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Info on problem sets and next week
• Two more problem sets are coming this semester: 

• One on Transformers (coming out today or tomorrow, due Sunday April 12)


• One on Generative Models after that.


• Next week I will be at an AI in Theoretical Physics conference. (https://
events.perimeterinstitute.ca/event/951/overview)


• On Tuesday, a Jacky Yip, a senior graduate student will teach a class on 
auto-encoders in person.


• On Thursday I expect to teach the lecture myself but on zoom. I will send 
connection details soon.

https://events.perimeterinstitute.ca/event/951/overview
https://events.perimeterinstitute.ca/event/951/overview


Info on final project
• Your paper will be due on Sunday May 4th at midnight.


• All groups should have submitted topics by now. Topic list here: 
https://docs.google.com/document/d/1fhHd_Kq2aTFAtR5vkGS5QTJtjKDcnix-53I6urWg-CY/edit?usp=sharing


• We will not do a formal intermediate check-in but you are welcome to talk to me to the PI about 
your project any time. 

• We will have a very brief presentation of your results in the lecture on April 29th by each group.  

• The final project grade will be mostly based on the final paper (80%), with a small contribution 
from the presentation (20%).  

• Guidance for the topic choice and paper content is on the Slides of lecture 9. 

• Grading: I plan to make your final course grade 50% problem sets and 50% final project.

https://docs.google.com/document/d/1fhHd_Kq2aTFAtR5vkGS5QTJtjKDcnix-53I6urWg-CY/edit?usp=sharing


Reasoning with LLMs

Summary of Reasoning with 
LLMs



Next token prediction with LLMs
• LLMs learn to probabilistically predict the next word (token) in text or 

other data. “Autoregressive transformer decoders”. 


• They are pre-trained on huge amounts of text (including arxiv of course).


• Is next token prediction enough for reasoning? Formally yes. It also 
feels similar to how humans think (in my opinion), i.e. a stream of words.

224 12 Transformers

Figure 12.12 Training GPT3-type decoder network. The tokens are mapped to
word embeddings with a special <start> token at the beginning of the sequence.
The embeddings are passed through a series of transformer layers that use masked
self-attention. Here, each position in the sentence can only attend to its own
embedding and those of tokens earlier in the sequence (orange connections). The
goal at each position is to maximize the probability of the following ground truth
token in the sequence. In other words, at position one, we want to maximize the
probability of the token It; at position two, we want to maximize the probability
of the token takes; and so on. Masked self-attention ensures the system cannot
cheat by looking at subsequent inputs. The autoregressive task has the advantage
of making efficient use of the data since every word contributes a term to the loss
function. However, it only exploits the left context of each word.

the masked self-attention. Hence, much of the earlier computation can be recycled as weProblem 12.7 generate subsequent tokens.
In practice, many strategies can make the output text more coherent. For example,Notebook 12.4

Decoding
strategies

beam search keeps track of multiple possible sentence completions to find the overall most
likely (which is not necessarily found by greedily choosing the most likely next word at
each step). Top-k sampling randomly draws the next word from only the top-K most
likely possibilities to prevent the system from accidentally choosing from the long tail of
low-probability tokens and leading to an unnecessary linguistic dead end.

12.7.4 GPT3 and few-shot learning

Large language models like GPT3 apply these ideas on a massive scale. In GPT3, the
sequence lengths are 2048 tokens long, and the total batch size is 3.2 million tokens.
There are 96 transformer layers (some of which implement a sparse version of attention),
each processing a word embedding of size 12288. There are 96 heads in the self-attention
layers, and the value, query, and key dimension is 128. It is trained with 300 billion
tokens and contains 175 billion parameters.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Illustration from Prince Deep Learning book



Fine tuning (post training) LLMs
• After pre-training, the models are “fine tuned” which brings them “from 

text completers to question answerers” (Kaparthy).


• Fine tuning has two main methods:


• Supervised Fine Tuning (SFT): Large data set of pairs of questions 
and answers. Train the model to make the answer likely as as text 
completion of the question.  


• Finetuning with Reinforcement Learning. In particular RLHF 
(Reinforcement Learning with Human Feedback). Here we train some 
“Reward Model” (usually also an LLM) that ranks different answers. 
We then improve the policy (the token transition probabilities of 
the LLM) to maximize the reward (e.g. makes human raters happy). 


• These two are usually combined. 



What is novel about reasoning models?
• Evolution of LLMs: 

• Originally LLMs were trained to directly produce the answer tokens 
(no reasoning).


• Then chain-of-thought and in context learning (ICL) was used as an 
inference-time technique that brought some reasoning capabilities, 
could solve simple grade school math.

In context learning: Chain-of-thought prompting



Methods to improve reasoning
• There are three main methods to improve reasoning, which are often used 

together. All of them aim to motivate the model to generate long consistenet 
“chains of thought” rather than just the final answer.


• Supervised Fine Tuning (SFT).  

• Here we train the model on pairs of questions and answers, where the 
answers include detailed reasoning steps (chains of thought).


• Reinforcement Learning of chains of thought.  

• This is a pretty novel method, which we will review next


• “Test-time methods” 

• These are methods that don’t change how the model is trained but how 
we then use it. The goal is to invest more compute to get better answers. 
We’ll discuss this later.



What is novel about reasoning models?
• The first reasoning model, o1-preview from OpenAI, massively 

improved scores on our physics benchmark, as you will see. 


• Modern Reasoning models are trained to generate reasoning (chains 
of thought) using both supervise fine-tuning on curated chains-of-
thought and reinforcement learning.


• While OpenAI did not publish their method in detail, it seems clear that 
the key innovation was to use Reinforcement Learning in a novel 
way. 

“Through reinforcement learning, o1 learns to hone its chain of 
thought and refine the strategies it uses. It learns to recognize 
and correct its mistakes. It learns to break down tricky steps into 
simpler ones. It learns to try a different approach when the 
current one isn’t working. This process dramatically improves the 
model’s ability to reason.”

https://openai.com/index/learning-to-reason-with-llms/

https://openai.com/index/learning-to-reason-with-llms/


Example from TPBench that pre-reasoning models cannot solve but top reasoning 
models can (intermediate difficulty)

https://tpbench.org/wp-content/uploads/2025/02/Slow-Roll-Inflation.pdf



Learning to Reason with Reinforcement Learning

• Reinforcement learning is finding a policy that optimizes a reward. Here we 
reward reasoning steps that lead to the right answer. One can also reward 
intermediate steps (“Reward modeling”). 


• For RL, we don’t need training derivations, we can just have questions and 
answers (without derivations). The model then explores different 
derivations until it finds one that results in the correct answer. The 
training signal is the reward. 


• RL needs a strong base model: Reinforcing positive behaviors that would 
appear sparingly in the base model version into robust behaviors after RFT. 


• Challenges: 


• RL is extremely computationally demanding because every problem 
needs to be attempted thousands of times.


• The long-standing problem of RL is training stability. 

The fact that mathematical reasoning can now be learned 
with optimization is exciting. 



Reward models for RL: PRM, ORM, Auto-Verifiers

The key element of RL is the reward model. There are three general options:


• Auto-verifiable problems. E.g. The answer is a number and the reward is 1 if 
the number is right, 0 otherwise. This was used by Deepseek R1 2501.12948.


• Outcome-supervised reward models (ORM). Assigns a scalar reward based 
on the final output or trajectory. Also helpful if all trial solutions are wrong.


• Process-supervised reward models (PRM). Reward the model for correct 
intermediate steps in the derivation. Potentially much less noisy training signal. 


• However (from the Deepseek paper): 


• It is challenging to explicitly define a fine-grain step in general reasoning. 


• Determining whether the current intermediate step is correct is a 
challenging task. 


• Once a model-based PRM is introduced, it inevitably leads to reward 
hacking (e.g. plausible looking but wrong derivations).



Deepseek R1
• https://arxiv.org/abs/

2501.12948 DeepSeek-R1: 
Incentivizing Reasoning 
Capability in LLMs via 
Reinforcement Learning


• DeepSeek uses GRPO 
(briefly discussed in the last 
lecture) on auto-verifiable 
problems. 

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948




Side note: Can we do RL specifically for theoretical 
physics?
• We don’t know what is in the training data for o1 or even for deepseek. It 

probably includes public data sets from math, physics and other 
sciences, in addition to proprietary data. 


• It would not be hard to come up with a data set for RL training for 
theoretical physics (this is something we started working on). The 
requirements for problems are not as stringent as for benchmarking. 


• However performing the training is very challenging with university 
resources. 


• Computation time. Order of magnitude, solving one problem once takes 
about 1 min on a GPU node. We’d like to solve say a thousand problems a 
thousand times (2 node years). At least. 


• GPU memory. We’d want say 40 H100s to train a 70B parameter model.


• We may be able to come up with better PRMs, to make training easier.



Side Note: Tool usage
• LLMs are not very good at calculation, e.g. multiplying large numbers. They 

are however good at writing code. It is natural to ask the LLM to verify 
steps with a computer algebra system. 


• We tried this on our TPBench problems, but did not find significant 
improvements. The verification step seems to interrupt the reasoning 
chain of advanced models. Note however that our problems don’t involve 
results where a human would need a calculator or Mathematica. 


• There are other tools that could be useful for reasoning:  

• Access to a Canvas or Scratch Pad (e.g. to draw figures) or memory.


• Access to literature or the internet using RAG (retrieval augmented 
generation). E.g. OpenAI’s DeepResearch which compiles reports from 
web sources. 


• There is some amount of published work in these directions, but none seems 
to be able to push the state of the art in reasoning using these methods. 



Reasoning

Inference Time Scaling



What is test-time scaling?
• There are two main strategies to improve reasoning: 


• Increasing training compute. 


• Increasing inference compute (“test-time scaling”). New axis for scaling.


• Test-time scaling got popularized by OpenAI in 2024 (without revealing their method)


• Humans give better responses when given more time to think. What could you achieve 
with 1 million years of time to think?

https://openai.com/index/learning-to-reason-with-llms/



Approaches
• The idea is tempting: Throw a large amount of computation on a single physics 

problem to solve it. But how can we do it in practice?


• Sequential vs Parallel test time scaling:


• Simple Parallel Approach: Sampling many answers and somehow finding the 
best (e.g. by majority voting, or by letting a second LLM chose which one looks 
most consistent).


• Sequential: Encouraging longer answers. Limited by the context window of 
current models. 


• Search methods. If the calculation can be split into steps, and intermediate steps 
can be rewarded, we may be able to search through different chain of thought paths. 


• A canonical method is called Monte Carlo Tree Search (MCTS) of AlphaGo fame. 


• Attractive in principle. But e.g. Deepseek paper: “In conclusion, while MCTS can 
improve performance during inference when paired with a pre-trained value model, 
iteratively boosting model performance through self-search remains a significant 
challenge."



Approach of s1 model
• Perhaps the most prominent (non-proprietary) work on test time scaling is the 

s1 paper out of Stanford. 


• They train a reasoning model using SFT (no RL) on only about 1000 examples. 
SFT answers come from a stronger model (Gemini). 


• They then developed a very simple test time scaling approach: Attend “Wait” 
to the model output, several times, to encourage further thinking.



Structured reasoning processes
• Some works attempt to give more structure to the reasoning process. If the 

problem solution can be broken down into individual steps, we can for 
example:


• Simplify the problem and save intermediate successes. 


• Try to verify individual steps with another LLM.


• Try to analytically verify a step with Mathematica or Sympy. 


• However, it is not easy to reliably decompose problems into sub-problems. 
Simple prompt engineering does not work well. 


• My impression: Papers along these lines often increase model performance by 
a few percent, but are then superseded but the next generation of simpler 
general models.  


• Note the “bitter lesson” of machine learning: General methods, that scale 
well with data and compute, work best. Problem specific insights quickly 
become obsolete.



Structured reasoning example: Tree-of-though
• There are two extremes of how 

reasoning can be approached*:


1. Have the solution be produced 
end-to-end in one model 
generation. 


2. Have an external scaffold that 
plans out the solution and 
integrates model outputs when 
it needs to. 


• 2) is the way reasoning used to be 
done; e.g. tree-of-thought methods 
(i.e., each edge in the tree was a 
separate generation). the 
pendulum has swung to 1) but it's 
not clear what the sweet spot is.

*Thanks to Fred Sala for these comments

https://arxiv.org/pdf/2305.10601



Reasoning

Anthropic’s Mechanistic 
Interpretability Study



Papers
• https://www.anthropic.com/research/mapping-mind-language-model 


• https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html 


• https://www.anthropic.com/research/tracing-thoughts-language-model 


• https://transformer-circuits.pub/2025/attribution-graphs/biology.html 


• https://transformer-circuits.pub/2025/attribution-graphs/methods.html


• This section is largely based on the Anthropic blog posts linked above. We will 
not go into technical details. 

https://www.anthropic.com/research/mapping-mind-language-model
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://www.anthropic.com/research/tracing-thoughts-language-model
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html


Mapping the mind of a LLM
• https://www.anthropic.com/research/mapping-mind-language-model  (“We”)


• We used a method called “dictionary learning” and “sparse auto encoders” to 
find features associated with individual entities.


• We see features corresponding to a vast range of entities like cities (San 
Francisco), people (Rosalind Franklin), atomic elements (Lithium), scientific 
fields (immunology), and programming syntax (function calls). These features 
are multimodal and multilingual, responding to images of a given entity as well 
as its name or description in many languages.


• The features we found represent a small subset of all the concepts learned 
by the model during training, and finding a full set of features using our current 
techniques would be cost-prohibitive (the computation required by our current 
approach would vastly exceed the compute used to train the model in the first 
place).

https://www.anthropic.com/research/mapping-mind-language-model


Method
• At a high level, the linear representation hypothesis suggests that neural networks represent meaningful 

concepts – referred to as features – as directions in their activation spaces. The superposition hypothesis 
accepts the idea of linear representations and further hypothesizes that neural networks use the existence of 
almost-orthogonal directions in high-dimensional spaces to represent more features than there are dimensions.


• If one believes these hypotheses, the natural approach is to use a standard method called (sparse) dictionary 
learning. The basic idea is to learn a dictionary of basic elements (called atoms) so that each data sample 
can be approximated as a sparse linear combination of those atoms. A specific approximation of dictionary 
learning called a sparse autoencoder (SAE) appears to be very effective.


• SAEs are an instance of a family of “sparse dictionary learning” algorithms that seek to decompose data into a 
weighted sum of sparsely active components.


• We are applying SAEs to residual stream activations halfway through the model (i.e. at the “middle layer”).

Figure source: https://www.mdpi.com/2624-831X/4/3/16

We will learn about auto-encoders 
in the next lecture.











Tracing thoughts
• https://www.anthropic.com/research/tracing-thoughts-language-model


• Goal: Knowing how models like Claude think would allow us to have a 
better understanding of their abilities, as well as help us ensure that they’re 
doing what we intend them to. For example:


• Claude can speak dozens of languages. What language, if any, is it using 
"in its head”?


• Claude writes text one word at a time. Is it only focusing on predicting the 
next word or does it ever plan ahead?


• Claude can write out its reasoning step-by-step. Does this explanation 
represent the actual steps it took to get to an answer, or is it sometimes 
fabricating a plausible argument for a foregone conclusion?

https://www.anthropic.com/research/tracing-thoughts-language-model


Method
• First, we identify features, interpretable building blocks that the model uses 

in its computations. Second, we describe the processes, or circuits, by 
which these features interact to produce model outputs.


• Although the basic premise of studying circuits built out of sparse coding 
features sounds simple, the design space is large.


• We extract features using a variant of transcoders rather than SAEs, which 
allows us to construct an interpretable “replacement model” that can be 
studied as a proxy for the original model. Importantly, this approach allows us 
to analyze direct feature-feature interactions.


• At the same time, we recognize the limitations of our current approach. Even 
on short, simple prompts, our method only captures a fraction of the total 
computation performed by Claude, and the mechanisms we do see may 
have some artifacts based on our tools which don't reflect what is going on in 
the underlying model. It currently takes a few hours of human effort to 
understand the circuits we see, even on prompts with only tens of words. 







• How does a system trained to predict the next word in a sequence learn to calculate, say, 36+59, without 
writing out each step?

• Maybe the answer is uninteresting: the model might have memorized massive addition tables and simply 
outputs the answer to any given sum because that answer is in its training data. Another possibility is that it 
follows the traditional longhand addition algorithms that we learn in school.

• Instead, we find that Claude employs multiple computational paths that work in parallel.





Claude sometimes makes up plausible-sounding steps to get where it wants to go. From a reliability perspective, the problem is that Claude’s 
"faked" reasoning can be very convincing. We explored a way that interpretability can help tell apart "faithful" from "unfaithful" reasoning.
Even though it does claim to have run a calculation, our interpretability techniques reveal no evidence at all of that calculation having occurred. 
Even more interestingly, when given a hint about the answer, Claude sometimes works backwards, finding intermediate steps that would lead to 
that target, thus displaying a form of motivated reasoning.



Other LLM topics I want 
to mention briefly



Scaling laws
• https://arxiv.org/abs/2001.08361 Scaling Laws for Neural Language Models


• predicts the performance of larger models from smaller ones


• Landmark paper (led by a former theoretical physics professor, Jared Kaplan)

https://arxiv.org/abs/2001.08361




Alignment Research
• LLM alignment research focuses on making large language models (LLMs) behave in ways that are 

helpful, honest, and harmless.


• Approaches:


• System prompt: “Do not provide any harmful information…”


• Basic Training: RLHF, SFT


• "Constitutional AI”. Uses AI-generated feedback guided by a "constitution" (set of principles, like 
honesty or fairness) to refine the model without human labor.


• Mechanistic interpretability (see previous section)


• Example from the Anthropic website:



Uncertainy Quantification, Error Correction
• A key difficulty to solving novel problems (where the true answer is 

not known) is to spot errors in a long reasoning chain.


• Humans are good at verifying their own steps, and judging where in the 
reasoning chain they may be wrong. Models currently are not. 


• Simple approach (does not work very well): Ask a second LLM to 
verify the first.


• Current model output (without applying additional methods) provide no 
information about potential mistakes.  

• Training models to admit defeat when needed, rather than generating a 
wrong but plausible looking output, is difficult.


• Uncertainty quantification is a large research area for LLMs but there 
seems to be no good general solution that would be useful for our 
reasoning problems.



Uncertainty Quantification
• https://arxiv.org/pdf/2410.15326   A Survey of Uncertainty Estimation in LLMs: Theory Meets Practice


• Here are some possible methods:


• A. Log Probability Analysis 

• Identify inconsistencies, hallucinations, or low-confidence spans based on per-token log-probs.


• Can work on chain-of-thought (CoT) reasoning or math problems, but not very good.


• B. Consistency Checks 

• Re-ask the model the same question with different prompts or formats (prompt ensembling).


• Disagreement across outputs = possible error.


• C. Self-verification & Reflexion 

• Ask the model to verify or critique its own answer.


• D. External Tool Verification 

• Use external tools (calculators, code interpreters, fact-checking systems) to verify generated content.


• Especially useful for math, code, and factual QA.

https://arxiv.org/pdf/2410.15326


• Reading for this lecture:  
• This lecture was based in part on the books by Bishop and Prince, linked 

on the website. Many figures were taken from these books. 

Course logistics


