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PDE solving



• Review: https://www.nature.com/articles/s42254-021-00314-5 (plots from this 
source)


• “Despite great progress in simulating multiphysics problems using the numerical 
discretization of partial differential equations (PDEs), one still cannot seamlessly 
incorporate noisy data into existing algorithms, mesh generation remains 
complex, and high-dimensional problems governed by parameterized PDEs 
cannot be tackled. “


• Instead, machine learning based methods can be combined with physics (including 
physical laws or symmetries). This is called “physics-informed machine learning”. 


• Generally speaking, the less we have training data the more physics knowledge can 
help the model to perform.

“Physics-informed machine learning”

https://www.nature.com/articles/s42254-021-00314-5


• Physics knowledge can be included in machine learning in 3 general ways:


• Observational: Physical properties (e.g. symmetries) can be learned directly 
from the observations.


• Inductive biases: Physical properties can be exactly enforced in the model. A 
simple example are CNNs which are hard-coding translational invariance. E.g. 
Formally one can make a NN invariant under any symmetry group. Physics 
can thus be encoded in the model architecture. However, this often leads to 
complex implementations that are difficult to scale. 


• Learning bias: Physical constraints can be enforced in a soft way (i.e. not 
exact) by adding a term to the loss that penalizes violating the constraint (e.g. 
conservation of mass).


• Hybrid methods combine several of these. 

“Physics-informed machine learning”



Solving PDEs with PINNs
• PINNs: “Physics informed neural networks” 
• Physics-informed neural networks (PINNs) integrate the information from both the 

measurements and partial differential equations (PDEs) by embedding the PDEs 
into the loss function of a neural network using automatic differentiation. 


• Example: solving the viscous Burgers’ equation


• We also have some data (boundary condition) so that the solution is uniquely 
defined. 


• Idea: We put the residual of the PDE into the loss function and solve the 
problem as an optimization problem with auto-differentiation. 



Solving PDEs with PINNs
• The Loss thus is



Solving PDEs with PINNs
• The PDE solution is specified by a neural network (rather than some pixelated discretization 

of space), so we get a continuous function. 



Neural Operators
• https://arxiv.org/abs/2309.15325 Neural Operators for Accelerating Scientific 

Simulations and Design

• The core idea behind Fourier Neural Operator is to perform neural network 

operations in the Fourier space (frequency domain), where convolution 
operations become multiplications.


• This approach efficiently captures the global interactions in the data, which are 
crucial for accurately solving PDEs.

https://arxiv.org/abs/2309.15325


Neural Operators

R is a learned operator in Fourier 
space (e.g., a neural network 
modifying Fourier coefficients).



Comparing PDE solving methods
• https://arxiv.org/abs/2210.07182  PDEBENCH: An Extensive Benchmark for 

Scientific Machine Learning

https://arxiv.org/abs/2210.07182


Comparing PDE methods
• The objective is to find some ML-based surrogate, sometimes referred to as an 

emulator, of the forward propagator (i.e. the next time step).

• Baseline ML models for PDE solving:


• Currently neural solvers often don’t outperform classical methods but they are more 
flexible. 



Foundation model for PDEs
• https://arxiv.org/abs/2310.02994 


• At a fundamental level, many physical systems share underlying principles. Many of the equations 
describing physical behavior are derived from universal properties like conservation laws or 
invariances which persist across diverse disciplines like fluids, climate science, astrophysics, and 
chemistry. Can we learn these shared features ahead of time through pretraining and accelerate the 
development of models for new physical systems?


• Results are somewhat encouraging. 

https://arxiv.org/abs/2310.02994


Inverse problems

Review of inverse problems in the 2d image domain: https://arxiv.org/abs/2005.06001 

https://arxiv.org/abs/2005.06001


Example from https://arxiv.org/pdf/1706.04008. c and d are different inverse problem solutions.



Inverse problems
• Inverse problems are ubiquitous in science and engineering, involving the 

recovery of underlying causes (inputs) from observed effects (outputs).

• Examples include 

• medical imaging

• deblurring in vision

• source reconstruction in physics


• Solving inverse problems is challenging because they are often ill-posed 
(i.e., solutions may not exist, be unique, or depend continuously on the 
data).


• Many data analysis problems in research can be formulated as Inverse 
Problems, and we have already encountered some in previous lectures. 


• Machine learning offers powerful tools to tackle these problems, 
especially when traditional methods struggle.



Mathematical formulation

• The “forward operator” (or “forward model”) can be either linear or non-linear. Usually 
it is not invertible (i.e ill-defined). 


• Often one needs to add a regularizer R to make the problem well-defined:

• We often also need an uncertainty or even a full Bayesian answer (distribution of 
solutions) to the inverse problem.



Overview of methods
• There are many different machine learning methods to solve such problems, 

with and without machine learning. 


• They differ in what forward model they address (e.g. linear vs non-linear) and 
what assumptions they make.


• Some approaches require knowledge of the forward model, others don’t.


• We will look through some common techniques without being systematic, 
focussing on machine learning techniques.



Direct supervised approach 
A simple approach: Use a neural network and learn the operation from training data.



Bayesian Inverse Problems
• Bayesian approaches to inverse problems aim to model uncertainty and 

provide posterior distributions over solutions instead of single point estimates.


• Often one can assume a Gaussian likelihood defined by the forward 
model F: 


• Given input x and observation y: 


• In this case, we can then sample from the posterior using MCMC, or 
methods that work for higher dimensionality such as Hamiltonian 
Monte Carlo or Variational Inference. 



Example: Reconstructing the initial conditions of the universe

• Let’s look at an example where the previous technique is used in cosmology: 
reconstructing the initial conditions from observed data. 

Figure credit: Chihway Chang, U Chicago.



Generative priors
• If we know the likelihood, such as the Gaussian case in the previous slide, we 

still need to define a prior to evaluate the posterior. 

• One can use a Generative Prior, to improve the reconstruction. If we can learn 

the prior distribution of the uncorrupted signal x (from simulations thereof), we 
can use this information to de-noise the corrupted signal. 


• We briefly discussed using a normalizing flow as a generative prior in the 
normalizing flows section. 


• Generative priors can also be learned with diffusion models. 

Examples from: https://arxiv.org/pdf/2304.01247



Briefly: Sampling with Diffusion models / Score-Based generative 
models
• Often we can sample from the forward model, but it is non-differentiable and we do not 

have a closed form expression for the likelihood.


• An interesting recent technique for such cases is to use de-noising score-matching 
to learn the posterior. 


• The idea is to perturb the data with noise and to learn to approximate the posterior by 
de-noising it.


• Original idea:


• https://arxiv.org/abs/2011.13456 Score-Based Generative Modeling through 
Stochastic Differential Equations


• https://arxiv.org/abs/2111.08005  Solving Inverse Problems in Medical Imaging with 
Score-Based Generative Models


• Application to the cosmology initials conditions problem: 


• https://arxiv.org/abs/2304.03788 Posterior Sampling of the Initial Conditions of the 
Universe from Non-linear Large Scale Structures using Score-Based Generative 
Models

https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2111.08005
https://arxiv.org/abs/2304.03788


Example: library for inverse problems in imaging

• https://
deepinv.github.io/
deepinv/ 

https://deepinv.github.io/deepinv/
https://deepinv.github.io/deepinv/
https://deepinv.github.io/deepinv/


Example of solving a Linear Inverse 
Problem from my research: Wiener 
filtering
https://arxiv.org/abs/1905.05846



Learning a mathematical operator
• Sometimes it is possible to design a neural network that is specifically 

designed to enforce a mathematical relation.

• In cosmology, one often wants to first reconstruct the data from a noisy operation 

using a linear operation called “Wiener filtering”, which is solving a linear inverse 
problem.


• The problem is that Wiener filtering is too computationally expensive for large 
data sets. 


• We wanted to know if this task can be done better with a Neural network, but 
under several constraints:

• We did not want to use Wiener-filtered training data. Instead we train on the 

likelihood.

• We wanted to enforce the property that the Filtering is linear, but with a filter 

that depends non-linearity on the noise. 



Example from my research: Wiener filtering



Wiener filtering



New neural network architecture



Loss functions and training



Results



Anomaly detection



Anomaly detection (AD)
• Anomaly detection is the task of identifying rare or unusual observations 

in data that do not conform to expected patterns.


• Outside of physics examples: 

• fraud detection


• network security


• fault detection.


• Physics examples: 

• Large Hadron Collider (LHC) generates colossal amounts of data. How 
do we find something unusual without knowing what to look for?


• In astrophysics, for example Fast Radio Bursts were discovered by 
accident long after the data was taken.



Unsupervised AD
• Clustering-Based 

• Use clustering algorithms like k-means, DBSCAN.


• Points far from any cluster center or in small clusters are anomalies.


• Distance-Based 

• Compute distances to nearest neighbors (e.g., k-NN).


• Points with high average distance are anomalies.


• Density-Based 

• Use density estimation to find regions of high probability.


• Low-density points are considered anomalies.



AD with Dimensionality Reduction
• Dimensionality reduction techniques, such as Principal Component Analysis (PCA) 

and autoencoders, can be employed for unsupervised anomaly detection in high-
dimensional data.


• Anomalies often exhibit high reconstruction errors when projected back to the 
original space.


• Autoencoders (Neural Networks)


• Train a neural network to reconstruct inputs.


• High reconstruction error at test time signals an anomaly.


• Variants: Variational autoencoders, LSTM autoencoders for time series.



AD with density estimation
• Use case: Model the distribution of Standard Model background events 

in high-dimensional feature space.


• Method: Use a normalizing flow to estimate the likelihood of observed 
events. Events with low likelihood are potential anomalies.


• E.g.: https://arxiv.org/abs/2001.04990 Anomaly Detection with Density 
Estimation 

https://arxiv.org/abs/2001.04990


Has any anomaly been found?
• Anomaly detection is used to find unusual objects, eg weird looking 

galaxies. For example, a galaxy that recently collided with another one.


• As far as I know, no confirmed discovery of “new physics” has been 
made via anomaly detection methods using machine learning.


• Anomalies often = detector issues: Many flagged "anomalies" are 
noise, miscalibrations, or rare but known effects.


• Not every anomaly can be examined by experts (just life every “UFO 
sighting”). Many experiments have some unexplained data, but it is 
believed to have mundane explanations. 



Examples
• CERN's LHC:


• "LHC Olympics" challenge (2020): invited ML groups to find hidden 
signals in simulated collider data without knowing the new physics 
models.


• But: no real data yet yielded a confirmed anomaly → discovery.


• Astrophysics:


• ML has found rare events (e.g., supernova outliers, odd galaxy 
morphologies), but again, no "new physics" in a fundamental sense.


• IceCube and LIGO:


• ML has helped clean data and detect outliers in real-time,


• but findings have supported existing models, not contradicted them.



Example: SNAD project
• https://arxiv.org/abs/2410.18875 Exploring the Universe with SNAD: 

Anomaly Detection in Astronomy

https://arxiv.org/abs/2410.18875


The LHC Olympics 2020
• https://arxiv.org/abs/2101.08320 The 

LHC Olympics 2020: A Community 
Challenge for Anomaly Detection in High 
Energy Physics


• Groups used autoencoders, likelihood-
free methods, and density estimation to 
propose promising regions for follow-
up.

https://arxiv.org/abs/2101.08320


• Reading for this lecture:  
• See references on the slides.

Course logistics


