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PDE solving



“Physics-informed machine learning”

* Review: https://www.nature.com/articles/s42254-021-00314-5 (plots from this
source)

* “Despite great progress in simulating multiphysics problems using the numerical
discretization of partial differential equations (PDEs), one still cannot seamlessly
Incorporate noisy data into existing algorithms, mesh generation remains
complex, and high-dimensional problems governed by parameterized PDEs
cannot be tackled. “

* |nstead, machine learning based methods can be combined with physics (including
physical laws or symmetries). This is called “physics-informed machine learning”.

» Generally speaking, the less we have training data the more physics knowledge can
help the model to perform.

Small data Some data Big data

Lots of physics Some physics No physics

Data



https://www.nature.com/articles/s42254-021-00314-5

“Physics-informed machine learning”

* Physics knowledge can be included in machine learning in 3 general ways:

 Observational: Physical properties (e.g. symmetries) can be learned directly
from the observations.

* Inductive biases: Physical properties can be exactly enforced in the model. A
simple example are CNNs which are hard-coding translational invariance. E.g.
Formally one can make a NN invariant under any symmetry group. Physics
can thus be encoded in the model architecture. However, this often leads to
complex implementations that are difficult to scale.

* Learning bias: Physical constraints can be enforced in a soft way (i.e. not
exact) by adding a term to the loss that penalizes violating the constraint (e.qg.
conservation of mass).

 Hybrid methods combine several of these.



Solving PDEs with PINNs

 PINNs: “Physics informed neural networks”

* Physics-informed neural networks (PINNSs) integrate the information from both the
measurements and partial differential equations (PDEs) by embedding the PDEs
into the loss function of a neural network using automatic differentiation.

 Example: solving the viscous Burgers’ equation
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 We also have some data (boundary condition) so that the solution is uniquely
defined.

 |dea: We put the residual of the PDE into the loss function and solve the
problem as an optimization problem with auto-differentiation.



Solving PDEs with PINNs

e The Loss thus is
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Here {(x, t)} and {(xj, tj)} are two sets of points sampled at the initial/boundary locations
and in the entire domain, respectively, and u, are values of u at (x, t); w,,,. and w;; are the
weights used to balance the interplay between the two loss terms. These weights can

be user-defined or tuned automatically, and play an important role in improving the
trainability of PINNs’®*">,



Solving PDEs with PINNs

« The PDE solution is specified by a neural network (rather than some pixelated discretization
of space), so we get a continuous function.
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Algorithm 1: The PINN algorithm.

Construct a neural network (NN) u(x, t; 8) with @ the set of trainable weights w and biases b,
and o denotes a nonlinear activation function. Specify the measurement data {x, t,u}

for u and the residual points {xj, tj} for the PDE. Specify the loss £ in Eq. (3) by summing

the weighted losses of the data and PDE. Train the NN to find the best parameters 6*

by minimizing the loss L.



Neural Operators

e https://arxiv.org/abs/2309.15325 Neural Operators for Accelerating Scientific
Simulations and Design

 The core idea behind Fourier Neural Operator is to perform neural network
operations in the Fourier space (frequency domain), where convolution
operations become multiplications.

* This approach efficiently captures the global interactions in the data, which are
crucial for accurately solving PDEs.



https://arxiv.org/abs/2309.15325

Neural Operators

Pseudo-spectral solver
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Fig. 3: Diagram comparing pseudo-spectral solver, Fourier Neural Operator (FNO),
and the general Neural Operator architecture. F'T and IFT refer to Fourier and Inverse
Fourier Transforms. In general, lifting and projection operators P, Q can be non-
linear. Pseudo-spectral solvers are popular numerical solvers for fluid dynamics where
the Fourier basis is utilized, and operations are iteratively carried out, as shown. The
Fourier Neural Operator (FNO) is inspired by the pseudo-spectral solver, but has a
non-linear representation that is learned. FNO is a special case of the Neural-Operator
framework, shown in the last row, where the kernel integration can be carried out
through different methods, e.g., direct discretization or through Fourier transform.

R is a learned operator in Fourier
space (e.g., a neural network
modifying Fourier coefficients).

Lifting Operator P:

Purpose: Transforms the input function u(w) (which might be scalar- or low-dimensional valued) into
a higher-dimensional representation or feature space where richer patterns and dependencies can

be learned.

Projection Operator Q:

Purpose: Maps the high-dimensional output features v () back down to the target output space

(e.g., scalar field, vector field).



Comparing PDE solving methods

e https://arxiv.org/abs/2210.07182 PDEBENCH: An Extensive Benchmark for
Scientific Machine Learning

Figure 1: PDEBENCH provides multiple non-trivial challenges from the Sciences to benchmark
current and future ML methods, including wave propagation and turbulent flow in 2D and 3D

Table 1: Summary of PDEBENCH’s datasets with their respective number of spatial dimensions N,
time dependency, spatial resolution /Ny, temporal resolution NV;, and number of samples generated.

PDE Ng; Time N, N;  Number of samples
advection 1 yes 1024 200 10000
Burgers’ 1 yes 1024 200 10000
diffusion-reaction 1 vyes 1024 200 10000
diffusion-reaction 2 yes 128 x 128 100 1000
diffusion-sorption 1 vyes 1024 100 10000
compressible Navier-Stokes 1 yes 1024 100 10000
compressible Navier-Stokes 2 yes 512 x 512 21 1000
compressible Navier-Stokes 3 yes 128 x 128 x 128 21 100
incompressible Navier-Stokes 2 yes 256 x 256 1000 1000
Darcy flow 2 no 128 x 128 - 10000
shallow-water 2 yes 128 x 128 100 1000



https://arxiv.org/abs/2210.07182

Comparing PDE methods

 The objective is to find some ML-based surrogate, sometimes referred to as an
emulator, of the forward propagator (i.e. the next time step).

* Baseline ML models for PDE solving:

U-Net U-Net [48] is an auto-encoding neural network architecture used for processing images using
multi-resolution convolutional networks with skip layers. U-Net is a black-box machine learning
model that propagates information efficiently at different scales. Here, we extended the original
implementation, which uses 2D-CNN, to the spatial dimension of the PDEs (i.e. 1D,3D).

Fourier neural operator (FNO) FNO [32] belongs to the family of Neural Operators (NOs),
designed to approximate the forward propagator of PDEs. FNO learns a resolution-invariant NO by
working in the Fourier space and has shown success in learning challenging PDEs.

Physics-Informed Neural Networks (PINNs) Physics-informed neural networks [47] are methods
for solving differential equations using a neural network ug(t, z) to approximate the solution by
turning it into a multi-objective optimization problem. The neural network is trained to minimize the
PDE residual as well as the error with regard to the boundary and initial conditions. PINNs naturally
integrate observational data [30], but require retraining for each new condition.
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Figure 2: Comparisons of baseline models’ performance for different problems for (a) the forward
problem and (b) the inverse problem.

» Currently neural solvers often don’t outperform classical methods but they are more
flexible.



Foundation model for PDEs

https://arxiv.org/abs/2310.02994

At a fundamental level, many physical systems share underlying principles. Many of the equations

describing physical behavior are derived from universal properties like conservation laws or

invariances which persist across diverse disciplines like fluids, climate science, astrophysics, and
chemistry. Can we learn these shared features ahead of time through pretraining and accelerate the

development of models for new physical systems?

Results are somewhat encouraging.
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https://arxiv.org/abs/2310.02994

Inverse problems

Review of inverse problems in the 2d image domain: https://arxiv.org/abs/2005.06001



https://arxiv.org/abs/2005.06001

(a) Ground truth (b) Noisy image, 14.88dB

(¢) EPLL, 25.68dB (d) RIM, 25.91dB

Figure 5: Denoising performance on example image used in Zoran and Weiss [5].
o = 50. Noisy image was 8-bit quantized before reconstruction.

Example from https://arxiv.org/pdf/1706.04008. c and d are different inverse problem solutions.



Inverse problems

* Inverse problems are ubiquitous in science and engineering, involving the
recovery of underlying causes (inputs) from observed effects (outputs).

Examples include

* medical imaging

* deblurring in vision

* source reconstruction in physics

* Solving inverse problems is challenging because they are often ill-posed
(i.e., solutions may not exist, be unique, or depend continuously on the
data).

 Many data analysis problems in research can be formulated as Inverse
Problems, and we have already encountered some in previous lectures.

* Machine learning offers powerful tools to tackle these problems,
especially when traditional methods struggle.



Mathematical formulation

Formally, an inverse problem seeks to find input « from observations y, given a forward operator F:
y=F(z)+e

where F models the physical process, and € is noise. The inverse problem is to find x given y.

 The “forward operator” (or “forward model”) can be either linear or non-linear. Usually
it is not invertible (i.e ill-defined).

« Often one needs to add a regularizer R to make the problem well-defined:

Solve using optimization:

# = argmin || F(z) — y||° + AR(z)

 We often also need an uncertainty or even a full Bayesian answer (distribution of
solutions) to the inverse problem.



Overview of methods

* There are many different machine learning methods to solve such problems,
with and without machine learning.

* They differ in what forward model they address (e.g. linear vs non-linear) and
what assumptions they make.

 Some approaches require knowledge of the forward model, others don't.

* We will look through some common techniques without being systematic,
focussing on machine learning techniques.



Direct supervised approach

A simple approach: Use a neural network and learn the operation from training data.

e Learn a direct mapping from observations to solutions:

T = Gy(y)
e Trained on paired data {(z;,v;) }.

e Common architectures: CNNs (e.g., U-Nets), transformers for 3D data.

Pros:
e Fast inference.

« No need for knowledge of F.

Cons:
e Requires large training datasets.

e Generalization can be limited.



Bayesian Inverse Problems

* Bayesian approaches to inverse problems aim to model uncertainty and
provide posterior distributions over solutions instead of single point estimates.

p(z|y) xp(y | z)p(x)

Often one can assume a Gaussian likelihood defined by the forward
model F:

* Given input x and observation y: ply | ¥) = N(y; F(z),02I)

y=F(z)+e €e~N(0,0°I)

* Inthis case, we can then sample from the posterior using MCMC, or
methods that work for higher dimensionality such as Hamiltonian
Monte Carlo or Variational Inference.



Example: Reconstructing the initial conditions of the universe

 Let’s look at an example where the previous technique is used in cosmology:
reconstructing the initial conditions from observed data.
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Figure credit: Chihway Chang, U Chicago.



Generative priors

Blurred

If we know the likelihood, such as the Gaussian case in the previous slide, we
still need to define a prior to evaluate the posterior.

One can use a Generative Prior, to improve the reconstruction. If we can learn
the prior distribution of the uncorrupted signal x (from simulations thereof), we
can use this information to de-noise the corrupted signal.

We briefly discussed using a normalizing flow as a generative prior in the
normalizing flows section.

Generative priors can also be learned with diffusion models.

nput Output Original

Output Original Low-res Output Original Occluded Output Original Gray Output Original

Low-res & gray Occluded & gray

Multi-degradation recovery

Deblur Super-resolution Inpainting Colorization

Examples from: https://arxiv.org/pdf/2304.01247



Briefly: Sampling with Diffusion models / Score-Based generative
models

« Often we can sample from the forward model, but it is non-differentiable and we do not
have a closed form expression for the likelihood.

* An interesting recent technique for such cases is to use de-noising score-matching
to learn the posterior.

 The idea is to perturb the data with noise and to learn to approximate the posterior by
de-noising it.

e Original idea:

e https://arxiv.org/abs/2011.13456 Score-Based Generative Modeling through
Stochastic Differential Equations

« https://arxiv.org/abs/2111.08005 Solving Inverse Problems in Medical Imaging with
Score-Based Generative Models

* Application to the cosmology initials conditions problem:

» https://arxiv.org/abs/2304.03788 Posterior Sampling of the Initial Conditions of the
Universe from Non-linear Large Scale Structures using Score-Based Generative
Models



https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2111.08005
https://arxiv.org/abs/2304.03788

Example: library for inverse problems in imaging

Deeplnverse: a PyTorch library for imaging with
deep learning

Deeplnverse is a PyTorch-based library for solving imaging inverse problems with deep learning.

e https://
deepinv.github.io/
deepinv/

Github repository: €) deepinv/deepinv.

Featuring

Large collection of predefined imaging operators (MRI, CT, deblurring, inpainting, etc.)

Training losses for inverse problems (self-supervised learning, regularization, etc.).

e Many pretrained deep denoisers which can be used for plug-and-play restoration.

Framework for building datasets for inverse problems.

o Easy-to-build unfolded architectures (ADMM, forward-backward, deep equilibrium, etc.).

Diffusion algorithms for image restoration and uncertainty quantification (Langevin, diffusion, etc.).

A large number of well-explained examples, from basics to state-of-the-art methods.

models|

image

N unfolded| |optim| .
_physics| measurement - ~ reconstruction
sensing y ~ A(zx) -~z = R(y, A)
device(s) ——— | —> SR - >
I test| [ metric|
, : uncertainty
[loss| [Trainer|
supervised self-supervised
P @ . ‘79,,%9’ ook
'models] 'sampling|

| datasets|


https://deepinv.github.io/deepinv/
https://deepinv.github.io/deepinv/
https://deepinv.github.io/deepinv/

Example of solving a Linear Inverse
Problem from my research: Wiener
filtering

https://arxiv.org/abs/1905.05846



Learning a mathematical operator

e Sometimes it is possible to design a neural network that is specifically
designed to enforce a mathematical relation.

* In cosmology, one often wants to first reconstruct the data from a noisy operation
using a linear operation called “Wiener filtering”, which is solving a linear inverse
problem.

 The problem is that Wiener filtering is too computationally expensive for large
data sets.

« We wanted to know if this task can be done better with a Neural network, but
under several constraints:

* We did not want to use Wiener-filtered training data. Instead we train on the
likelihood.

« We wanted to enforce the property that the Filtering is linear, but with a filter
that depends non-linearity on the noise.



Example from my research: Wiener filtering

mask, noise Wiener filter
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reconstruction of
the true CMB

Very important method! First step for any optimal statistical analysis.



Wiener filtering

e Common situation: d = S+ N
data signal noise
* Wiener filter: dwrp = S(S-|- N)_ld
Signal covariance matrix. Noise covariance matrix.

* Optimal reconstruction of s given d.
e Data d can have 102 elements. Direct matrix inversion impossible.

e Standard approach: conjugate gradient method. But too slow! Most Planck
CMB analysis is suboptimal for this reason.

‘ Neural network approach



* Crucial: must not induce non-
linearities.

e Construct a neural network
that is explicitly linear in the
data!

y = M (mask)d

* Nonlinear in mask/noise

Machine learning does not need
to be based on “generic

functions”! J

New neural network architecture

mask observed map Wiener filtered map
|
EO nonlin.
E1 nonlin. D1 nonlin.
E2 nonlin. D2 nonlin.
E3 nonlin. D3 nonlin.
L ]
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Decoder nonlin.
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MM et. al., 1905.05846, NeurlIPS 2019



Loss functions and training

* 3 possible loss functions (training objectives) with very different properties:

'} o ” ]. . .
naive loss Ji(d,y) = §(y _ yWF)TA(y — ywF) Not useful in practice.
1 . .
“supervised loss” Jo(s,y) = §(y —s)T A(y — s) Works well in S/N>1 regime.
1 1
“physical loss”  Js(d,y) = 5(y— )TN (y—d) + 5y"sly  Works well everywhere.

J3(d,y) = —log P(s|d)s=y + const.

* All can be analytically shown to be minimized by WF solution, i.e.

8<J>L _ —1
B—M_O mmmm) M=S(S+N)

Neural networks can be used in low signal-to-noise situations!



Results

Neural network output maps are at least 99% Wiener filtered.

Neural Network Wiener filtering is 1000 times faster than the
exact method!

* Works independent of mask and noise levels.

* Pluginto standard analysis pipelines in cosmology.

Q map WF NN , Q map WF exact
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Anomaly detection



Anomaly detection (AD)

 Anomaly detection is the task of identifying rare or unusual observations
In data that do not conform to expected patterns.

 QOutside of physics examples:
* fraud detection
* network security
* fault detection.

 Physics examples:

e Large Hadron Collider (LHC) generates colossal amounts of data. How
do we find something unusual without knowing what to look for?

* In astrophysics, for example Fast Radio Bursts were discovered by
accident long after the data was taken.



Unsupervised AD

e Clustering-Based
&

e Use clustering algorithms like k-means, DBSCAN.

* Points far from any cluster center or in small clusters are anomalies.

» Distance-Based @)

 Compute distances to nearest neighbors (e.g., k-NN). SR

* Points with high average distance are anomalies. -7
 Density-Based
» Use density estimation to find regions of high probability. /-*"¢.% -

* Low-density points are considered anomalies.



AD with Dimensionality Reduction

 Dimensionality reduction techniques, such as Principal Component Analysis (PCA)
and autoencoders, can be employed for unsupervised anomaly detection in high-
dimensional data.

 Anomalies often exhibit high reconstruction errors when projected back to the
original space.

* Autoencoders (Neural Networks)
* Train a neural network to reconstruct inputs.
* High reconstruction error at test time signals an anomaly.

e Variants: Variational autoencoders, LSTM autoencoders for time series.

Z &

2 —
encoder il decoder B

eo(z) | dy(2)

loss = ||z — :T:H§



AD with density estimation

* Use case: Model the distribution of Standard Model background events
In high-dimensional feature space.

 Method: Use a normalizing flow to estimate the likelihood of observed
events. Events with low likelihood are potential anomalies.

* E.g.: https://arxiv.org/abs/2001.04990 Anomaly Detection with Density
Estimation

Anomaly Detection with Density Estimation

Benjamin Nachman, David Shih

We leverage recent breakthroughs in neural density estimation to propose a new unsupervised anomaly detection
technique (ANODE). By estimating the probability density of the data in a signal region and in sidebands, and interpolating
the latter into the signal region, a likelihood ratio of data vs. background can be constructed. This likelihood ratio is
broadly sensitive to overdensities in the data that could be due to localized anomalies. In addition, a unique potential
benefit of the ANODE method is that the background can be directly estimated using the learned densities. Finally, ANODE
is robust against systematic differences between signal region and sidebands, giving it broader applicability than other
methods. We demonstrate the power of this new approach using the LHC Olympics 2020 R\&D Dataset. We show how
ANODE can enhance the significance of a dijet bump hunt by up to a factor of 7 with a 10\% accuracy on the background
prediction. While the LHC is used as the recurring example, the methods developed here have a much broader applicability
to anomaly detection in physics and beyond.


https://arxiv.org/abs/2001.04990

Has any anomaly been found?

 Anomaly detection is used to find unusual objects, eg weird looking
galaxies. For example, a galaxy that recently collided with another one.

 As far as | know, no confirmed discovery of “new physics” has been
made via anomaly detection methods using machine learning.

 Anomalies often = detector issues: Many flagged "anomalies"” are
noise, miscalibrations, or rare but known effects.

* Not every anomaly can be examined by experts (just life every “UFO

sighting”). Many experiments have some unexplained data, but it is
believed to have mundane explanations.



Examples

e CERN's LHC:
 "LHC Olympics" challenge (2020): invited ML groups to find hidden
signals in simulated collider data without knowing the new physics
models.
* But: no real data yet yielded a confirmed anomaly — discovery.

* Astrophysics:

ML has found rare events (e.g., supernova outliers, odd galaxy
morphologies), but again, no "new physics" in a fundamental sense.

* IceCube and LIGO:
* ML has helped clean data and detect outliers in real-time,

e but findings have supported existing models, not contradicted them.



Example: SNAD project

* https://arxiv.org/abs/2410.18875 Exploring the Universe with SNAD:
Anomaly Detection in Astronomy

Fig. 3: Some examples from the SNAD catalog of artefacts.

Abstract. SNAD is an international project with a primary focus on
detecting astronomical anomalies within large-scale surveys, using ac-
tive learning and other machine learning algorithms. The work carried
out by SNAD not only contributes to the discovery and classification
of various astronomical phenomena but also enhances our understand-
ing and implementation of machine learning techniques within the field
of astrophysics. This paper provides a review of the SNAD project and
summarizes the advancements and achievements made by the team over
several years.


https://arxiv.org/abs/2410.18875

The LHC Olympics 2020

* https://arxiv.org/abs/2101.08320 The

LHC Olympics 2020: A Community The LHC Olympics 2020

I I I A Community Challenge for Anomaly
Challenge for Anomaly Detection in High Dotoction i Hich Evorgy Phyeios

Energy Physics

* Groups used autoencoders, likelihood-
free methods, and density estimation to
propose promising regions for follow-

up.



https://arxiv.org/abs/2101.08320

Course logistics

e Reading for this lecture:

e See references on the slides.



