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Unsupervised models
• In unsupervised learning we ask how can we model the data 

distribution P(X)? 


• Note that a model for P(X) will allow us to sample from it, meaning 
that when we’re doing UL, we are typically learning a generative 
model.


• P(X) could be the PDF of images of people for example. Not a prior a 
well-defined concept.


• Some generative models allow us “only” to sample (e.g. diffusion 
models), while others model the exact PDF (e.g. normalizing flows).


• There are also unsupervised algorithms that are not generative, e.g. k-
means and t-SNE.



Common Generative Models

Figure credit: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

One can also add autoregressive models such as transformer, which we discussed before.



Latent Space
• Underlying most approaches to UL is the idea of a ‘latent space’ where 

everything become simpler.


• Intuitively, ‘understanding’ something means knowing how to describe it 
efficiently. From this point of view, understanding has a lot to do with 
(mildly lossy) compression.


• Recall how this works for an auto-encoder:


• Many of the techniques we discuss are ways to learn better latent 
spaces.



Diffusion Models: DDPM



GPT4o: Make an image of a physics professor teaching a class about 
AI in physics. Make it photorealistic.



• The landscape of generative models is currently dominated by 
transformers (for text) and diffusion models (for images, video). 
We already studied transformers, now let’s talk about the latter.


• Diffusion is a training process rather than an architecture. 


• For example, OpenAI’s Sora uses a Diffusion Transformer, i.e. the 
transformer model is used as a component of the diffusion model. 


• Diffusion can be used to train many architectures as 
generative models: CNNs, transformers, graphs neural 
networks etc.   


• Diffusion models have taken over GANs as the best performing 
models / training process for generative models. 


• They scale well, are easy to parallelize, and are easier to train than 
GANs (no mode collapse). But they are computationally expensive to run.

Importance of Diffusion Models



• This is a large topic that could easily cover a few weeks of classes. 
Much more details can be found here:


• Bishop DL book https://www.bishopbook.com/ (main reference for 
this lecture)


• https://arxiv.org/abs/2209.00796 Diffusion Models: A Comprehensive 
Survey of Methods and Applications


• https://lilianweng.github.io/posts/2021-07-11-diffusion-models/ 


• Overview of diffusion model architectures: https://encord.com/blog/
diffusion-models/ 

References

Figure credit: Akhil Premkumar, KICP
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• Diffusion models are similar to normalizing flows and other generative 
models in that they start with a simple (usually Gaussian) latent 
space distribution p(z) and then progressively deform it into a 
highly flexible distribution p(x) of the data.


• This deformation is done using a diffusion process (physics!).

Latent space to target space

Figure credit: Akhil Premkumar, KICP



Original idea: https://arxiv.org/abs/1503.03585 Deep Unsupervised Learning using Nonequilibrium Thermodynamics 

https://arxiv.org/abs/1503.03585


• We will focus on the most popular version of diffusion models, “denoising diffusion 
probabilistic models” (DDPM). 


• Pictorially the process works as follows


• The noise to data (denoising) process is learned by a neural network (e.g. a U-Net), 
which is applied many times (roughly 100 to 1000 times). 

DDPM

https://arxiv.org/pdf/2209.00796.pdf



• Given a data point sampled from a real data distribution , we define a forward 
diffusion process in which we add small amounts of Gaussian noise to the sample in  
steps, producing a sequence of noisy samples .


• The transition probability is 





• The  parameter, , controls the amount of noise and there are different possible 
values (noise schedules).


• It is possible sample  at any arbitrary time step  in a closed form due to the properties of 
Gaussians:


             and thus     


where  and 

x0 ∼ q(x)
T

x1, …, xT

q(xt |xt−1) = 𝒩(xt; 1 − βtxt−1, βtI)

q(x1:T |x0) =
T

∏
t=1

q(xt |xt−1)

βt βt ≪ 1

xt t

q(xt |x0) = 𝒩(xt; ᾱt x0, (1 − ᾱt)I) xt = ᾱt x0 + 1 − ᾱtϵ

αt = 1 − βt ᾱt = ∏t
i=1 αi

Forward Diffusion Process



• To reverse the process we would need to know the transition probabilities . 
They cannot be directly calculated. Instead we learn a model  to approximate these 
conditional probabilities.


• The reverse transition probabilities for  are also Gaussian (proof left out)





but now we need to parametrize the mean and covariance with a deep neural 
network. 

q(xt−1 |xt)
pθ

βt ≪ 1

pθ(xt−1 |xt) = 𝒩(xt−1; μθ(xt, t), Σθ(xt, t))

Reverse Diffusion Process

Figure credit:  Ho et al. 2020 

https://arxiv.org/abs/2006.11239


• Training the neural network that parametrizes the reverse diffusion process is somewhat 
involved. 


• The obvious training objective would be negative log-likelihood  where x0 is 
the data. Unfortunately this involves an intractable integral over all diffusion trajectories.


• So instead one uses a related quantity called the evidence lower bound (ELBO) or 
variational lower bound (VLB). The VLB can be evaluated by sampling over the training 
set. 

−log pθ(x0)

Variational Lower Bound (VLB)



Evaluating the VLB

We parameterize the reverse diffusion as a 
Gaussian with learned means and variances:

Algorithm
Recall the forward process:



• Starting from the general equation for the VLB on the last slide there are a number of analytic 
tricks and simplifications that people use to arrive at the loss function usually used in practice. 
The steps are written out for example here: https://lilianweng.github.io/posts/2021-07-11-
diffusion-models/ 


• It turns out that it is somewhat easier to predict the noise  in an image rather than to predict the 
de-noised mean . 


• While the calculations are cumbersome, the final simplified result is intuitive:





ϵ
μ

Lsimple
t = 𝔼t∼[1,T ],x0,ϵt [ ϵt − ϵθ(xt, t)

2]
= 𝔼t∼[1,T ],x0,ϵt [ ϵt − ϵθ ( ᾱt x0 + 1 − ᾱtϵt, t)

2

]

Loss function

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Training algorithm

Figure credit: Bishop Deep Learning



Sampling algorithm

Figure credit: Bishop Deep Learning



• Why do we need to run diffusion in many small steps rather than one large 
one?


• From the original paper: “The essential idea, inspired by non-
equilibrium statistical physics, is to systematically and slowly 
destroy structure in a data distribution through an iterative forward 
diffusion process.” https://arxiv.org/pdf/1503.03585.pdf 


• If we were to add all the noise in one step, it would be akin to destroying 
all the data's structure immediately, which is very difficult to reverse. By 
adding noise slowly, the model learns a series of simpler denoising 
steps, which together can effectively reconstruct the original data from 
noise.


• Adding noise gradually helps maintain the stability of the training 
process. Abrupt changes can lead to training instabilities, while 
gradual changes allow the model to adapt slowly and steadily.

Why does diffusion work?

https://arxiv.org/pdf/1503.03585.pdf


Example from my own research: 
Super-resolution Emulator 
Super-Resolution Emulation of Large Cosmological Fields with 
a 3D Conditional Diffusion Model https://arxiv.org/abs/
2311.05217 

Collaborators: 

Adam Rouhiainen,

UW Madison Physics

Prof. Gary Shiu,

UW Madison Physics

Prof. Kangwook Lee,

UW Madison ECE & CS

Michael Gira,

UW Madison ECE & CS,


Microsoft

https://arxiv.org/abs/2311.05217
https://arxiv.org/abs/2311.05217


Super-resolution Emulators
• Cosmology is increasingly simulation-driven. Simulations are required for 

theoretical studies, statistical method development and parameter inference. 


• High-resolution baryonic hydro-simulations are computationally extremely 
expensive. Not possible on a realistic survey volume.


• Low-resolution dark matter simulations on the other hand are cheap to make 
on large volumes


• Idea of super-resolution (SR) emulators: Run low-res (LR) dark matter sim and 
upgrade to high-res (HR) hydro simulation with a generative neural network.

Superresolution



Conditional diffusion for Super-resolution
• A conditional flow or conditional diffusion model can learn how small-

scale structure reacts to large-scale structure, probabilistically, at field 
level.


• We started with the normalizing flows. However we found that existing 
NFs in 3d are not expressive enough, so we switched to diffusion 
models. 

P(small-scale structure | large-scale structure)

Low resolution IllustrisTNG DMHigh resolution IllustrisTNG 
gas density

Here:



Outpainting (Conditional Patching)

P(high resolution | low resolution, neighboring high resolution)

New super-resolution 
region gets generated 

conditioned on low 
resolution map and 
neighbour regions.

• Important ingredient: Locality of structure formation. Need only small 
volume HR training simulations to learn the complicated hydro 
physics.


• We developed a 3d “outpainting” procedure to make in principle 
arbitrarily large SR simulations with smooth patching.



Results



• Model: 

• For the model we use a DDPM based on the Palette image-to-
image code which we generalized from 2d to 3d. 


• The de-noising is learned by a U-Net with added self-attention layers, 
with about 30 million parameters in total. Training ~3 days.


• We use the standard DDPM sampler with 2000 steps. 


• Training data: 

• High res: Illustris-TNG 300 baryon density, sampled on 2643 px cube.


• Low res: Custom AREPO dark matter simulation using the same 
initial conditions as Illustris-TNG. 


• Test data: New low-res AREPO dark matter simulations with different 
initial conditions.

Details of our Setup



U-Net architecture 
for de-noising



Results: SR matches HR on validation data



Making larger volumes than the training data

This is a 3d “Illustris-TNG 600”, where we increased the volume by a factor of 
8 compared to the training data. Current limitation: Sample generation time. 




• https://arxiv.org/abs/2311.17141 (Not from my group)


•

Another example in cosmology: Diffusion on Graphs NNs

https://arxiv.org/abs/2311.17141


Score-based diffusion, 
Relation to physics



• Given a probability density function , its (Stein) score function is defined as the 
gradient of the log probability density  with respect to the data  rather 
than the model parameter . 


• It is a vector field that points to directions along which the probability density 
function has the largest growth rate.


• Learning the score function is closely related to learning how to denoise. In fact, 
denoising a noisy image toward the clean data manifold gives an estimate of 
the score function — the gradient of the log-density. Score-based generative 
models use this connection to train on noisy data and learn how to reverse the 
corruption process.

p(x)
∇xlog p(x) x

θ

The score function



• The key idea of score-based generative models (SGMs) is to perturb data with a 
sequence of intensifying Gaussian noise and jointly estimate the score 
functions for noisy data distributions by training a deep neural network model 
conditioned on noise levels. 


• For score matching, the loss function is 





which can be re-written in a computable way for Gaussian noise perturbations.


• After one has estimated the score function, there are several different methods how 
one can sample from it. The classic one is called “Langevin Dynamics”, a physics 
related method.  

• The learned score can also be used as a generative prior in a Bayesian data 
analysis.

𝔼t∼[1,T],x0∼q(x0),xt∼q(xt|x0) [λ(t)2 ∇xt
log q(xt) − sθ(xt, t)

2]

Score-based Generative Models (briefly)



• In physics, diffusion is modelled by a stochastic differential equation





where  and  are the drift and diffusion functions and w is a Wiener process (Brownian 
motion) 

• Both DDPM and score matching generative models are discretization of this SDE. 


• It can be mathematically shown that there is a reverse diffusion SED:


• For an analysis of diffusion models by a physicist see https://arxiv.org/abs/2310.04490 Generative 
Diffusion From An Action Principle

dx = f(x, t)dt + g(t)dw

f(x, t) g(t)

Relation to physics: Stochastic differential equations

https://arxiv.org/abs/2011.13456

https://arxiv.org/abs/2310.04490


Relation to physics: PDE vs SDE (briefly)

This slide is from Jordan Cotler’s talk here: https://pdf.pirsa.org/files/25040095.pdf 

There are two different ways to sample from a PDF by evolving a system in time. 

https://pdf.pirsa.org/files/25040095.pdf


We do not sample using Fokker–Planck — it’s just the theoretical backbone describing the evolution of the density, not individual samples.

In diffusion models, we sample using Langevin-like or reverse-time SDEs

In statistical mechanics and information 
theory, the Fokker–Planck equation is 
a partial differential equation that describes 
the time evolution of the probability 
density function of the velocity of a particle 
under the influence of drag forces and 
random forces, as in Brownian motion.

The stochastic Langevin equation is a type 
of stochastic differential equation that 
describes the time evolution of a 
system subject to both deterministic 
and stochastic forces. It is often used to 
model phenomena like Brownian 
motion, where a small particle is subject 
to random impacts from the surrounding 
fluid molecules. 

https://www.google.com/search?cs=0&sca_esv=4f1f0cd305a72421&sxsrf=AHTn8zpObrId7raYGGQGWKgxu8x5PEO7pg%3A1744732996554&q=Brownian+motion&sa=X&ved=2ahUKEwi7ucHztNqMAxXFkIkEHZLXLhkQxccNegQIBxAB&mstk=AUtExfBMqPt5hshhvAnQbJ-bitaqVfteaf_w1PsWp7AEd5SAVNtqps8j8nVUZlTqit5lVbWeJT9FjfMYVRpISwMS-ouDDWtodyDnGZoPbGDEs6q0Aan2aKK-qhPfHhKiiWC1tfYC5-AMAuGC0NF0PedC1eVurdNk7ATCZrREphEn0kyu2S9qLrDjMtv-1NYI_uCyZDw952cJvUcVOPBCmQZgePhRlo-o509QYUBLn7KBMG9HdTlkcstWRCm7omj52Zn7iZZVHf4G4TWxtR3sX2Scexpm&csui=3
https://www.google.com/search?cs=0&sca_esv=4f1f0cd305a72421&sxsrf=AHTn8zpObrId7raYGGQGWKgxu8x5PEO7pg%3A1744732996554&q=Brownian+motion&sa=X&ved=2ahUKEwi7ucHztNqMAxXFkIkEHZLXLhkQxccNegQIBxAB&mstk=AUtExfBMqPt5hshhvAnQbJ-bitaqVfteaf_w1PsWp7AEd5SAVNtqps8j8nVUZlTqit5lVbWeJT9FjfMYVRpISwMS-ouDDWtodyDnGZoPbGDEs6q0Aan2aKK-qhPfHhKiiWC1tfYC5-AMAuGC0NF0PedC1eVurdNk7ATCZrREphEn0kyu2S9qLrDjMtv-1NYI_uCyZDw952cJvUcVOPBCmQZgePhRlo-o509QYUBLn7KBMG9HdTlkcstWRCm7omj52Zn7iZZVHf4G4TWxtR3sX2Scexpm&csui=3


DDPM vs SGM
You can think of SGMs as a generalization or alternative formulation of DDPMs.



• Reading for this lecture:  
• This lecture was based in part on the book by Bishop linked on the website.

Course logistics


