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• Examples: 


• LHC particle collisions. ML has a long history in particle physics, reaching back 
several decades. 


• Ice cube particle shower classification. E.g. 2209.03042


• Galaxy type classification. In the past, different galaxy types were classified by 
researchers by eye. Not possible with millions of galaxies.

Classifying Events and Objects

Arxiv: 1807.11916 
End-to-End Physics Event 

Classification with CMS Open 
Data 

(Here and below I select papers 
somewhat at random, there are 

MANY other good papers in each 
domain)



• It is often not clear how to measure a parameter from a collection of data. 


• If we have reliable simulations, we can train a neural network to perform the 
measurement, using supervised learning. 


• Example: Measuring cosmological parameters (age of the universe, amount of dark 
matter etc.) from a galaxy survey


• Main challenge:  Reliability of training data.

Measuring physical parameters

SimBig project 2211.00723

Galaxy data CNN Parameter 
Measurements



• When we measure parameters, we also need error bars (or better the full 
posterior).


• Simulation-based inference is the process of finding parameters of a 
simulator from observations, probabilistically.


• In “traditional” data analysis in physics we often make analytical assumptions of 
the statistics of an observable, most commonly that it is Gaussian distributed.


• With machine learning one can learn the probability distribution of observables 
from simulations. In a Bayesian analysis, the likelihood or the posterior can be 
learned from simulations. 


• This is usually done using a Neural Density Estimator, such as a Normalizing 
flow.


• See e.g. arxiv:1911.01429 The frontier of simulation-based inference

Simulation-based Inference



• Neural networks can be used as surrogate models to replace computationally 
expensive simulations. These are often called Emulators.


• Once trained on data or simulations, an emulator can make new “simulations” much 
faster. 


• Machine Learning is often used to speed up classical methods. 

Generating Simulations / Emulators

• Example from my own research:


• Generating 3d simulations of the matter 
distribution of the universe using a 
diffusion model. (Arxiv: 2311.05217)




• To train neural networks, computational techniques were developed that can train 
models with billions of free parameters. This is done with auto-differentiation 
libraries such as


• PyTorch  

• JAX 

• Tensorflow 

• This software is useful in physics even if you don’t use any machine learning.


• Physicists re-write their codes in auto differentiable language, which allows 
efficient optimization with respect to any parameters. Some examples from my 
field:


• CosmoJax, a differentiable cosmology library


• Differentiable cosmology simulations, e.g. pmwd

Auto-differentiation without ML



• How can we organize a large data set of events or objects into classes of similar 
objects? Clustering and dimensionality reduction algorithms.  

• Classic k-means is still very useful! E.g. stellar populations. 


• Clustering can also happen in the “latent space” of a generative model.


• Data visualization, e.g. t-SNE 


• How can we find something “new” without knowing what to look for? Anomaly 
detection! 

• Humans are pretty good at anomaly detection by eye, but data sets are too large to 
be inspected that way and the anomaly may only be visible in the right data 
representation. 


• Anomalies have been found in archival data, long after the data was taken (example: 
Fast Radio Bursts). Perhaps there is something exciting hidden in existing data.


• Unsupervised learning can be used to classify existing events or objects. If an object 
is not close to any known class, it is flagged as an anomaly.

Clustering and Anomaly detection



• Many problems in physics amount to solving a complicated set of partial 
differential equations (PDE). There are various ways to use NN for that. 


• Examples (from the PDEBench data set):


• In Inverse Problems, one wants to find the input data that produced a specific 
output. That can mean removing noise or undoing a non-linear evolution. Often 
they are ill-conditioned and need to be regularized. 


• Neural Networks are being trained to solve such problems approximately.

Solving PDEs and Inverse Problems



• Theoretical insight in physics come in the form of symbolic expressions. Naturally, 
combining machine learning and symbolic expressions is an exciting direction. 


• Machine learning can be used to improve symbolic regression, the process of 
finding mathematical expressions that describe data.


• Example: 2006.11287


• Machine learning can come up with novel proofs and novel solutions. A large-
language model can make “educated guesses” (proposed solutions) that are then 
verified with a systematic evaluator. e.g. https://www.nature.com/articles/
s41586-023-06924-6 

Symbolic methods

https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6


Unit 1: Background



Unit 1: Background
1.1 Probability Theory 
Background

Sources: e.g. deeplearningbook.org

http://deeplearningbook.org


Probability theory and Machine Learning
• Data analysis in physics (and most domains) is always probabilistic:

• Inherent stochasticity in the system being modeled. 

• Incomplete observability. 

• Incomplete modeling. 


• Machine learning is inherently probabilistic, and algorithms are written 
down using the notation of probability theory (e.g. expectation values).


• There are various forms of probabilistic machine learning that we will 
encounter, e.g.

• Generative models represent PDFs 

• Machine learning of PDFs with normalizing flows, in Simulation-based 

Inference

• Machine learning with probabilistic weights (Bayesian Neural Networks)

• Machine learning can speed up more traditional statistical inference 

techniques such as MCMC.

• We will thus frequently need concepts from probability theory in this 

course. 

















deeplearningbook.org

http://deeplearningbook.org






Unit 1: Background
1.2 Classical Statistics and 
Data Analysis Background
Sources: 

- Cowan - Statistical data analysis

- also mostly covered in deeplearningbook.org

http://deeplearningbook.org










• Reading for this lecture:  
• For example: Deeplearningbook.org chapter 3, 

parts of chapter 5. 

• Problem set: No problem set in the first week

Course logistics


