
Moritz Münchmeyer

Physics 361 - Machine Learning in 
Physics 

Lecture 23 – More Generative Models 

April 17th 2025 



Common Generative Models

Figure credit: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

A fifth class are autoregressive models based on transformers, which we discussed before.



• We will focus on the most popular version of diffusion models, “denoising diffusion 
probabilistic models” (DDPM). 


• Pictorially the process works as follows


• The noise to data (denoising) process is learned by a neural network (e.g. a U-Net), 
which is applied many times (roughly 100 to 1000 times). 

Recall: DDPM

https://arxiv.org/pdf/2209.00796.pdf



Short introduction to 
GANs

Plots and discussion from Bishop book

https://arxiv.org/abs/2308.16316 Ten Years of Generative Adversarial Nets (GANs): A survey of the state-of-the-art


https://arxiv.org/abs/2308.16316


https://www.technologyreview.com/2018/02/21/145289/the-ganfather-the-man-whos-given-machines-the-gift-of-imagination/



• GANs are still actively used although they have lost a lot of ground to diffusion 
models. 


• An advantage over diffusion: GANs generate samples in a single forward pass, 
whereas diffusion models typically require hundreds of denoising steps 
(though that’s improving with techniques like DDIM, LCM, etc.). 


• The adversarial training objective is very interesting and I think it is still worth 
to spend a few slides on them. 


• Ideas often become important again in machine learning (and physics). 

Are GANs still useful?



Adversarial training



Idea



Loss function



Loss function



Loss function



• GANs are not easy to train successfully due to the adversarial learning.


• There is no clear metric of progress because the objective can go up as well 
as down during training.


• Problem of mode collapse:


• the generator network weights adapt during training such that all latent-
variable samples z are mapped to a subset of possible valid outputs (e.g. 
only images of the number 3).


• The discriminator then assigns the value 0.5 to these instances, and 
training ceases.

GAN training



• Because the data and generative distributions are so different, the optimal discriminator 
function d(x) is easy to learn and has a very steep fall-off with virtually zero gradient in the 
vicinity of either the real or synthetic samples.


• This can be addressed e.g. by using a smoothed version d~(x) of the discriminator function.


• Numerous other modifications to the GAN error function and training procedure have been 
proposed to improve training.

GAN training problems



• A more direct way to ensure that the generator distribution pG (x) moves towards the data 
distribution pdata (x) is to modify the error criterion to reflect how far apart the two distributions 
are in data space.


• This can be measured using the Wasserstein distance, also known as the earth mover’s 
distance. 

• Imagine the distribution pG(x) as a pile of earth that is transported in small increments to 
construct the distribution pdata (x). The Wasserstein metric is the total amount of earth 
moved multiplied by the mean distance moved.


• In practice, this cannot be implemented directly, and it is approximated by using a 
discriminator network that has real-valued outputs.


• This gives rise to the Wasserstein GAN or WGAN 

• WGAN have more stable training, meaningful loss curves, better convergence behavior.

WGAN (briefly)

https://sbl.inria.fr/doc/Earth_mover_distance-user-manual.html



GAN vs WGAN

Think of it as the minimal "cost" of transporting mass from the generated distribution to match the real one. 
Even if the two distributions don't overlap at all, it still gives a finite and informative gradient.



• GANs for images use versions of CNNs for both the generator and the 
discriminator. 


• Discriminator uses a standard CNN classifier 

• Generator maps lower dimensional latent space to higher dimensional 
image, often using transposed convolutions. 

GANs for images



GANs learn a meaningful latent space

Continuous deformations in latent space 



GANs learn a meaningful latent space

Arithmetic in latent space 



WGAN GAN in cosmology
https://arxiv.org/abs/1904.12846 HIGAN: Cosmic Neutral Hydrogen with Generative Adversarial Networks 

https://arxiv.org/abs/1904.12846


Cycle GANs



• Style transfer (image-to-image) is useful in physics. 

• CycleGANs do not require paired training data. This is a key strength.

CycleGANs for image-to-image translation



CycleGANs for image-to-image translation
• The aim is to learn two bijective (one-to-one) mappings, one that goes from 

the domain X of photographs to the domain Y of Monet paintings and one 
in the reverse direction.


• To achieve this, CycleGAN makes use of two conditional generators, gX 
and gY, and two discriminators, dX and dY. 

• We need to ensure that when a photograph is translated into a painting 
and then back into a photograph it should be close to the original 
photograph, thereby ensuring that the generated painting retains sufficient 
information about the photograph to allow the photograph to be 
reconstructed.



CycleGANs for image-to-image translation



CycleGAN in cosmology
https://arxiv.org/abs/2303.07473   Invertible mapping between fields in CAMELS 

https://arxiv.org/abs/2303.07473


Recall: Normalizing 
Flows



Recall Normalizing flows





Recall auto-regressive flows



Neural ODE, Neural ODE 
flows



• We have seen that neural networks are especially useful when they comprise 
many layers of processing, and so we can ask what happens if we explore 
the limit of an infinitely large number of layers.


• Consider a residual network where each layer of processing generates an 
output given by the input vector with the addition of some parameterized 
nonlinear function of that input vector:


•  labels the layers in the network.


• Note that we have used the same function at each layer, with a shared 
parameter vector w.


• In the infinite limit of the number of layers we get an ordinary (single 
parameter t) differential equation:

Neural ODE



Neural ODE

Can be evaluated using standard numerical integration packages. 

The simplest method for solving differential equations is Euler’s forward integration method, 
which corresponds to the expression: 

But there are better ODE solvers / numerical integrators.



https://arxiv.org/pdf/1806.07366 Neural Ordinary Differential Equations

https://arxiv.org/pdf/1806.07366


Backprop. in Neural ODE



What are neural ODE good for?
• Advantages:


• Neural ODEs can naturally handle continuous-time data in which 
observations occur at arbitrary times.


• Physics of course has a lot of such data


• Adaptive computation: A high level of accuracy in the solver can be used 
during training, with a lower accuracy, and hence fewer function 
evaluations, during inference in applications for which compute resources 
are limited.


• Efficient memory: One benefit of neural ODEs trained using the adjoint 
method, compared to conventional layered networks, is that there is no 
need to store the intermediate results of the forward propagation, and 
hence the memory cost is constant.



Neural ODE flows
• We can make use of a neural ordinary differential equation to define an 

alternative approach to the construction of tractable normalizing flow 
models.


• A neural ODE defines a highly flexible transformation from an input vector z(0) to 
an output vector z(T) in terms of a differential equation of the form 


• Under this transformation densities transform as


Which we can integrate.


• The resulting framework is known as a continuous normalizing flows.





• Neural ODE are attractive because of their elegance, but they are not 
necessarily the best performing tool.


• As an example, here is a paper that uses them in cosmology:

Example: Neural ODE in cosmology



Symmetric flows for molecules (graphs)



Flow Matching
• Flow matching is a method for training generative models using vector fields 

that transform a simple base distribution (like a Gaussian) into a complex data 
distribution — without solving the ODE during training. It’s closely related to 
neural ODE flows but avoids some of the expensive computations.


• https://diffusionflow.github.io/ 


• Flow matching and diffusion models are two popular frameworks in 
generative modeling. Despite seeming similar, there is some confusion in 
the community about their exact connection. In this post, we aim to clear 
up this confusion and show that diffusion models and Gaussian flow 
matching are the same, although different model specifications can 
lead to different network outputs and sampling schedules. This is great 
news, it means you can use the two frameworks interchangeably.

https://diffusionflow.github.io/


Side note: Other physical 
processes for sampling?



• Diffusion models can be seen example of how physics can be used to do 
machine learning. 


• Since diffusion is a physical process, one may ask if there are other 
physical processes which can be use as generative models. This idea was 
developed here:


• https://arxiv.org/abs/2209.11178 Poisson Flow Generative Models


• https://arxiv.org/abs/2302.04265 PFGM++: Unlocking the Potential of 
Physics-Inspired Generative Models


• https://arxiv.org/abs/2304.02637 GenPhys: From Physical Processes to 
Generative Models


• While so far these results have not been very important in practice, let’s have 
a quick look in the papers because they are a great example of combining 
physics and ML. 

Other physical processes as generative models?

https://arxiv.org/abs/2209.11178
https://arxiv.org/abs/2302.04265
https://arxiv.org/abs/2304.02637


Poisson flow from https://arxiv.org/pdf/2209.11178.pdf



• Reading for this lecture:  
• This lecture was based in part on the book by Bishop linked on the website.

Course logistics


