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Interpretability/
Explainability



Why do we want interpretable machine learning?

• Machine learning has significantly improved the way scientists model 
and interpret large datasets across a broad range of the physical 
sciences


• However, its "black box" nature often limits our ability to trust and 
understand its results.


• Explainable AI (XAI) refers to methods and techniques in artificial 
intelligence that make the behavior and decision-making process of AI 
systems understandable to humans.


• We would we want explainable AI?


• Trust the result 

• Find bugs or problems 

• Get scientific insight



How interpretable are ML techniques

Figure credit: Luisa Lucie-Smith, Hamburg University



Feature Importance
• We already encountered one such method in the case of Tree based 

methods (e.g. Gradient Boosted Trees).  

• Gini Importance / Mean Decrease in Impurity (MDI): Measures how 
much each feature decreases the impurity across all trees.


• For MLPs and other deep neural networks, weight magnitudes are not 
directly interpretable due to non-linearity. 


• One can also remove features during training and evaluation to gauge their 
importance, but the result may be somewhat stochastic in different training 
runs.



Saliency Maps
• Saliency maps are a type of visual explanation technique primarily used in deep 

learning—especially in computer vision—to highlight which parts of the input 
most influenced the model’s output.


• A saliency map is a heatmap over the input (e.g., an image) where the intensity 
of each pixel indicates how important that pixel was for the model's prediction.


• E.g. In an image classification task, a saliency map might show that a cat’s face 
contributed most to the model labeling the image as a "cat", while the 
background had little effect.



Saliency Maps

Figure credit: Luisa Lucie-Smith, Hamburg University



Interpretability in latent space
• If we can represent the data in a low-dimensional latent space, we may 

be able to interpret this space.


• For interpretability, we seek a latent space with the following 
properties:


• Low-dimensional: Only a few variables capture most of the 
information.


• Sparse: Most dimensions are zero or near-zero for any given example.


• Disentangled: Each latent dimension controls an independent, 
semantically meaningful factor of variation in the data.



Interpretability in latent space
• Here are some techniques that can be used to construct such a latent 

space:


• Once the latent space is found, one can for example 

• Visualize and interpret the “degrees of freedom” of the data.


• Perform inference on these latent variables.


• Use latent variables for new tasks.



Example: SciNet model

• If you train a network to answer physical questions about a system, 
the bottleneck layer will contain the relevant physical variables — 
like energy, angular momentum, or charge — without being told what 
those variables are.


• The bottleneck forces the encoder to represent only the minimal 
sufficient information necessary to answer questions.


• The latent variables often disentangle into interpretable physical 
quantities, like mass or velocity, without supervision.



Example: SciNet Model

Training data:



Example from cosmology

IVE: interpretable variational encoder



Analyze mutual information in latent space 



Mutual information

• How to estimate the mutual information depends on whether X and/or Y are 
continuous or discrete. 


• Discrete case:


• Scikit-Learn has various functions to help calculating this from samples. 



Symbolic Regression of 
Functions



Discovering symbolic laws from data

• The goal of physics is to find the mathematical laws that describe nature. 

• We could hope that neural networks “look at the data” and automatically find 
the underlying laws.  

• In simple setups this is now possible. E.g. discover newtons laws from looking 
at how particles mode. 


• Discovering Symbolic Laws = Symbolic Regression 

• Symbolic Regression is an old topic that pre-dates machine learning, but 
Machine Learning may enhance it. 

• Analytic expressions CAN be more interpretable than arbitrary neural 
networks, if they are sufficiently simple and/or relatable to the physics of the 
domain.



Are symbolic expressions always “interpretable”?
Example: https://arxiv.org/abs/2311.15865 A precise symbolic emulator of the linear matter power spectrum


https://arxiv.org/abs/2311.15865


SR with Genetic algorithms, PySR code
• Symbolic Regression is usually done with Genetic algorithms, building a 

population of possible expressions that evolve (i.e. are modified). 


• See the PySR paper https://arxiv.org/abs/2305.01582 Interpretable Machine 
Learning for Science with PySR and SymbolicRegression.jl 

https://arxiv.org/abs/2305.01582


PySR algorithm



Symbolic Regression methods
Comparison from https://arxiv.org/abs/2305.01582



Example: AI Feynman
• https://www.science.org/doi/

10.1126/sciadv.aay2631 AI 
Feynman: A physics-inspired 
method for symbolic regression

• We develop a recursive 

multidimensional symbolic 
regression algorithm that 
combines neural network fitting 
with a suite of physics-inspired 
techniques. We apply it to 100 
equations from the Feynman 
Lectures on Physics, and it 
discovers all of them.

https://www.science.org/doi/10.1126/sciadv.aay2631
https://www.science.org/doi/10.1126/sciadv.aay2631


Combine low-dimensional latent representations with SR

• https://arxiv.org/abs/2006.11287 Discovering Symbolic Models from Deep 
Learning with Inductive Biases  
• We develop a general approach to distill symbolic representations of a learned 

deep model by introducing strong inductive biases. We focus on Graph Neural 
Networks (GNNs). 


• The technique works as follows: we first encourage sparse latent 
representations when we train a GNN in a supervised setting, then we 
apply symbolic regression to components of the learned model to extract 
explicit physical relations. We find the correct known equations, including 
force laws and Hamiltonians, can be extracted from the neural network

https://arxiv.org/abs/2006.11287




Aside: Symbolic 
Regression with 
Transformers 



Foundation Model combining symbolic laws and data?

• One can train a multimodal transformer that has seen lots of pairs of 
data and corresponding equations.


• The transformer might then be able to “guess” the underlying 
equation of novel data, e.g. a function, ODE or even PDE system.


• The hope would be that the model learns some kind of “organic 
understanding of equations”.


• This is not currently a competitive approach, but there is some 
experimentation in this direction. 



How to encode equations?
• https://arxiv.org/abs/1912.01412 Deep Learning for Symbolic Mathematics 

• This paper used sequence-to-sequence models (e.g. transformer) on two 
problems of symbolic mathematics: function integration and ordinary differential 
equations (ODEs)


• Representing mathematical expressions as trees


• The tree can then be represented as a sequence of tokens.  

https://arxiv.org/abs/1912.01412


How to encode equations?
• Real numbers can also be discretized as tokens, for example as follows 

(2112.01898): 





• There are other strategies to tokenize equations and numbers.



SR with transformers

https://arxiv.org/pdf/2204.10532



SR for ODEs: ODEFormer
• Can we give a neural network observed data (solutions to differential equations) and ask it to 

find the underlying equation of motion (differential equations)?


• Example:: https://arxiv.org/abs/2310.05573 ODEFormer: Symbolic Regression of 
Dynamical Systems with Transformers 

• Example: 2-dimensional ODE

https://arxiv.org/abs/2310.05573


ODEFormer
• Use ideas we discussed: Tokenizing equations, transformer encoder-decoder


• Could we discover the equations of motion of an observed system for which we don’t know the 
answer?



Briefly: Emulators for 
expensive function 
evaluations 



What are emulators?
• Emulators are machine learning models that replace more precise and 

expensive analytic methods or simulations with an approximate but much 
faster machine-learned model.


• This is sometimes called an emulator or a surrogate model. We have discussed 
such cases before but not in this language. 


• E.g. We have seen how to use diffusion models to emulate real simulations. But 
the idea also works for general functions, not just simulations.


• Emulators can have other advantages over the exact method:

• They are auto-differentiable. This can make high-dimensional Bayesian 

analysis tractable.

• Common methods to learn emulators of functions are Gaussian Processes and 

Neural Networks.

• Analyses where emulators can be switched with the full slower method are in 

some sense interpretable (since ML is purely used for speedup).



Emulators to speed up exact codes

• A complicated and slow code (“Einstein-Boltzmann solver”) calculates 
predictions for observables in cosmology for given cosmological 
parameters.


• This code needs to be called thousands of times in cosmological 
parameter inference.


• Instead, one can train a neural network to approximate and interpolate 
this computation. 


• Can make analyses that would take weeks run in seconds on a laptop.



Emulators for interpolating simulation results

• Emulators are also used to make continuous functions from discrete 
simulation data. 


• If you have “summary statistic” T(xi) that extracts information from a 
model (see SBI unit), you may be able to simulate the summary statistic 
at some discrete parameters (xi). If you train a neural network to learn 
T(x) from this data, you can then use a continuous function during 
inference. 


• Example from cosmology:



Summary of the 
Semester



What we covered
• Background: Probability theory and Information theory


• Basics of Machine Learning and Basic Architectures


• Working with images and fields - CNNs in physics


• Simulation-based inference & Uncertainty Quantification


• Advanced data structures: Graphs and Point Clouds


• Transformers, LLMs, Foundation Models, Reinforcement Learning, Reasoning


• Generative Models: Auto-Encoders, VAE, Diffusion Models, Score Matching, 
Flow Matching


• Brief outline of other advanced topics:


• PDE solving, Inverse problems, Anomaly detection


• Interpretability, Symbolic Regression, Emulators



Assignments



What’s next?
• We covered a lot of material from basic stuff to state-of-the-art, which 

should give you a good high-level overview of what’s out there in AI 
for Science. 


• Almost all the things we covered will be useful in physics research or 
other sciences, and are not likely to be outdated soon.


• I hope that this course will allow you to get more deeply into a topic you 
are interested in, and understand publications in the field. 


• There is a lot of exciting work to be done in AI for Physics or AI for 
Science, with potentially big consequences for both physics and 
humanity.



Thanks for participating 
in this course!


