no critic),
potentially similar to DPO

Simpler than PPO,
somewhat similar to DPO

Reinforcement Learning

Combining RL and Search

Combining RL and Search

e If you can simulate the environment and rewards are sparse, a powerful
technique is to combine RL techniques with search methods.

* |n particular, AlphaZero and MuZero, both developed by DeepMind,
are powerful examples of reinforcement learning (RL) combined with
search, specifically Monte Carlo Tree Search (MCTS).

 Alpha Zero

e |t trains a neural network using self-play; the network learns a policy
(what move to make) and a value function (how good the position
IS).

e [t uses Search (MCTS) during both training and evaluation to plan
moves.

 Think of it as an RL+search loop: the neural net helps the search,
and the search helps improve the neural net.

* In MuZero, in addition the environment is also learned by a neural
network. E.g. it learns to play chess without having the rules for chess
coded in.

Monte Carlo Tree Search (MCTYS)

* Monte Carlo Tree Search is a decision-making algorithm used for
planning, especially in games like Go, chess, or general Al problems.

e It's great when:
 The search space is huge.

* You don’t have a perfect evaluation function (e.g. chess space is too
large to be able to perfectly evaluate every position).

* You can simulate how things might play out (even randomly).

« MCTS builds a search tree incrementally and uses random
simulations (Monte Carlo rollouts) to guide which parts of the tree to
explore.

A

ai

o

SELECTION

EXPANSION

ay

)N

Monte Carlo Tree Search

RoLLouT BACKPROPAGATION

2\ A

ai aj

cbdododbdbdwdce

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

Y
Q@
Q refers to the reward (or estimated value) obtained from a simulation that

starts from a new node and proceeds until the end of the episode (or a depth
cutoff).

 We build a tree of actions iteratively. Each iteration of MCTS has four phases:

Selection: Navigate from the root to a leaf using a tree policy.

Expansion: If the leaf node is not terminal, expand one or more children.

Simulation: Simulate a random playout from the new node.

Backpropagation: Propagate the result back up to update the stats of all

nodes in the path.

Alpha Zero, Mu Zero

 Alpha Zero press release:

« https://deepmind.google/discover/blog/alphazero-shedding-new-light-on-
chess-shogi-and-go/

 Alpha Zero paper:
* https://www.science.org/doi/full/10.1126/science.aar6404

 Mu Zero paper:

e https://www.nature.com/articles/s41586-020-03051-4.epdf?
sharing token=kTk-
xTZpQOF8YM8nTQKGEdJRgNOjA|Wel9INnR3ZoTvOPMSWG|38iINIYNOw ooNp
2BvzZ4nlcedo7/GEXD7UmLgbOM V fop31mMY9VBBLNMGbmMOK9ETKkZn
JI9SgJ8Rwhp3ySvLuTcUr888pulYbngQOfiMf45ZGDAQ7fUI66-u7Y % 3D

e Mu Zero press release:

« https://deepmind.google/discover/blog/muzero-mastering-go-chess-shoqi-
and-atari-without-rules/

« Mu Zero is a powerful general approach to learn to play games and other
environments.

https://deepmind.google/discover/blog/alphazero-shedding-new-light-on-chess-shogi-and-go/
https://deepmind.google/discover/blog/alphazero-shedding-new-light-on-chess-shogi-and-go/
https://www.science.org/doi/full/10.1126/science.aar6404
https://www.nature.com/articles/s41586-020-03051-4.epdf?sharing_token=kTk-xTZpQOF8Ym8nTQK6EdRgN0jAjWel9jnR3ZoTv0PMSWGj38iNIyNOw_ooNp2BvzZ4nIcedo7GEXD7UmLqb0M_V_fop31mMY9VBBLNmGbm0K9jETKkZnJ9SgJ8Rwhp3ySvLuTcUr888puIYbngQ0fiMf45ZGDAQ7fUI66-u7Y%3D
https://www.nature.com/articles/s41586-020-03051-4.epdf?sharing_token=kTk-xTZpQOF8Ym8nTQK6EdRgN0jAjWel9jnR3ZoTv0PMSWGj38iNIyNOw_ooNp2BvzZ4nIcedo7GEXD7UmLqb0M_V_fop31mMY9VBBLNmGbm0K9jETKkZnJ9SgJ8Rwhp3ySvLuTcUr888puIYbngQ0fiMf45ZGDAQ7fUI66-u7Y%3D
https://www.nature.com/articles/s41586-020-03051-4.epdf?sharing_token=kTk-xTZpQOF8Ym8nTQK6EdRgN0jAjWel9jnR3ZoTv0PMSWGj38iNIyNOw_ooNp2BvzZ4nIcedo7GEXD7UmLqb0M_V_fop31mMY9VBBLNmGbm0K9jETKkZnJ9SgJ8Rwhp3ySvLuTcUr888puIYbngQ0fiMf45ZGDAQ7fUI66-u7Y%3D
https://www.nature.com/articles/s41586-020-03051-4.epdf?sharing_token=kTk-xTZpQOF8Ym8nTQK6EdRgN0jAjWel9jnR3ZoTv0PMSWGj38iNIyNOw_ooNp2BvzZ4nIcedo7GEXD7UmLqb0M_V_fop31mMY9VBBLNmGbm0K9jETKkZnJ9SgJ8Rwhp3ySvLuTcUr888puIYbngQ0fiMf45ZGDAQ7fUI66-u7Y%3D
https://www.nature.com/articles/s41586-020-03051-4.epdf?sharing_token=kTk-xTZpQOF8Ym8nTQK6EdRgN0jAjWel9jnR3ZoTv0PMSWGj38iNIyNOw_ooNp2BvzZ4nIcedo7GEXD7UmLqb0M_V_fop31mMY9VBBLNmGbm0K9jETKkZnJ9SgJ8Rwhp3ySvLuTcUr888puIYbngQ0fiMf45ZGDAQ7fUI66-u7Y%3D
https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/
https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/

Course logistics

e Reading for this lecture:

 This lecture was based in part on the book by Prince, linked on the website.
e We also used rihfbook.com

http://rlhfbook.com

