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Unit 2: Machine
Learning Basics

2.5 Optimization

Resources:
- https://arxiv.org/pdf/1803.08823 A high-bias, low-variance introduction to Machine Learning for physicists
- deeplearningbook.org chapter 8



https://arxiv.org/pdf/1803.08823
http://deeplearningbook.org

Optimizers

ML problems are mostly about minimizing a cost function. This
can be a hard problem because:

. The function depends on many parameters, say 0(10°) and
hence the minimization is over a huge parameter space.

* |t becomes numerically expensive to evaluate the cost function,
its gradient and higher derivatives.

* Non-convex loss function = multiple minima
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e Common method: gradient descent & variations.



Gradient Descent

>

* The “energy” we want to minimize is
the cost function (loss function): Weight
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Newton’s Method

e Inspiration for many widely used optimization methods.

e Choose the step v for the parameter 8 to minimize a 2nd order
Taylor expansion: )E
 Tens.

E(0 + v) ~ E(0) + VyE(0)v + %VTH(H)V,

where H(0) is the Hessian. Differentiate w.r.t. v, noting that for
the optimal value v,,,,, V. E(@+ V)| _. =0:
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Gradient Descent vs Newton’s Method

Newton’s method requires knowledge of 2nd derivatives (n2
component Hessian) which is computationally expensive.

Calculating inverse of the Hessian is expensive especially for
millions of parameters (common in neural network applications).

= Newton’s method unfeasible for typical ML systems.

However, useful to get intuition how to choose the learning rate:
) —1
Nopt = 10 E(0)] (1-dim)

Newton’s method automatically adjusts the learning rate: takes
larger steps in flat directions and smaller steps in steep directions.



Regimes of Learning Rate (for a quadratic loss)
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Convergence in Higher Dimensions

Natural generalization of 6§E(6’) is the Hessian.

Perform a singular value decomposition of the Hessian matrix:

X =UDV'

where U and V are orthogonal matrices and D is diagonal with

eigenvalues {4, ..., 4, .}

Convergence of gradient descent requires:

2
n <
)Lmax
fA,, <K /Imax: convergence is slow in the ... direction.
Convergence time scale scales withk =4, /4 ..



Gradient Descent — Limitations

Starting

 Finds local minima: Needs a R Configuration
“temperature” (stochasticity) to 4
tunnel over energy barriers.

Perturb
(Hill Climbing)

[/

Perturb
(Hill Climbing)

* Sensitive to initial conditions
(which local minimum depends on
starting point)

Objective Function f(X)

— important to consider sensible
initialization of training process.

e Gradients computationally Variable X
expensive for large datasets

— calculate gradient using small
subset of data:

“mini-batches” (gives
stochasticity)

Stochastic Gradient Descent (SGD)



Gradient Descent — Limitations

e Sensitive to choice of learning rates (too small would take a long time to
train, too large would diverge from minima).

— Furthermore need to adaptively choose learning rate.

e Treats all directions uniformly. In steep directions a large learning rate can
cause instability, while in flat directions a small learning rate is inefficient.

— We would like to take larger steps in flat directions, smaller steps in steep
directions

— second derivatives needed to account for “curvature effects”.

e Takes exponential amount of time to escape a saddle point.

You are encouraged to experiment with gradient descent and its variants using
the Juypter notebook on:

https://physics.bu.edu/%7Epankajm/MLnotebooks.html



https://physics.bu.edu/%7Epankajm/MLnotebooks.html

SGD with Mini-batches

Stochasticity by approximating gradient on subset of data, so-called
mini-batches, denoted as Bk (size varies ~10-100):

D—-B.,b,,....B,
Speed up gradient computation:

VoE(0) = Y " Viei(xi, 0) — Y Voei(x;, 0)
i=1

i€By,
Perform gradient descent:

Vt — T]tVQEMB(O)a
01 =0 — ;.

Cycle through mini-batches. One entire cycle is known as an epoch.

Bonus: works effectively as a natural regularizer that prevents overfitting
In deep, isolated minima



GD with Momentum (GDM)

* |dea: add memory of the direction we move in parameter space

Vi = YVi_1 + 1 VoE(0;)
Or11 = 0 — v,

by introducing a momentum parameter y, with O <y <1

e The step taken v is a running average of recently encountered
gradients with the characteristic time scale for the memory set by y.

* To get some physics intuition, consider a massive particle in viscous
medium with viscous damping coefficient u, and potential E(6):



GD with Momentum (GDM)

e Discrete version of this EOM:

Weiar — 2We + Wi p MWt+At — W _ _V,E(w).
(At)? At
* Bringing it to a form of a GDM:
A = — (Aty V,E(w) + m AW
Wepar = m+ WAL w m+ At t-

* The momentum parameter and the learning rate are then identified:

m (At)?

y:m—l—,uAt’ n:m—l—,u,At'




GD with Momentum (GDM)

Gain speed in directions with persistent but small gradient, while
suppressing oscillations in high curvature directions.

Especially useful when E(6) is shallow and flat in some directions,
and narrow and steep in others.

More useful during the transient phase than the fine-tuning phase.

Slight modification: Nesterov accelerated gradient (NAG) descent

(update at expected value of parameters with current momentum):
Ve = yVi_1 + 0 VoE(O: + yVi_1)

Or11 = 0 — V.

improves stability and prevents excessive overshooting.



Using the 2nd Moment

|deally calculate/approximate Hessian and normalize learning rates
accordingly.

In addition to keeping a running average of the first moment of the
gradient (momentum), we also keep track of the second moment:

St — _[gtz]

Methods include: AdaGrad (2011), AdaDelta (2012), RMS-Prop
(2012), ADAM (2014).

RMS-Prop update rules: 8 = VoE(0)
St = BSi—1 + (1 — ﬁ)g?
g
0r1 = 0 — 1 t ;



RMS-Prop

e RMS-Prop update rules:
f ~ 0.9 controls the averaging
time of the 2nd moment

g = VyE(0)
St = BSi—1+(1— ,B)gf
g
Or1 = 0 — 1 t

\/St +e e~1078 regularizes divergences

e Learning rate is reduced in directions where the norm of the gradient
IS consistently large.

e Speeds up convergence by allowing us to use a larger learning rate
for flat directions.



ADAM optimizer

 Using a running average of both the 1st and 2nd moments:

g = VypE(0)
m; = gim;_1 + (1 — B1)8: m, = E[g,]
Se = Base_1 + (1 — Br)g:
N m;
m; —
1—(B1)
" St
St =
1—(B)
m;

01 =0 —n; = ;
\/;t + €
* Memory lifetimes of the 1st and 2nd moment are typically:

B, = 0.9, f, = 0.99

* Adam works very well for a wide domain of problems.



Which optimizer to use?

e There is no absolute superior optimizer; one should experiment

which optimizer and which hyperparameters are suitable for the
problem at hand.

e Standard tools: mini-batches, momentum, randomize your batches,
transform input to get uniform loss landscape

* Often people use Adam by default and only experiment with the
learning rate.



Example of recent related work in physics:
Energy-Conserving Optimizer

Improving Energy Conserving Descent for Machine Learning: Theory and
Practice

G. Bruno De Luca, Alice Gatti, Eva Silverstein (Jun 1, 2023)
e-Print: 2306.00352 [cs.LG]

pdf [= cite [@ reference search 5) 2 citations

Microcanonical Hamiltonian Monte Carlo

Jakob Robnik, G. Bruno De Luca, Eva Silverstein, Uros Seljak (Dec 16, 2022)
e-Print: 2212.08549 [stat.CO]

pdf [= cite @ reference search ) 5 citations

Born-Infeld (BIl) for Al: Energy-Conserving Descent (ECD) for Optimization

G. Bruno De Luca (Stanford U., ITP), Eva Silverstein (Stanford U., ITP) (Jan 26, 2022)
Published in: PMLR 162 (2022) 4918 - e-Print: 2201.11137 [cs.LG]

pdf [= cite [ reference search 5) 5 citations




Unit 2: Machine
Learning Basics

2.6 Understanding Shallow
and Deep Neural Networks

Resources:
- Based on Simon Prince “Understanding Deep Learning”. Free online: https://udibook.github.io/udlbook/
- Figures from that book unless otherwise stated



https://udlbook.github.io/udlbook/

More details on MLPs

In previous lectures we have proposed stacks of linear layers and
activation functions (called Multilayer Perceptron or MLP) and used
them on SUSY data. MLPs are also sometimes called Fully
Connected Neural Networks.

In the following we will understand these functions in some more
detail.

The following section does not introduce any new neural networks
technology, but helps interpret the one we have been using.

We will first understand “shallow neural networks”, which have one
activation function and two linear transformations. Then we will
extrapolate to deep neural networks which stack many more layers.



Learning a function

* A NN is a parametrization of “big” (multivariate, non-linear) functions.

e Shallow NNs parametrize piecewise linear functions and are
already expressive enough to approximate arbitrarily complex
relationships between multi-dimensional inputs and outputs.
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Shallow Neural Networks

Shallow neural networks are functions y = f(X, ¢») with parameters ¢
that map multivariate inputs X to multivariate outputs y.

As a warmup, consider f(x, ¢) that maps a scalar input x to a scalar
output y and has ten parameters ¢ = {@, ¢y, 2, ¢3, 019, 011> 0, 051, O3, 031 }:

flz, @]
b0 + p1a|010 + O112] + P2a|020 + O212] + P3a|f30 + O317].

<
]

al - | is known as the activation function. It cannot be a linear
function in order for the NN to go beyond linear regression.

Given a training dataset {x;, y. le, we can define a least squares
loss function L[¢] to measure how effectively the model describes
this dataset. To train the model, we find ¢ that minimizes L[¢].



Activation Functions

Perceptron Sigmoid Tanh
i 1 __/—_ 'l
) o) | L /
Z
a1 | ! T1e > _ P tanh(z)
-5 0 5 -5 0 5 -5 0 5
6 RelLU 6 Leaky RelLU 6 ELU Exponential Linear Unit
4 max(0, z) 4'(),1zifz§() 4l er—1if2<0
2 2) 2ifz>0 2 zif 2> 0
0 0 0
5 0 5 5 0 5 5 0 5

e For illustrative purpose, we consider the most common choice known

as the rectified linear unit or ReLbr:
0 z <0

alz] = ReLU|z| = « .
2 z >0




NN Intuition

* In the ten-parameter example, we model the dataset with a family of
continuous piecewise linear functions with up to 4 linear regions.

a), b) )

* To see why, we define the intermediate quantities as hidden units:

hl = a:910 + 911$:
ho = alfao + 0217
hs = alls30 + 0317],

* The output is given by combining the hidden units w/ a linear function:

Y = Qo + ¢1h1 + @2he + P3hs.



Activation Pattern
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Depicting Neural Networks

N 2, @
o o
(931 g

inputs hidden units outputs inputs hidden units outputs

* The intercepts (known as biases) are usually not shown in the NN
architecture, the NN is simplified to the picture on the right.



Universal Approximation Theorem

e Generalizing to D hidden units:
D
hgy = a[@do -+ lex‘], Yy = ¢g + Z dahg.
d=1

o D = network capacity; there are D joints and D + 1 linear regions.

« Universal approximation theorem: V continuous function, d a
shallow network that can approximate it to any specified precision;
holds for networks that map multivariate inputs to multivariate outputs.
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Multivariate Outputs

. For example, y = [y, y,]":

1020
Input,

 The hidden units for both outputs are the same: h = a0+ 6112]
ho = al|lyg + 0211
hs = a|f39+ 0312]
he = albio + Oszl,

* The joints are the same but the slopes of the linear regions and the
vertical offsets can differ:  y, = ¢,0+ d11h1 + d1ohs + G13hs + drahy

Y2 = Q20+ P21h1 + Pacha + @az3hs + P2ahy.



Multivariate Inputs
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The hidden units depend on both inputs

hi = albig+ 601121 + 01022
ho = alfyg + 02121 + O2029
hs = allsg+ 03171 + 03222,

They create a continuous piecewise
linear surface consisting of convex
polygonal regions, each with a
different activation patten.

This depicts 2 inputs and 1 output.
Generalizable to more than 2 inputs

but difficult to visualize such cases



(General Case

 In general, a shallow NN is a function y = f(X, ¢) that maps a multi-
dimensional input X € RP to a multi-dimensional outputy € RDo
using h € R hidden units:

hd:a

D; D
Oao + Z Qdixi:| ) Yj = Pjo + Z Pjdahd,
d=1

1=1

e Graphically, a shallow NN is depicted as e.g.




Terminology

Hidden layer
Input layer Output layer

Neuron or
: .: ¥.."---.--‘ ® °
Weight hidden unit

Any NN with at least one hidden layer is called a multi-layer perceptron, or MLP.

NNs with one hidden layer are called shallow NNs. NNs with multiple hidden layers
are called deep NNs.

NNs with connections form an acyclic graph (a graph w/0 loops) are feedforward NNs.

Every element in one layer connects to every element in the next: fully connected
NNSs.



Why going deep?

e A shallow NN with only a single hidden layer can already approximate any
continuous function to a specific precision, using piecewise linear
functions.

e However, the network capacity (# hidden units) may be impractically large.
A deep NN can produce more linear regions for a given # parameters.
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The composition of 2 shallow networks results in a 2-layer network:

First layer:

Second layer:

Output:

Deep Neural Networks

h2 — 3:920 T 92137:
]’L3 = 3:930 T 93137:.
hi = a[th1o + Y11h1 + Y12he + P13hs3]

hy = a[hao + Wa1h1 + aohs + Pashs]
- Y31h1 + Y32k + P33hs

>

w\
]

lggl

<
W
-
|

Y = ¢y + d1h] + dohy + Pshg



Deep Neural Networks

Figure 4.5 Computation for the deep network in figure 4.4. a—c) The inputs
to the second hidden layer (i.e., the pre-activations) are three piecewise linear
functions where the “joints” between the linear regions are at the same places
(see figure 3.6). d—f) Each piecewise linear function is clipped to zero by the
ReLU activation function. g—i) These clipped functions are then weighted with
parameters ¢7,¢s, and ¢j3, respectively. j) Finally, the clipped and weighted
functions are summed and an offset ¢ that controls the overall height is added.
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A complicated (piece-wise linear) function emerges.



Hyperparameters

S (O— : ~
> <X >
AN S
. < ™
@\ (T
QO c R4X3 Ql c RZX4 92 c R3><2 93 c ]R2><3
Tnout Hidden Hidden Hidden Outout
P, £ layer, hy layer, ho layer, hs WP, ¥
D; =3 Dy =4 Dy =2 D3 =3 D, =2

« Modern deep NNs can have O(10) to O(10?) layers with ©(10°) of hidden units in each
layer.

e The number of layers K = depth, & the number of hidden units in each layer (=width)
D,, D,, ..., Dy are hyperparameters. The network capacity = # number of hidden units.

e For fixed hyperparameters, the model describes a family of functions, and the parameters
@ (known as weights) determine a specific function.



Back to matrix notation

 We can express a 2-layer network in matrix notation:

and

h1 010 011
ho| =a | |b0| + |021| 2|,
h3 B30 031

1 Y10 Y11 Y12 P3| |
5 =a | [Yao| + |21 Y22 o3| |h2| |,
: 30 Y31 Y32 P33 [h3

hl
v =0+ [¢1 ¢ @8] |hal,
hiy

e More generally, a K-layer network:

= a8, + Qihy]
= a|B, + Q2hy)]

= alBr_1+Qrx_1hg 1]
= O+ Qxhg.

h = alfy+ 0]
y = ¢o+o'h,
Hyperparameters:

K,D,,D,, ...,Dy

Parameters: biases and matrices



Shallow vs Deep

 Universal approximation theorem: deep NNs can approximate
any continuous function arbitrarily closely given sufficient capacity.

- We can reproduce a shallow network if all but one layer is the
identity function. Since we showed that a shallow NN can
approximate any continuous function, deep NNs also work.

 More expressive (more linear regions per parameter):

> A shallow NN with 1 input, 1 output, D > 2 hidden units (in 1 layer)
can create up to D + 1 linear regions using 3D + 1 parameters.

- A deep NN with 1 input, 1 output, D > 2 hidden units in K layers of
same dimension D can create up to (D + 1) linear regions using
3D+ 1+ (K- 1)D(D + 1) parameters.

This exponential growth in linear regions is what makes deep NN
more expressive.



Shallow vs Deep

* The counting of parameters for shallow NNs goes as follows:

- There are D hidden units, each has two parameters (bias,
weight). The output layer has D weights and one bias. #
parameter=2D+D+1=3D+1.

* The counting of parameters for deep NNs goes as follows:

- There are D weights between the input and the first hidden
layer, K — 1 lots of D x D inputs between adjacent hidden
layers, and D weights between the last hidden layer and the
output. There are D biases at each of the K hidden layers
and 1 bias for the output. This gives
D+(K-1DD?+D+KD+1= 3D+ (K-1DD?*+(K-1)D+1
parameters.



Shallow vs Deep

* Deep NNs create much more linear regions for a fixed parameter
budget, but they contain complex dependence and symmetries.

 The greater number of regions is an advantage if:
1. there are similar symmetries in the function to approximate;
2. the input—output map is a composition of simpler functions.

e Depth efficiency refers to the phenomenon that a shallow NN
needs exponentially more hidden units to achieve an equivalent
approximation to that of a deep NN.



Shallow vs Deep

 Training and generalization: It is easier to train moderately deep
networks than to train shallow ones.
100

1 hidden layer
2 hidden layers

S | 3 hidden layers

= 4 hidden layers

O -

£

© |

=

X

0 - . - .
0 EPOCh 500K

e Deep NNs also seem to generalize to new data better than
shallow ones.

 Empirically, one finds best results for most tasks using networks
with a few (or more) hidden layers layers.



Course logistics

e Reading for this lecture:
e https://arxiv.org/pdf/1803.08823 (Optimization)
e Simon Prince “"Understanding Deep Learning”
(Shallow and Deep NN sections). Free online:
https://udlbook.github.io/udlbook/

e Problem set. Second problem due next Wednesday


https://arxiv.org/pdf/1803.08823
https://udlbook.github.io/udlbook/

