Physics 361 - Machine Learning in
Physics

Lecture 25 - Interpretability, Symbolic
Regression, Emulators

April 24th 2024

Moritz Munchmeyer

Interpretability/
Explainability

Why do we want interpretable machine learning?

 Machine learning has significantly improved the way scientists model
and interpret large datasets across a broad range of the physical
sciences

* However, its "black box" nature often limits our ability to trust and
understand its results.

 Explainable Al (XAl) refers to methods and techniques in artificial
intelligence that make the behavior and decision-making process of Al
systems understandable to humans.

* \We would we want explainable Al?
* Trust the result
* Find bugs or problems

* Get scientific insight

How Interpretable are ML techniques

Automated feature extraction Need to featurize’ the data

@ Convolutional neural networks

@ Deep neural networks

|~
-

LB

O Gradient boosted trees (GBTs)

@ Random forests

Predictive power

© K-nearest neighbours

@ Decision tree

@ Linear regression
la >
“ -box” . I I
Black-box Interpretability nterpretable

Figure credit: Luisa Lucie-Smith, Hamburg University

Feature Importance

* We already encountered one such method in the case of Tree based
methods (e.g. Gradient Boosted Trees).

 Gini Importance / Mean Decrease in Impurity (MDI): Measures how
much each feature decreases the impurity across all trees.

* For MLPs and other deep neural networks, weight magnitudes are not
directly interpretable due to non-linearity.

* One can also remove features during training and evaluation to gauge their
importance, but the result may be somewhat stochastic in different training
runs.

Saliency Maps

« Saliency maps are a type of visual explanation technique primarily used in deep
learning—especially in computer vision—to highlight which parts of the input
most influenced the model’s output.

A saliency map is a heatmap over the input (e.g., an image) where the intensity
of each pixel indicates how important that pixel was for the model's prediction.

They are often computed using gradients:

0f (z)
8332'

Saliency(x;) = ‘

where f(x) is the model output (e.g., the probability of a class) and x; is the i-th input pixel.

 E.g. In an image classification task, a saliency map might show that a cat’s face
contributed most to the model labeling the image as a "cat", while the
background had little effect.

Saliency Maps

Predicting galaxy properties

Image Bar Bulge Spiral Arms

mERk

Bhambra+ 2022

Figure credit: Luisa Lucie-Smith, Hamburg University

Cosmological parameter inference

sensitivity for A

senéitivity 3A|AiaKg, Zl'bin = 1

.......................... e q

............ HOm—— .

.. - i
senéitivity aA.A/aég, é;n =1

..................

.........................

Kacprzak & Fluri 2022

Interpretability in latent space

* |If we can represent the data in a low-dimensional latent space, we may
be able to interpret this space.

* For interpretability, we seek a latent space with the following
properties:

Low-dimensional: Only a few variables capture most of the
information.

Sparse: Most dimensions are zero or near-zero for any given example.

Disentangled: Each latent dimension controls an independent,
semantically meaningful factor of variation in the data.

Z &

VA

encoder il decoder
|
eo(z) | dy(2)

loss = ||x — :%Hg

Interpretability in latent space

 Here are some techniques that can be used to construct such a latent
space:

Technique Type Interpretability Feature

PCA Linear Low-dimensional (but entangled)
Sparse Autoencoder Nonlinear Sparse activation for interpretability
B-VAE Generative Disentangled latent variables

NMF (Non-negative Matrix Factorization) Linear Sparse + interpretable components

 Once the latent space is found, one can for example
* Visualize and interpret the “degrees of freedom” of the data.
* Perform inference on these latent variables.

 Use latent variables for new tasks.

Example: SciNet model

questiong Q
observation

Discovering physical concepts with neural networks

Raban Iten[] Tony Metger[| Henrik Wilming, Lidia del Rio, and Renato Renner
ETH Zirich, Wolfgang-Pauli-Str. 27, 8093 Zirich, Switzerland.
(Dated: January 24, 2020)

encoder E decoder D

* If you train a network to answer physical questions about a system,
the bottleneck layer will contain the relevant physical variables —
like energy, angular momentum, or charge — without being told what

those variables are.

 The bottleneck forces the encoder to represent only the minimal
sufficient information necessary to answer questions.

* The latent variables often disentangle into interpretable physical
quantities, like mass or velocity, without supervision.

Example: SciNet Model

observation
.//Ak\\'{//\ o\ </ \answer
S e\ e\, a
oY SANNG A W
()

question g

question
— CRIOGEI K 2O
R RN BB

- | © X(t) =x + vt N\ AZER Ny 4
v : /Za\ AW

encoding decoding answer

representation encoderE decoder D
observations latent representation
a) b)

Figure 1. Learning physical representations. (a) Human learning. A physicist compresses experimental observations
into a simple representation (encoding). When later asked any question about the physical setting, the physicist should be able
to produce a correct answer using only the representation and not the original data. We call the process of producing the answer
from the representation decoding. For example, the observations may be the first few seconds of the trajectory of a particle
moving with constant speed; the representation could be the parameters “speed v” and “initial position zy” and the question
could be “where will the particle be at a later time ¢t'?” (b) Neural network structure for ScilNet. Observations are
encoded as real parameters fed to an encoder (a feed-forward neural network, see Appendix @, which compresses the data into
a representation (latent representation). The question is also encoded in a number of real parameters, which, together with the
representation, are fed to the decoder network to produce an answer. (The number of neurons depicted is not representative.)

Training data: (z,9,a)
Where: "Example: Harmonic Oscillator
« x = data (observations of the system) z: a few positions z(t) at early times
e @ =question (e.g., "what is the position at time £?") q: a future time Zfyture

« a = answer (the ground truth to that question) a: the position & (tfuture)

Discovering the building blocks of dark matter halo
Exam ple from Cosmology density profiles with neural networks

Luisa Lucie-Smith ,1’* Hiranya V. Peiris ,2’3 Andrew Pontzen,2 Brian Nord,
Jeyan Thiyagalingam ./ and Davide Piras

4,5,6

IVE: interpretable variational encoder
log(r)

3D density field Encoder Decoder
N~ - —
| =< ® o0
. | T ®
; |_ O (@)
3 —_— | |—> — —»I—»I I & _—» : : : R log [phalo(r)/pm]
- | I \J TR
| =
| [- o 0 l
- 3
. p(r) T4 b4y ;
Preprocessing Latent representation ¥
the data t '
t
| 4
Halo density profile Parameter fit Analytic formula >
A
1 P
+** : N Z [log Psim,i — 10g pﬁt,i]2 - ’ - £ I phalo(r)
Y = Ir,(1+1/r,)°
; i= r, rirg (+r rs)
¢
" >

Empirical representation

FIG. 1. The IVE consists of an encoder compressing the 3D density field containing each halo into a low-dimensional latent
representation, followed by a decoder mapping the latent representation and a given value of r to the spherically averaged density p(r).
In this illustration, the latent space is two dimensional; however, the dimensionality of the latent space can be increased to any arbitrary
value. The latent representation only retains the information required by the model to predict the halo density profiles, allowing us to
interpret the representation as independent factors of variability in the density profiles. The decoder plays a role similar to an analytic
fitting formula, which takes as input a set of halo-specific parameters and returns p(r) for any given r. The encoder is equivalent to the
parameter fitting procedure, in that they return those halo-specific parameters used by the analytic formula (decoder). However, the
inputs to the encoder and the fitting procedure are fundamentally different: the former extracts information directly from the 3D density
field containing the halo, whereas the latter uses processed information of that field, i.e., the spherically averaged density profiles
themselves. The latter data processing is a step motivated by human intuition and physical frameworks such as the secondary infall
model [34].

Analyze mutual information in latent space

—e— Latent A —e— Latent B —o— Latent C —e— Latent D

0.6 - 2D latent space _ 3D latent space] 4D latent space

0.3 1 - .

0.2 1

~/

I e e T i e o

MI(latent, pyun(r)) [nats]

0.1 : _

01 10 01 10 01 10
Teft / T200m Teff / T200m Teff / T200m

FIG. 4. Mutual information between each latent variable and the ground-truth log[p;(r)/py,] in every ith radial bin. The three panels
show the results for the IVE;,;,; model with latent dimensionality 2, 3, and 4. The solid lines show the mutual information when
adopting a bandwidth of 0.2; the bands show the scatter in the mutual information estimate when adopting bandwidths of 0.1 (upper
band limit) and 0.3 (lower band limit). These values of bandwidths cover sufficient range to undersmooth and oversmooth the
distributions, thus demonstrating that our results are insensitive to the specific bandwidth choice.

Mutual information

To estimate the mutual information (Ml) between a feature X and a target Y, you're quantifying how

much knowing X reduces uncertainty about Y — and vice versa.

 How to estimate the mutual information depends on whether X and/or Y are
continuous or discrete.

* Discrete case: I(X;Y) = p(z, 1) log [2&Y)
xez;cyezy (p(w)p(y)>

« p(z,y): Joint probability of X = zandY =y

» p(z)p(y): What the joint probability would be if X and Y were independent

e log (pf:f::f;&)): Measures how "surprised" we are that and y occur together more or less often than

if they were independent.

So, mutual information measures the average surprise (in bits if using log base 2) due to the dependence
between X and Y.

e Scikit-Learn has various functions to help calculating this from samples.

Symbolic Regression of
Functions

Discovering symbolic laws from data

The goal of physics is to find the mathematical laws that describe nature.

We could hope that neural networks “look at the data” and automatically find
the underlying laws.

* In simple setups this is now possible. E.g. discover newtons laws from looking
at how particles mode.

 Discovering Symbolic Laws = Symbolic Regression

« Symbolic Regression is an old topic that pre-dates machine learning, but
Machine Learning may enhance it.

* Analytic expressions CAN be more interpretable than arbitrary neural
networks, if they are sufficiently simple and/or relatable to the physics of the
domain.

Are symbolic expressions always “interpretable”?

Example: https://arxiv.org/abs/2311.15865 A precise symbolic emulator of the linear matter power spectrum

Appendix A: Most accurate analytic expression found for linear power spectrum

The expression we report for an analytic approximation for the linear matter power spectrum (Eq. (6)) 1s not the most accurate one
found, but the one which we deemed to appropriately balance accuracy, simplicity, and interpretability. It may be desirable to have
a more accurate symbolic expression if interpretability 1s not a concern. In this case one may wish to use the most accurate equation
found, which 1s

k k —C36k
1001og F = cok + ¢ (QbCz __“3 J(¢34 (¢35k)

Vea + k2)\ vesg + (=Qp + Quesy — c3gh)’

(6'17 (c25k) ™K (Qpc1g + Qe — ca0h) cos (Qncay — c2k) + cos (c23k — ¢a4))

2
n C7(=Qncog+cpok) k
JC?,I (\/C30+k2
s (Qmern + ¢13k) ™% (Ques — c7k + (Qpeg — cok) cos (Queyo — Cllk)))
Veis + (Quers + k)

—€0s (Qpec3p — C33k)}

Caak €48 (Qmeq9 + ¢50k)) cos(csok
Veus + k2 Vegr + (—Qu — cash)? Vesi + k? Vess + k2 ess + (Qmess — k)

c57 (Qmeer + cesk) ™K (Qmess — csok + (=Qucs0 — Qo1 + c2h) cos (Qunces — ceak) + cos (cesk — ces))

2
Q + ('71/1
C70(b ((~72+k2)0'5J
+ 1.0

C73 +k?

— C40 (chm — Cqoh + cy3k +

(A.1)

https://arxiv.org/abs/2311.15865

SR with Genetic algorithms, PySR code

« Symbolic Regression is usually done with Genetic algorithms, building a
population of possible expressions that evolve (i.e. are modified).

* See the PySR paper https://arxiv.org/abs/2305.01582 Interpretable Machine
Learning for Science with PySR and SymbolicRegression. |l

Credit: Miles Cranmer

(1.20 - |(z -) — y|) + (0.50 - (cos (y) - sin(z - 2)))

— Truth
— Prediction

https://arxiv.org/abs/2305.01582

PySR algorithm

LA

1.15y + 0.86 1.15y — 0.86

Figure 1: A mutation operation applied to an expres-
sion tree.

1.15y + 0.86

PO
Y

z + 0.86 (1.15y)"

Figure 2: A crossover operation between two expres-
sion trees.

z® Select Fittest

Mutation
or

(tortwo) Crossover
or

1.15y2 + 0.86 | or‘ 1.15y]or

1.15y + 0.86

1.15%% + 0.86 |or‘ 1.15 +(,).8(j’”’ or ..

Simplification

Randomly or ‘
Subsample e 1.1395y + 0.721]
Constants

T

T
1.15y + 0.86

z1? Replace
Oldest

The inner loop of PYSR. A population of expressions is randomly subsampled. Among this sub-
sample, a tournament is performed, and the winner is selected for breeding: either by mutation,
crossover, simplification, or explicit optimization. Examples of mutation and crossover operations
are visualized in figs. 1 and 2.

... exp(exp(z) — x)

Independent “islands”
115y + 0.86 of expressions,
each undergoing

A evolution
xy . - 115y
Yoo Migration between
islands

1.15y

The outer loop of PYSR. Several populations evolve independently according to the algorithm
described in fig. 3. At the end of a specified number of rounds of evolution, migration between
islands is performed.

Symbolic Regression methods

Comparison from https://arxiv.org/abs/2305.01582

Pt
5}
= I < *
: : : g 3 : : g | 28
G § & £ & & 2 3 'z % 3 |32z
A g 5 = 3 a 2 A z £ o | EE
@) - A, c ; [a¥ n .2
< o O -
0
Compiled X X X X -
o Multi-core X
T Multi-node X X X X X X X X X X -
GPU-capable X X X x1 X X X X
No pre-training X -
Denoising X X X X *11 X ? X X
BT Rttty Fgature s:election . X X *11 X X X
Differential equations X X X X X X X X
High-dimensional X X X X X X X X X
Full Pareto curve X *11 X X X
API X X -
Interfacing SymPy Interface X X X X X -
Deep Learning export X X X X X X *I11 X *111 X -
Expressivity score 4 5 4 3 3 3 1b 2 3 la 3 6
Open-source X X
Real Constants X *11 -
Custom operators X X X X *]1 X X X X -
Extensibility Discontinuous operators X X X *11 X X X X -
Custom losses X X X X X X X
Symbolic Constraints X X X X X X X X
Custom complexity X X X X X X X X -
Custom types X X X X X X X X X X X
Citation [self] [11] - [73] [44] [27] [74] [34] [75] [30] [21] [23]
i Code & & e i i & & e & G &

Expressivity scores: (1la) Pre-trained on equations generated from limited prior. (1b) Basis of fixed expressions, combined in a linear sum. (2) Flexible basis of expressions,
with variable internal coefficients. (3) Any scalar tree, with binary and unary operators. (4) Any scalar tree, with custom operators allowed. (5) Any scalar tree, with
n-ary operators. (6) Scalar/vector/tensor expressions of any arity.

* Note that the “Symbolic Distillation” method from [23] is not an algorithm itself; it can be applied to any SR technique. Applying this general method to a specific
technique will inherit a v from the Symbolic Distillation column, if given. However, in general, this technique is easiest with those methods which have deep learning
export.

*] Only the symmetry discovery module is GPU-capable.

*11 Conceptually different, as is a linear basis of static nonlinear expressions.

*]II Is itself a neural network.

Example: Al Feynman

https://www.science.org/doi/

10.1126/sciadv.aay2631 Al

Feynman: A physics-inspired
method for symbolic regression

We develop a recursive
multidimensional symbolic
regression algorithm that
combines neural network fitting
with a suite of physics-inspired
techniques. We apply it to 100
equations from the Feynman
Lectures on Physics, and it
discovers all of them.

Overall algorithm

Generic functions f(xy, ..., x,) are extremely complicated and near impossible for sym-
bolic regression to discover. However, functions appearing in physics and many other
scientific applications often have some of the following simplifying properties that
make them easier to discover:

(1) Units: fand the variables upon which it depends have known physical units.

(2) Low-order polynomial: f (or part thereof) is a polynomial of low degree.

(3) Compositionality: fis a composition of a small set of elementary functions, each
typically taking no more than two arguments.

(4) Smoothness: fis continuous and perhaps even analytic in its domain.

(5) Symmetry: f exhibits translational, rotational, or scaling symmetry with respect to
some of its variables.

(6) Separability: f can be written as a sum or product of two parts with no variables in
common.

The question of why these properties are common remains controversial and not fully
understood (28, 29). However, as we will see below, this does not prevent us from dis-

covering and exploiting these properties to facilitate symbolic regression.

https://www.science.org/doi/10.1126/sciadv.aay2631
https://www.science.org/doi/10.1126/sciadv.aay2631

Combine low-dimensional latent representations with SR

e https://arxiv.org/abs/2006.11287 Discovering Symbolic Models from Deep
Learning with Inductive Biases

 We develop a general approach to distill symbolic representations of a learned
deep model by introducing strong inductive biases. We focus on Graph Neural
Networks (GNNSs).

 The technigue works as follows: we first encourage sparse latent
representations when we train a GNN in a supervised setting, then we
apply symbolic regression to components of the learned model to extract
explicit physical relations. We find the correct known equations, including
force laws and Hamiltonians, can be extracted from the neural network

https://arxiv.org/abs/2006.11287

Model with Extract to
Graph Neural Network Symbolic Equation

Dataset

Q-

> . . 2 N\ 'Y
— SNg—=0 } Predict Dynamics / »)9) , A
1) Oi/\ N\ > “= ‘(1 = 75)Tij

A — .
\J J7
A .
N Known spring law

Encourage Low-Dimensionality
Representation

1 Cs + M;

S‘i = C N
- 0; = C + Cy + C3M; ; Cs + Ce(rij)“

Unknown Dark Matter
overdensity equation

Detailed
Dark Matter Simulation

Figure 1: A cartoon depicting how we extract physical equations from a dataset.

Aside: Symbolic
Regression with
Transformers

Foundation Model combining symbolic laws and data?

 One can train a multimodal transformer that has seen lots of pairs of
data and corresponding equations.

* The transformer might then be able to “guess” the underlying
equation of novel data, e.g. a function, ODE or even PDE system.

* The hope would be that the model learns some kind of “organic
understanding of equations”.

* This is not currently a competitive approach, but there is some
experimentation in this direction.

How to encode equations?

e https://arxiv.org/abs/1912.01412 Deep Learning for Symbolic Mathematics

 This paper used sequence-to-sequence models (e.g. transformer) on two

problems of symbolic mathematics: function integration and ordinary differential
equations (ODEs)

* Representing mathematical expressions as trees

Mathematical expressions can be represented as trees, with operators and functions as internal nodes,
operands as children, and numbers, constants and variables as leaves. The following trees represent

expressions 2 + 3 X (5 + 2), 3z% + cos(2x) — 1, and % - U%_%

+ + -
2 X
7y SA 0 X
P 3 pow cos 1 ('9/\.1: A
5 2 o~ | / d
xTr 2 X ,d} T /\ /\
PN 1 pow 0 t
2 =z o~ Pt
v 2 Y

The tree can then be represented as a sequence of tokens.

Using seq2seq models to generate trees requires to map trees to sequences. To this effect, we use
prefix notation (also known as normal Polish notation), writing each node before its children, listed
from left to right. For instance, the arithmetic expression 2 + 3 * (5 + 2) is represented as the sequence
[+ 2 % 3 + 5 2]|. In contrast to the more common infix notation 2 + 3 x (5 + 2), prefix sequences

https://arxiv.org/abs/1912.01412

How to encode equations?

 Real numbers can also be discretized as tokens, for example as follows
(2112.01898):

Base 10 positional encoding (P10) represents numbers as sequences of five tokens : one sign token (+ or
-), 3 digits (from 0 to 9) for the mantissa, and a symbolic token (from E-100 to E+100) for the exponent. For
instance, 3.14 is represented as 314.1072, and encoded as [+, 3, 1, 4, E-2].

* There are other strategies to tokenize equations and numbers.

SR with transformers

End-to-end symbolic regression with transformers

Pierre-Alexandre Kamienny, Stéphane d'Ascoli, Guillaume Lample, Francois Charton

https://arxiv.org/pdf/2204.10532

f (N, 3D+ 1)) Target \

K— Unscale 4—\ \

—, 1000, E-3 Il y=x2+x
(:;gi:ﬂ Vg : y=xi+x y=G +37% + (G, +25)
(N, demb) "
Cross-entropy Output T
Refine
Tokenize FFN Encode Decode| —»| y=x}+x; T
o Embedder — Transformer y= (1 +3.1)* +0.9(x, + 2.6)
utput
Embedder Transformer Scaled
\ / output /
Training Inference

Figure 2: Sketch of our model. During training, the inputs are all whitened. At inference, we whiten
them as a pre-processing step; the predicted function must then be unscaled to account for the whitening.

SR for ODEs: ODEFormer

 (Can we give a neural network observed data (solutions to differential equations) and ask it to
find the underlying equation of motion (differential equations)?

 Example:: https://arxiv.org/abs/2310.05573 ODEFormer: Symbolic Regression of
Dynamical Systems with Transformers

 Example: 2-dimensional ODE
&= f(z)

Lotka-Volterra competition model
Harmonic oscillator without (Strogatz version with sheeps Lotka-Volterra simple (as on

damping Harmonic oscillator with damping and rabbits) Wikipedia)) Pendulum without friction
0.50 || .
0.1
0.25 \ N 41 . ' 1
0.0 N 3
0.00 _/ L \ 0
2 4
___0'25 _0.1
1 2) \/
—0.50 -
: : |70 : A 0L : 0L, : 215 : :
ID | System description | Equation | Parameters | Initial values
T
24 Harmonic oscillator without damp- 1 2.1 [0.4,-0.03], [0.0, 0.2]
ing —C0To
T
25 Harmonic oscillator with damping { 1 4.5, 0.43 [0.12, 0.043], [0.0, -0.3]
—CoTo — €171
zo (co —c1z1 —
26 Lotka-Volterra competition model { o (eo L 0) 3.0, 2.0, 2.0 [5.0,4.3], [2.3, 3.6]
(Strogatz version with sheeps and z1 (c2 — 0 — =1)
rabbits)
zo (co — c1x:
27 | Lotka-Volterra simple (as on Wiki- 0 (co = c1z1) 1.84, 1.45, 3.0, 1.62 (8.3, 3.4], [0.4, 0.65]
pedia) —z1 (c2 — c3z0)
T
28 | Pendulum without friction L 0.9 [-1.9, 0.0], [0.3, 0.8]
—co sin (zq)

https://arxiv.org/abs/2310.05573

ODEFormer

« Use ideas we discussed: Tokenizing equations, transformer encoder-decoder

(" ¢

mul, 2, x2, |,

Embedder

Input Transformer

_

9 = cos(1+ 1)

fa
z =il cos, add 1, x]
zo| = 0.5 Tokenize = FFN Encode —» Decode
t 2.5 / :1:1 = 2z,
N

Output

XE | mdl, 3, x2, |,
loss sin, add, 1, x1
Tr1 = 3.’1:2
&9 = sin(1 + 1)

Target)

Figure 2: Sketch of our method to train ODEFormer. We generate random ODE systems, integrate
a solution trajectory on a grid of N points z € R, and train ODEFormer to directly output the ODE
system in symbolic form, supervising the predicted expression via cross-entropy loss.

Harmonic oscillator without Harmonic oscillator with Lotka-Volterra competition

damping damping model (Strogatz version with
sheeps and rabbits)
0 5 10 0 5 10
t t

Lotka-Volterra simple (as on

Pendulum without friction

Wikipedia)

)
L.

cr N

e Could we discover the equations of motion of an observed system for which we don’t know the

answer?

Briefly: Emulators for
expensive function
evaluations

What are emulators?

 Emulators are machine learning models that replace more precise and
expensive analytic methods or simulations with an approximate but much
faster machine-learned model.
f(x) ~ fuu(x)

 This is sometimes called an emulator or a surrogate model. We have discussed
such cases before but not in this language.

 E.g. We have seen how to use diffusion models to emulate real simulations. But
the idea also works for general functions, not just simulations.

 Emulators can have other advantages over the exact method:

* They are auto-differentiable. This can make high-dimensional Bayesian
analysis tractable.

 Common methods to learn emulators of functions are Gaussian Processes and
Neural Networks.

* Analyses where emulators can be switched with the full slower method are in
some sense interpretable (since ML is purely used for speedup).

Emulators to speed up exact codes

Search...

d I'le > astro-ph > arXiv:2405.07903

Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 13 May 2024]

A complete framework for cosmological emulation and
inference with CosmoPower

H. T. Jense, I. Harrison, E. Calabrese, A. Spurio Mancini, B. Bolliet, J. Dunkley, J. C. Hill

* A complicated and slow code (“Einstein-Boltzmann solver”) calculates

predictions for observables in cosmology for given cosmological
parameters.

* This code needs to be called thousands of times in cosmological
parameter inference.

* |nstead, one can train a neural network to approximate and interpolate
this computation.

 Can make analyses that would take weeks run in seconds on a laptop.

Emulators for interpolating simulation results

e Emulators are also used to make continuous functions from discrete
simulation data.

* |f you have “summary statistic” T(x;) that extracts information from a
model (see SBI unit), you may be able to simulate the summary statistic
at some discrete parameters (xi). If you train a neural network to learn
T(x) from this data, you can then use a continuous function during
inference.

 Example from cosmology:

Search..

d I'XJ.V > astro-ph > arXiv:2011.15018

Astrophysics > Cosmology and Nongalactic Astrophysics

[Submitted on 30 Nov 2020]

The BACCO Simulation Project: A baryonification emulator with Neural
Networks

Giovanni Arico, Raul E. Angulo, Sergio Contreras, Lurdes Ondaro-Mallea, Marcos Pellejero-Ibanez, Matteo
Zennaro

Summary of the
Semester

What we covered

Background: Probability theory and Information theory

e Basics of Machine Learning and Basic Architectures

« Working with images and fields - CNNs in physics

e Simulation-based inference & Uncertainty Quantification

 Advanced data structures: Graphs and Point Clouds

* Transformers, LLMs, Foundation Models, Reinforcement Learning, Reasoning

* Generative Models: Auto-Encoders, VAE, Diffusion Models, Score Matching,
Flow Matching

* Brief outline of other advanced topics:
 PDE solving, Inverse problems, Anomaly detection

 Interpretability, Symbolic Regression, Emulators

Assignments

Problem Set 1 - Simple statistics with Gaussians

4

Background: Probability theory and Information theory Module | Due Feb 2 at 11:59pm | 100 pts
s, Problem Set 2 - SUSY with MLP

Basics of Machine Learning and Basic Architectures Module | Due Feb 12 at 11:59pm | 100 pts
s, Problem Set 3 - CNNs in Cosmology

Working with images and fields - CNNs in physics Module | Due Mar 4 at 11:59pm | 100 pts
s, Problem Set4 -SBland GNN

Advanced data structures: Graphs and Point Clouds Module | Due Mar 16 at 11:59pm | 100 pts

=. Problem Set 5 - Transformers
Transformers, LLMs, Foundation Models, Reinforcement Learning, Reasoning Module | Due Apr 13 at 11:59pm | 100 pts

B Problem Set 6 - Diffusion (NOT GRADED)
Generative Models: Auto-Encoders, VAE, Diffusion Models, Score Matching, Flow Matching Module

Final Project Paper
Due May 4 at 11:59pm | 100 pts

What’s next?

 We covered a lot of material from basic stuff to state-of-the-art, which
should give you a good high-level overview of what’s out there In Al
for Science.

* Almost all the things we covered will be useful in physics research or
other sciences, and are not likely to be outdated soon.

* | hope that this course will allow you to get more deeply into a topic you
are interested in, and understand publications in the field.

 There is a lot of exciting work to be done in Al for Physics or Al for
Science, with potentially big consequences for both physics and
humanity.

Thanks for participating
In this course!

