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Common Generative Models
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A fifth class are autoregressive models based on transformers, which we discussed before.

Figure credit: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



Recall: DDPM

 We will focus on the most popular version of diffusion models, “denoising diffusion
probabilistic models” (DDPM).

» Pictorially the process works as follows

Data
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* The noise to data (denoising) process is learned by a neural network (e.g. a U-Net),
which is applied many times (roughly 100 to 1000 times).
https://arxiv.org/pdf/2209.00796.pdf



Short introduction to
GANSs

Plots and discussion from Bishop book

https://arxiv.org/abs/2308.16316 Ten Years of Generative Adversarial Nets (GANSs): A survey of the state-of-the-art



https://arxiv.org/abs/2308.16316

One night in 2014, lan Goodfellow went drinking to celebrate with a fellow
doctoral student who had just graduated. At Les 3 Brasseurs (The Three

Brewers), a favorite Montreal watering hole, some friends asked for his help
with a thorny project they were working on: a computer that could create
photos by itself.

Researchers were already using neural networks, algorithms loosely modeled
on the web of neurons in the human brain, as “generative™ models to create
plausible new data of their own. But the results were often not very good:
images of a computer-generated face tended to be blurry or have errors like
missing ears. The plan Goodfellow’s friends were proposing was to use a
complex statistical analysis of the elements that make up a photograph to
help machines come up with images by themselves. This would have
required a massive amount of number-crunching, and Goodfellow told them
it simply wasn’t going to work.

But as he pondered the problem over his beer, he hit on an idea. What if you
pitted two neural networks against each other? His friends were skeptical, so
once he got home, where his girlfriend was already fast asleep, he decided to
give it a try. Goodfellow coded into the early hours and then tested his
software. It worked the first time.

What he invented that night is now called a GAN, or “generative adversarial
network.” The technique has sparked huge excitement in the field of
machine learning and turned its creator into an Al celebrity.

https://www.technologyreview.com/2018/02/21/145289/the-ganfather-the-man-whos-given-machines-the-gift-of-imagination/



Are GANSs still useful?

 GANSs are still actively used although they have lost a lot of ground to diffusion
models.

* An advantage over diffusion: GANs generate samples in a single forward pass,
whereas diffusion models typically require hundreds of denoising steps
(though that’s improving with techniques like DDIM, LCM, etc.).

* The adversarial training objective is very interesting and | think it is still worth
to spend a few slides on them.

» |deas often become important again in machine learning (and physics).



Adversarial training
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Schematic illustration of a GAN in which a discriminator neural network d(x, ¢) is trained

to distinguish between real samples from the training set, in this case images of kittens,

~ and synthetic samples produced by the generator network g(z, w). The generator aims
to maximize the error of the discriminator network by producing realistic images, whereas
the discriminator network tries to minimize the same error by becoming better at distin-
guishing real from synthetic examples.




Loss function
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Loss function
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Loss function
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GAN training

 GANSs are not easy to train successfully due to the adversarial learning.

* There is no clear metric of progress because the objective can go up as well
as down during training.

 Problem of mode collapse:

e the generator network weights adapt during training such that all latent-
variable samples z are mapped to a subset of possible valid outputs (e.g.
only images of the number 3).

e The discriminator then assigns the value 0.5 to these instances, and
training ceases.



GAN training problems
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Conceptual illustration of why it can be difficult to train GANs, showing a simple one-
dimensional data space z with the fixed, but unknown, data distribution ppat.(z) and the
initial generative distribution pc(z). The optimal discriminator function d(z) has virtually
zero gradient in the vicinity of either the training or synthetic data points, making learn-

ing very slow. A smoothed version d(z) of the discriminator function can lead to faster
learning.

 Because the data and generative distributions are so different, the optimal discriminator
function d(x) is easy to learn and has a very steep fall-off with virtually zero gradient in the
vicinity of either the real or synthetic samples.

* This can be addressed e.g. by using a smoothed version d~(x) of the discriminator function.

 Numerous other modifications to the GAN error function and training procedure have been
proposed to improve training.



WGAN (briefly)

* A more direct way to ensure that the generator distribution pg (X) moves towards the data
distribution pdata (X) is to modify the error criterion to reflect how far apart the two distributions
are in data space.

« This can be measured using the Wasserstein distance, also known as the earth mover’s
distance.

* Imagine the distribution pc(x) as a pile of earth that is transported in small increments to
construct the distribution pdata (X). The Wasserstein metric is the total amount of earth
moved multiplied by the mean distance moved.

» |n practice, this cannot be implemented directly, and it is approximated by using a
discriminator network that has real-valued outputs.

* This gives rise to the Wasserstein GAN or WGAN

« WGAN have more stable training, meaningful loss curves, better convergence behavior.

https://sbl.inria.fr/doc/Earth_mover_distance-user-manual.html



GAN vs WGAN

Ordinary GAN (Goodfellow et al., 2014)

« Uses the Jensen-Shannon (JS) divergence to measure the distance between the real data

distribution P, and the generated data distribution P

e Objective:

min max B, p, [log D(z)] + E.-p.[log(1 — D(G(2)))

« This setup can suffer from vanishing gradients and mode collapse, especially when P, and Pg have

little overlap.

Wasserstein GAN (Arjovsky et al., 2017)

« Replaces JS divergence with the Wasserstein-1 distance (a.k.a. Earth Mover's Distance), which

provides a better behaved and meaningful gradient signal, even when P, and Pg are disjoint.

* Objective:
i E..p|D — K, p|D
min max E,.p, [D(2)] — Er.[D(G(2))
here D is the set of 1-Lipschitz functi forced via: :
wnere IS eseto IPSCNITZ TUNCtIons, enrorced via ;Méd %4 l’l (gs C o AN 7/(‘//06

* Weight clipping in the original WGAN

e Gradient penalty in WGAN-GP (improved version)

Think of it as the minimal "cost" of transporting mass from the generated distribution to match the real one.
Even if the two distributions don't overlap at all, it still gives a finite and informative gradient.



GANs for images

* GANs for images use versions of CNNs for both the generator and the
discriminator.

 Discriminator uses a standard CNN classifier

 Generator maps lower dimensional latent space to higher dimensional
image, often using transposed convolutions.

conv 4
conv 3

conv 2
project and conv 1 —
Z reshape —_—
| | 4 x4 x 1024 S
100 8 x 8 x 512
16 x 16 x 256

32 x 32 x 128

64 x 64 x 3

Figure 17.4 Example architecture of a deep convolutional GAN showing the use of transpose convolutions to
expand the dimensionality in successive blocks of the network.



GANSs learn a meaningful latent space

¥
‘ i' {:0 ’ '&‘1
-l -

i on
- -

Continuous deformations in latent space



GANSs learn a meaningful latent space

Figure 17.10 An example of vector
arithmetic in the latent space of a
trained GAN. In each of the three
columns, the latent space vectors that
generated these images are averaged
and then vector arithmetic is applied
to the resulting mean vectors to cre-
ate a new vector corresponding to the
central image in the 3 x 3 array on the
right. Adding noise to this vector gen-
erates another eight sample images.
The four images on the bottom row
show that the same arithmetic applied
directly in data space simply results
in a blurred image due to misalign-
ment. [From Radford, Metz, and Chin-
tala (2015) with permission.]

man man woman
with glasses without glasses without glasses

-+ 6=

Arithmetic in latent space

Results of doing the same
arithmetic in pixel space



WGAN GAN in cosmology

https://arxiv.org/abs/1904.12846 HIGAN: Cosmic Neutral Hydrogen with Generative Adversarial Networks

Figure 1. 3D HI distributions from IllustrisTNG (top rows) and WGAN (bottom rows). The network successfully produces spatial
distributions with all the elements of the HI web: filaments, voids and dense regions.


https://arxiv.org/abs/1904.12846

Cycle GANs



CycleGANs for image-to-image translation

Figure 17.6 Examples of image translation
using a CycleGAN showing the synthesis of a
photographic-style image from a Monet paint-
ing (top row) and the synthesis of an image
in the style of a Monet painting from a photo-
graph (bottom row). [From Zhu et al. (2017)
with permission.]
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« Style transfer (image-to-image) is useful in physics.

 CycleGANs do not require paired training data. This is a key strength.



CycleGANs for image-to-image translation

 The aim is to learn two bijective (one-to-one) mappings, one that goes from
the domain X of photographs to the domain Y of Monet paintings and one
In the reverse direction.

« To achieve this, CycleGAN makes use of two conditional generators, gX
and gY, and two discriminators, dX and dY.

 \We need to ensure that when a photograph is translated into a painting
and then back into a photograph it should be close to the original
photograph, thereby ensuring that the generated painting retains sufficient
information about the photograph to allow the photograph to be

reconstructed.
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Figure 17.8 Flow of information through a CycleGAN. The total error for the data points x,, and y,, is the sum
of the four component errors.

yn

T, is used as a conditioning input to gy . There is no base distribution 2 sampled in this architecture.

The transformation is fully deterministic and conditional.



CycleGANs for image-to-image translation

Figure 17.7 Diagram showing how the cycle
consistency error is calculated for an example
photograph x,. The photograph is first mapped
into the painting domain using the generator gy, @

and the resulting vector is then mapped back Eecye \

into the photograph domain using the genera- o T—

tor gx. The discrepancy between the resulting gx(gy (Xn)) @ g2v (%)
photograph and the original x,, defines a contri-
bution to the cycle consistency error. An analo-
gous process is used to calculate the contribu- X Y
tion to the cycle consistency error from a paint-
ing y.» by mapping it to a photograph using gx photographs paintings
and then back to a painting using gy .
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CycleGAN in cosmology

https://arxiv.org/abs/2303.07473 Invertible mapping between fields in CAMELS
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https://arxiv.org/abs/2303.07473

Recall: Normalizing
Flows



Recall Normalizing flows
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Figure 18.3

lllustration of the real NVP
normalizing flow model ap-
plied to the two-moons data
set showing (a) the Gaus-
sian base distribution, (b)
the distribution after a trans-
formation of the vertical axis
only, (c) the distribution after
a subsequent transformation
of the horizontal axis, (d) the
distribution after a second
transformation of the vertical
axis, (e) the distribution af-
ter a second transformation
of the horizontal axis, and
(f) the data set on which the
model was trained.




Recall auto-regressive flows
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Neural ODE, Neural ODE
flows



Neural ODE

 We have seen that neural networks are especially useful when they comprise
many layers of processing, and so we can ask what happens if we explore
the limit of an infinitely large number of layers.

« (Consider a residual network where each layer of processing generates an
output given by the input vector with the addition of some parameterized
nonlinear function of that input vector:

Lt =1,

c+ oy L japels the layers in the network.

* Note that we have used the same function at each layer, with a shared
parameter vector w.

* |n the infinite limit of the number of layers we get an ordinary (single
parameter t) differential equation:

dz(t)
dt

= f(z(t), w)



Neural ODE
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Can be evaluated using standard numerical integration packages.

The simplest method for solving differential equations is Euler’s forward integration method,
which corresponds to the expression: dz(t)

dt
But there are better ODE solvers / numerical integrators.

= f(z(t), w)




https://arxiv.org/pdf/1806.07366 Neural Ordinary Differential Equations

Residual Network ODE Network
> T BN
S
4 T 4\ +
53 l+ S 3N
8, | 8.0 t

-5 0 5 -5 0 5
Input/Hidden/Output Input/Hidden/Output

Figure 18.5 Comparison of a conventional layered network with a neural differential equation. The di-
agram on the left corresponds to a residual network with five layers and shows trajectories
for several starting values of a single scalar input. The diagram on the right shows the re-
sult of numerical integration of a continuous neural ODE, again for several starting values
of the scalar input, in which we see that the function is not evaluated at uniformly-spaced
time intervals, but instead the evaluation points are chosen adaptively by the numerical
solver and depend on the choice of input value. [From Chen et al. (2018) with permission.]


https://arxiv.org/pdf/1806.07366
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o We hav e :4/'00:7[ 2(0} an waoﬂ/ to Zrarq
M#/W/ 2 (T) which wsnimides  Loss £

o §/""‘/(‘ ﬂ“fla —o/,’,/% ’Féraajé ﬁpé Sdé/(’/ }5 7[0‘0 c&s?ll%
h.;lm/(; p 4///'01‘4 / sCa 6/’//'//.);(/ wrm/éﬂo//; ~
ca'z//;rofa/t! ana 50741? 7[¢ éﬂ(/</o/~0/9.
0 Dr//fzz t6 v m/jw@/'-
a(t) =

[ Y

dL
dz(t)

whih ;q//;f/'e; dzit) = —a(t)' V. f(z(t), w)

iy leads Ao Fhe followiy ile gral [or
the Lo5s Artr /}a//&{ ;

Vol = — /0 a(t)TV., f(z(t), w) dt



What are neural ODE good for?

 Advantages:

 Neural ODEs can naturally handle continuous-time data in which
observations occur at arbitrary times.

* Physics of course has a lot of such data

« Adaptive computation: A high level of accuracy in the solver can be used
during training, with a lower accuracy, and hence fewer function
evaluations, during inference in applications for which compute resources
are limited.

« Efficient memory: One benefit of neural ODEs trained using the adjoint
method, compared to conventional layered networks, is that there is no
need to store the intermediate results of the forward propagation, and
hence the memory cost is constant.



Neural ODE flows

 \We can make use of a neural ordinary differential equation to define an
alternative approach to the construction of tractable normalizing flow
models.

* A neural ODE defines a highly flexible transformation from an input vector z(0) to
an output vector z(T) in terms of a differential equation of the form

dz(t)
dt

= f(z(t), w)

 Under this transformation densities transform as

dlnpd(:(t)) = —Tr (af(ft)>

Which we can integrate.

* The resulting framework is known as a continuous normalizing flows.



Figure 18.6 lllustration of a continu-
ous normalizing flow showing a simple
Gaussian distribution at ¢ = 0 that is
continuously transformed into a multi-
modal distribution at ¢t = 7. The flow
lines show how points along the z-axis
evolve as a function of t. Where the
flow lines spread apart the density is re-
duced, and where they move together
the density is increased.




Example: Neural ODE in cosmology

* Neural ODE are attractive because of their elegance, but they are not
necessarily the best performing tool.

 As an example, here is a paper that uses them in cosmology:

d I'le > astro-ph > arXiv:2207.05509

Astrophysics > Cosmology and Nongalactic Astrophysics

[Submitted on 12 Jul 2022 (v1), last revised 19 Jul 2022 (this version, v2)]

Hybrid Physical-Neural ODEs for Fast N-body
Simulations

Denise Lanzieri, Francois Lanusse, Jean-Luc Starck

We present a new scheme to compensate for the small-scales approximations resulting from
Particle-Mesh (PM) schemes for cosmological N-body simulations. This kind of simulations
are fast and low computational cost realizations of the large scale structures, but lack
resolution on small scales. To improve their accuracy, we introduce an additional effective
force within the differential equations of the simulation, parameterized by a Fourier-space
Neural Network acting on the PM-estimated gravitational potential. We compare the results
for the matter power spectrum obtained to the ones obtained by the PGD scheme (Potential
gradient descent scheme). We notice a similar improvement in term of power spectrum, but
we find that our approach outperforms PGD for the cross-correlation coefficients, and is
more robust to changes in simulation settings (different resolutions, different cosmologies).



Symmetric flows for molecules (graphs)

Search...

d I‘>{1V > ¢s > arXiv:2105.09016

Computer Science > Machine Learning

[Submitted on 19 May 2021 (v1), last revised 14 Jan 2022 (this version, v4)]
E(n) Equivariant Normalizing Flows

Victor Garcia Satorras, Emiel Hoogeboom, Fabian B. Fuchs, Ingmar Posner, Max
Welling

This paper introduces a generative model equivariant to Euclidean symmetries: E(n)
Equivariant Normalizing Flows (E-NFs). To construct E-NFs, we take the discriminative E(n)
graph neural networks and integrate them as a differential equation to obtain an invertible
equivariant function: a continuous-time normalizing flow. We demonstrate that E-NFs
considerably outperform baselines and existing methods from the literature on particle
systems such as DW4 and LJ13, and on molecules from QM9 in terms of log-likelihood. To
the best of our knowledge, this is the first flow that jointly generates molecule features
and positions in 3D.

N(0,1)

gQ:Zx7Zh'_>X7h

Figure 1: Overview of our method in the sampling direction. An equivariant invertible function gy
has learned to map samples from a Gaussian distribution to molecules in 3D, described by x, h.



Flow Matching

 Flow matching is a method for training generative models using vector fields
that transform a simple base distribution (like a Gaussian) into a complex data
distribution — without solving the ODE during training. It’s closely related to
neural ODE flows but avoids some of the expensive computations.

e https://diffusionflow.qgithub.io/

* Flow matching and diffusion models are two popular frameworks in
generative modeling. Despite seeming similar, there is some confusion in
the community about their exact connection. In this post, we aim to clear
up this confusion and show that diffusion models and Gaussian flow
matching are the same, although different model specifications can
lead to different network outputs and sampling schedules. This is great
news, it means you can use the two frameworks interchangeably.


https://diffusionflow.github.io/

Side note: Other physical
processes for sampling?



Other physical processes as generative models?

« Diffusion models can be seen example of how physics can be used to do
machine learning.

* Since diffusion is a physical process, one may ask if there are other
physical processes which can be use as generative models. This idea was
developed here:

e https://arxiv.org/abs/2209.11178 Poisson Flow Generative Models

e https://arxiv.org/abs/2302.04265 PFGM++: Unlocking the Potential of
Physics-Inspired Generative Models

« https://arxiv.org/abs/2304.02637 GenPhys: From Physical Processes to
Generative Models

 While so far these results have not been very important in practice, let’s have
a quick look in the papers because they are a great example of combining
physics and ML.


https://arxiv.org/abs/2209.11178
https://arxiv.org/abs/2302.04265
https://arxiv.org/abs/2304.02637

Poisson flow from https://arxiv.org/pdf/2209.11178.pdf

V4
Forward ODE >
4 Backward ODE
Forward ODE >
Backward ODE
(b)

Figure 1: (a) 3D Poisson field trajectories for a heart-shaped distribution (b) The evolvements of a

distribution (top) or an (augmented) sample (bottom) by the forward/backward ODEs pertained to
the Poisson field.



Course logistics

e Reading for this lecture:

 This lecture was based in part on the book by Bishop linked on the website.



