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Some Examples of ML in
the Physical Sciences
(cont.)



Classifying Events and Objects

 Examples:

* LHC particle collisions. ML has a long history in particle physics, reaching back
several decades.
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Figure 1: e/ showers averaged over 50k showers. The e shower is slightly more spread
out in ¢-in addition to being slightly asymmetric-due to bremsstrahlung effects.

* lce cube particle shower classification. E.g. 2209.03042

* Galaxy type classification. In the past, different galaxy types were classified by
researchers by eye. Not possible with millions of galaxies.



Measuring physical parameters

|t is often not clear how to measure a parameter from a collection of data.

* If we have reliable simulations, we can train a neural network to perform the
measurement, using supervised learning.

 Example: Measuring cosmological parameters (age of the universe, amount of dark
matter etc.) from a galaxy survey
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 Main challenge: Reliability of training data.



Simulation-based Inference

 When we measure parameters, we also need error bars (or better the full
posterior).

* Simulation-based inference is the process of finding parameters of a
simulator from observations, probabilistically.

* In “traditional” data analysis in physics we often make analytical assumptions of
the statistics of an observable, most commonly that it is Gaussian distributed.

* With machine learning one can learn the probability distribution of observables
from simulations. In a Bayesian analysis, the likelihood or the posterior can be
learned from simulations.

* This is usually done using a Neural Density Estimator, such as a Normalizing
flow.

* See e.g. arxiv:1911.01429 The frontier of simulation-based inference



Generating Simulations / Emulators

* Neural networks can be used as surrogate models to replace computationally
expensive simulations. These are often called Emulators.

 Once trained on data or simulations, an emulator can make new “simulations” much
faster.

* Example from my own research:

e Generating 3d simulations of the matter
distribution of the universe using a
diffusion model. (Arxiv: 2311.05217)

 Machine Learning is often used to speed up classical methods.



Auto-differentiation without ML

* To train neural networks, computational techniques were developed that can train
models with billions of free parameters. This is done with auto-differentiation
libraries such as

 PyTorch
o JAX
* Tensorflow
* This software is useful in physics even if you don’t use any machine learning.

* Physicists re-write their codes in auto differentiable language, which allows

efficient optimization with respect to any parameters. Some examples from my
field:

 Cosmodax, a differentiable cosmology library

* Differentiable cosmology simulations, e.g. pmwd




Clustering and Anomaly detection

« How can we organize a large data set of events or objects into classes of similar
objects? Clustering and dimensionality reduction algorithms.

e Classic k-means is still very useful! E.g. stellar populations.
» Clustering can also happen in the “latent space” of a generative model.
» Data visualization, e.g. t-SNE

« How can we find something “new” without knowing what to look for? Anomaly
detection!

 Humans are pretty good at anomaly detection by eye, but data sets are too large to
be inspected that way and the anomaly may only be visible in the right data
representation.

 Anomalies have been found in archival data, long after the data was taken (example:
Fast Radio Bursts). Perhaps there is something exciting hidden in existing data.

* Unsupervised learning can be used to classify existing events or objects. If an object
IS not close to any known class, it is flagged as an anomaly.



Solving PDEs and Inverse Problems

 Many problems in physics amount to solving a complicated set of partial
differential equations (PDE). There are various ways to use NN for that.

 Examples (from the PDEBench data set):

Data

* |In Inverse Problems, one wants to find the input data that produced a specific
output. That can mean removing noise or undoing a non-linear evolution. Often

they are ill-conditioned and need to be regularized.

* Neural Networks are being trained to solve such problems approximately.



Symbolic methods

* Theoretical insight in physics come in the form of symbolic expressions. Naturally,
combining machine learning and symbolic expressions is an exciting direction.

* Machine learning can be used to improve symbolic regression, the process of
finding mathematical expressions that describe data.

 Example: 2006.11287

Dataset Model with Extract to
Graph Neural Network Symbolic Equation
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* Machine learning can come up with novel proofs and novel solutions. A large-
language model can make “educated guesses” (proposed solutions) that are then

verified with a systematic evaluator. e.g. https://www.nature.com/articles/
s41586-023-06924-6



https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6

Unit 1: Background



Unit 1: Background

1.1 Probability Theory
Background

Sources: e.g. deeplearningbook.org



http://deeplearningbook.org

Probability theory and Machine Learning

« Data analysis in physics (and most domains) is always probabilistic:
* Inherent stochasticity in the system being modeled.
* Incomplete observabillity.
* Incomplete modeling.

 Machine learning is inherently probabilistic, and algorithms are written
down using the notation of probability theory (e.g. expectation values).

* There are various forms of probabilistic machine learning that we will
encounter, e.g.

« (Generative models represent PDFs

 Machine learning of PDFs with normalizing flows, in Simulation-based
Inference

 Machine learning with probabilistic weights (Bayesian Neural Networks)

 Machine learning can speed up more traditional statistical inference
techniques such as MCMC.

 We will thus frequently need concepts from probability theory in this
course.
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Unit 1: Background

1.2 Classical Statistics and
Data Analysis Background

Sources:
- Cowan - Statistical data analysis
- also mostly covered in deeplearningbook.org



http://deeplearningbook.org
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Course logistics

e Reading for this lecture:
 For example: Deeplearningbook.org chapter 3,
parts of chapter 5.

* Problem set: No problem set in the first week



