
Moritz Münchmeyer (with Slides from Gary Shiu)

Physics 361 - Machine Learning in
Physics

Lecture 6 – Basics of Machine
Learning

Feb. 6th 2025

Unit 2: Machine
Learning Basics

2.5 Optimization
Resources:

- https://arxiv.org/pdf/1803.08823 A high-bias, low-variance introduction to Machine Learning for physicists

- deeplearningbook.org chapter 8

https://arxiv.org/pdf/1803.08823
http://deeplearningbook.org

• ML problems are mostly about minimizing a cost function. This
can be a hard problem because:

• The function depends on many parameters, say and
hence the minimization is over a huge parameter space.

• It becomes numerically expensive to evaluate the cost function,
its gradient and higher derivatives.

• Non-convex loss function → multiple minima  

• Common method: gradient descent & variations.

𝒪(106)

Optimizers

Gradient Descent

• The “energy” we want to minimize is
the cost function (loss function):

can often be written as a sum over
data points, e.g., mean-square error
or cross-entropy (classification).

• Idea: adjust parameters in the
direction where the gradient of
is large and negative. Gradually
shifting towards a local minimum.  

E(θ)

14 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 7. Gradient descent exhibits three qualitatively different regimes as a function of the learning rate. Result of gradient descent on surface
z = x2 + y2 � 1 for learning rate of ⌘ = 0.1, 0.5, 1.01. Notice that the trajectory converges to the global minima in multiple steps for small learning
rates (⌘ = 0.1). Increasing the learning rate further (⌘ = 0.5) causes the trajectory to oscillate around the global minima before converging. For
even larger learning rates (⌘ = 1.01) the trajectory diverges from the minima. See corresponding notebook for details.

parameters we wish to fit is often enormous (millions of parameters and examples). The goal of this chapter is to explain
how gradient descent methods can be used to train machine learning algorithms even in these difficult settings.

This chapter seeks to both introduce commonly used methods and give intuition for why they work. We also include
some practical tips for improving the performance of stochastic gradient descent (Bottou, 2012; LeCun et al., 1998b). To
help the reader gain more intuition about gradient descent and its variants, we have developed a Jupyter notebook that
allows the reader to visualize how these algorithms perform on two dimensional surfaces. The reader is encouraged
to experiment with the accompanying notebook whenever a new method is introduced (especially to explore how
changing hyper-parameters can affect performance). The reader may also wish to consult useful reviews that cover these
topics (Ruder, 2016) and this blog http://ruder.io/optimizing-gradient-descent/.

4.1. Gradient descent and Newton’s method

We begin by introducing a simple first-order gradient descent method and comparing and contrasting it with another
algorithm, Newton’s method. Newton’s method is intimately related to many algorithms (conjugate gradient, quasi-
Newton methods) commonly used in physics for optimization problems. Denote the function we wish to minimize by
E(✓).

In the context of machine learning, E(✓) is just the cost function E(✓) = C(X, g(✓)). As we shall see for linear and logistic
regression in Sections 6, 7, this energy function can almost always be written as a sum over n data points,

E(✓) =

nX

i=1

ei(xi, ✓). (10)

For example, for linear regression ei is just the mean square-error for data point i; for logistic regression, it is the
cross-entropy. To make analogy with physical systems, we will often refer to this function as the ‘‘energy’’.

In the simplest gradient descent (GD) algorithm, we update the parameters as follows. Initialize the parameters to
some value ✓0 and iteratively update the parameters according to the equation

vt = ⌘tr✓E(✓t),
✓t+1 = ✓t � vt (11)

where r✓E(✓) is the gradient of E(✓) w.r.t. ✓ and we have introduced a learning rate, ⌘t , that controls how big a step we
should take in the direction of the gradient at time step t . It is clear that for sufficiently small choice of the learning rate ⌘t
this methods will converge to a local minimum (in all directions) of the cost function. However, choosing a small ⌘t comes
at a huge computational cost. The smaller ⌘t , the more steps we have to take to reach the local minimum. In contrast, if
⌘t is too large, we can overshoot the minimum and the algorithm becomes unstable (it either oscillates or even moves
away from the minimum). This is shown in Fig. 7. In practice, one usually specifies a ‘‘schedule’’ that decreases ⌘t at long
times. Common schedules include power law and exponential decay in time.

To better understand this behavior and highlight some of the shortcomings of GD, it is useful to contrast GD with
Newton’s method which is the inspiration for many widely employed optimization methods. In Newton’s method, we
choose the step v for the parameters in such a way as to minimize a second-order Taylor expansion to the energy function

E(✓ + v) ⇡ E(✓) + r✓E(✓)v +
1
2
vTH(✓)v,

where H(✓) is the Hessian matrix of second derivatives. Differentiating this equation respect to v and noting that for the
optimal value vopt we expect r✓E(✓ + vopt) = 0, yields the following equation

0 = r✓E(✓) + H(✓)vopt. (12)

14 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 7. Gradient descent exhibits three qualitatively different regimes as a function of the learning rate. Result of gradient descent on surface
z = x2 + y2 � 1 for learning rate of ⌘ = 0.1, 0.5, 1.01. Notice that the trajectory converges to the global minima in multiple steps for small learning
rates (⌘ = 0.1). Increasing the learning rate further (⌘ = 0.5) causes the trajectory to oscillate around the global minima before converging. For
even larger learning rates (⌘ = 1.01) the trajectory diverges from the minima. See corresponding notebook for details.

parameters we wish to fit is often enormous (millions of parameters and examples). The goal of this chapter is to explain
how gradient descent methods can be used to train machine learning algorithms even in these difficult settings.

This chapter seeks to both introduce commonly used methods and give intuition for why they work. We also include
some practical tips for improving the performance of stochastic gradient descent (Bottou, 2012; LeCun et al., 1998b). To
help the reader gain more intuition about gradient descent and its variants, we have developed a Jupyter notebook that
allows the reader to visualize how these algorithms perform on two dimensional surfaces. The reader is encouraged
to experiment with the accompanying notebook whenever a new method is introduced (especially to explore how
changing hyper-parameters can affect performance). The reader may also wish to consult useful reviews that cover these
topics (Ruder, 2016) and this blog http://ruder.io/optimizing-gradient-descent/.

4.1. Gradient descent and Newton’s method

We begin by introducing a simple first-order gradient descent method and comparing and contrasting it with another
algorithm, Newton’s method. Newton’s method is intimately related to many algorithms (conjugate gradient, quasi-
Newton methods) commonly used in physics for optimization problems. Denote the function we wish to minimize by
E(✓).

In the context of machine learning, E(✓) is just the cost function E(✓) = C(X, g(✓)). As we shall see for linear and logistic
regression in Sections 6, 7, this energy function can almost always be written as a sum over n data points,

E(✓) =

nX

i=1

ei(xi, ✓). (10)

For example, for linear regression ei is just the mean square-error for data point i; for logistic regression, it is the
cross-entropy. To make analogy with physical systems, we will often refer to this function as the ‘‘energy’’.

In the simplest gradient descent (GD) algorithm, we update the parameters as follows. Initialize the parameters to
some value ✓0 and iteratively update the parameters according to the equation

vt = ⌘tr✓E(✓t),
✓t+1 = ✓t � vt (11)

where r✓E(✓) is the gradient of E(✓) w.r.t. ✓ and we have introduced a learning rate, ⌘t , that controls how big a step we
should take in the direction of the gradient at time step t . It is clear that for sufficiently small choice of the learning rate ⌘t
this methods will converge to a local minimum (in all directions) of the cost function. However, choosing a small ⌘t comes
at a huge computational cost. The smaller ⌘t , the more steps we have to take to reach the local minimum. In contrast, if
⌘t is too large, we can overshoot the minimum and the algorithm becomes unstable (it either oscillates or even moves
away from the minimum). This is shown in Fig. 7. In practice, one usually specifies a ‘‘schedule’’ that decreases ⌘t at long
times. Common schedules include power law and exponential decay in time.

To better understand this behavior and highlight some of the shortcomings of GD, it is useful to contrast GD with
Newton’s method which is the inspiration for many widely employed optimization methods. In Newton’s method, we
choose the step v for the parameters in such a way as to minimize a second-order Taylor expansion to the energy function

E(✓ + v) ⇡ E(✓) + r✓E(✓)v +
1
2
vTH(✓)v,

where H(✓) is the Hessian matrix of second derivatives. Differentiating this equation respect to v and noting that for the
optimal value vopt we expect r✓E(✓ + vopt) = 0, yields the following equation

0 = r✓E(✓) + H(✓)vopt. (12)

learning rate

Newton’s Method

• Inspiration for many widely used optimization methods.

• Choose the step for the parameter to minimize a 2nd order
Taylor expansion:

where is the Hessian. Differentiate w.r.t. , noting that for
the optimal value , :

v θ

H(θ) v
vopt ∇vE(θ + v) |v=vopt

= 0

14 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 7. Gradient descent exhibits three qualitatively different regimes as a function of the learning rate. Result of gradient descent on surface
z = x2 + y2 � 1 for learning rate of ⌘ = 0.1, 0.5, 1.01. Notice that the trajectory converges to the global minima in multiple steps for small learning
rates (⌘ = 0.1). Increasing the learning rate further (⌘ = 0.5) causes the trajectory to oscillate around the global minima before converging. For
even larger learning rates (⌘ = 1.01) the trajectory diverges from the minima. See corresponding notebook for details.

parameters we wish to fit is often enormous (millions of parameters and examples). The goal of this chapter is to explain
how gradient descent methods can be used to train machine learning algorithms even in these difficult settings.

This chapter seeks to both introduce commonly used methods and give intuition for why they work. We also include
some practical tips for improving the performance of stochastic gradient descent (Bottou, 2012; LeCun et al., 1998b). To
help the reader gain more intuition about gradient descent and its variants, we have developed a Jupyter notebook that
allows the reader to visualize how these algorithms perform on two dimensional surfaces. The reader is encouraged
to experiment with the accompanying notebook whenever a new method is introduced (especially to explore how
changing hyper-parameters can affect performance). The reader may also wish to consult useful reviews that cover these
topics (Ruder, 2016) and this blog http://ruder.io/optimizing-gradient-descent/.

4.1. Gradient descent and Newton’s method

We begin by introducing a simple first-order gradient descent method and comparing and contrasting it with another
algorithm, Newton’s method. Newton’s method is intimately related to many algorithms (conjugate gradient, quasi-
Newton methods) commonly used in physics for optimization problems. Denote the function we wish to minimize by
E(✓).

In the context of machine learning, E(✓) is just the cost function E(✓) = C(X, g(✓)). As we shall see for linear and logistic
regression in Sections 6, 7, this energy function can almost always be written as a sum over n data points,

E(✓) =

nX

i=1

ei(xi, ✓). (10)

For example, for linear regression ei is just the mean square-error for data point i; for logistic regression, it is the
cross-entropy. To make analogy with physical systems, we will often refer to this function as the ‘‘energy’’.

In the simplest gradient descent (GD) algorithm, we update the parameters as follows. Initialize the parameters to
some value ✓0 and iteratively update the parameters according to the equation

vt = ⌘tr✓E(✓t),
✓t+1 = ✓t � vt (11)

where r✓E(✓) is the gradient of E(✓) w.r.t. ✓ and we have introduced a learning rate, ⌘t , that controls how big a step we
should take in the direction of the gradient at time step t . It is clear that for sufficiently small choice of the learning rate ⌘t
this methods will converge to a local minimum (in all directions) of the cost function. However, choosing a small ⌘t comes
at a huge computational cost. The smaller ⌘t , the more steps we have to take to reach the local minimum. In contrast, if
⌘t is too large, we can overshoot the minimum and the algorithm becomes unstable (it either oscillates or even moves
away from the minimum). This is shown in Fig. 7. In practice, one usually specifies a ‘‘schedule’’ that decreases ⌘t at long
times. Common schedules include power law and exponential decay in time.

To better understand this behavior and highlight some of the shortcomings of GD, it is useful to contrast GD with
Newton’s method which is the inspiration for many widely employed optimization methods. In Newton’s method, we
choose the step v for the parameters in such a way as to minimize a second-order Taylor expansion to the energy function

E(✓ + v) ⇡ E(✓) + r✓E(✓)v +
1
2
vTH(✓)v,

where H(✓) is the Hessian matrix of second derivatives. Differentiating this equation respect to v and noting that for the
optimal value vopt we expect r✓E(✓ + vopt) = 0, yields the following equation

0 = r✓E(✓) + H(✓)vopt. (12)

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 15

Fig. 8. Effect of learning rate on convergence. For a one dimensional quadratic potential, one can show that there exists four different qualitative
behaviors for gradient descent (GD) as a function of the learning rate ⌘ depending on the relationship between ⌘ and ⌘opt = [@2

✓ E(✓)]
�1. (a) For

⌘ < ⌘opt, GD converges to the minimum. (b) For ⌘ = ⌘opt, GD converges in a single step. (c) For ⌘opt < ⌘ < 2⌘opt, GD oscillates around the minima
and eventually converges. (d) For ⌘ > 2⌘opt, GD moves away from the minima.
Source: This figure is adapted from (LeCun et al., 1998b).

Rearranging this expression results in the desired update rules for Newton’s method

vt = H�1(✓t)r✓E(✓t) (13)
✓t+1 = ✓t � vt . (14)

Since we have no guarantee that the Hessian is well conditioned, in almost all applications of Newton’s method, one
replaces the inverse of the Hessian H�1(✓t) by some suitably regularized pseudo-inverse such as [H(✓t) + ✏I]�1 with ✏ a
small parameter (Battiti, 1992).

For the purposes of machine learning, Newton’s method is not practical for two interrelated reasons. First, calculating
a Hessian is an extremely expensive numerical computation. Second, even if we employ first-order approximation
methods to approximate the Hessian (commonly called quasi-Newton methods), we must store and invert a matrix
with n2 entries, where n is the number of parameters. For models with millions of parameters such as those commonly
employed in the neural network literature, this is close to impossible with present-day computational power. Despite
these practical shortcomings, Newton’s method gives many important intuitions about how to modify GD algorithms to
improve their performance. Notice that, unlike in GD where the learning rate is the same for all parameters, Newton’s
method automatically ‘‘adapts’’ the learning rate of different parameters depending on the Hessian matrix. Since the
Hessian encodes the curvature of the surface we are trying to find the minimum of – more specifically, the singular
values of the Hessian are inversely proportional to the squares of the local curvatures of the surface – Newton’s method
automatically adjusts the step size so that one takes larger steps in flat directions with small curvature and smaller steps
in steep directions with large curvature.

Our derivation of Newton’s method also allows us to develop intuition about the role of the learning rate in GD. Let
us first consider the special case of using GD to find the minimum of a quadratic energy function of a single parameter
✓ (LeCun et al., 1998b). Given the current value of our parameter ✓ , we can ask what is the optimal choice of the learning
rate ⌘opt, where ⌘opt is defined as the value of ⌘ that allows us to reach the minimum of the quadratic energy function
in a single step (see Fig. 8). To find ⌘opt, we expand the energy function to second order around the current value

E(✓ + v) = E(✓c) + @✓E(✓)v +
1
2
@2
✓ E(✓)v

2. (15)

Differentiating with respect to v and setting ✓min = ✓ � v yields

✓min = ✓ � [@2
✓ E(✓)]

�1@✓E(✓). (16)

Comparing with (11) gives,

⌘opt = [@2
✓ E(✓)]

�1. (17)

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 15

Fig. 8. Effect of learning rate on convergence. For a one dimensional quadratic potential, one can show that there exists four different qualitative
behaviors for gradient descent (GD) as a function of the learning rate ⌘ depending on the relationship between ⌘ and ⌘opt = [@2

✓ E(✓)]
�1. (a) For

⌘ < ⌘opt, GD converges to the minimum. (b) For ⌘ = ⌘opt, GD converges in a single step. (c) For ⌘opt < ⌘ < 2⌘opt, GD oscillates around the minima
and eventually converges. (d) For ⌘ > 2⌘opt, GD moves away from the minima.
Source: This figure is adapted from (LeCun et al., 1998b).

Rearranging this expression results in the desired update rules for Newton’s method

vt = H�1(✓t)r✓E(✓t) (13)
✓t+1 = ✓t � vt . (14)

Since we have no guarantee that the Hessian is well conditioned, in almost all applications of Newton’s method, one
replaces the inverse of the Hessian H�1(✓t) by some suitably regularized pseudo-inverse such as [H(✓t) + ✏I]�1 with ✏ a
small parameter (Battiti, 1992).

For the purposes of machine learning, Newton’s method is not practical for two interrelated reasons. First, calculating
a Hessian is an extremely expensive numerical computation. Second, even if we employ first-order approximation
methods to approximate the Hessian (commonly called quasi-Newton methods), we must store and invert a matrix
with n2 entries, where n is the number of parameters. For models with millions of parameters such as those commonly
employed in the neural network literature, this is close to impossible with present-day computational power. Despite
these practical shortcomings, Newton’s method gives many important intuitions about how to modify GD algorithms to
improve their performance. Notice that, unlike in GD where the learning rate is the same for all parameters, Newton’s
method automatically ‘‘adapts’’ the learning rate of different parameters depending on the Hessian matrix. Since the
Hessian encodes the curvature of the surface we are trying to find the minimum of – more specifically, the singular
values of the Hessian are inversely proportional to the squares of the local curvatures of the surface – Newton’s method
automatically adjusts the step size so that one takes larger steps in flat directions with small curvature and smaller steps
in steep directions with large curvature.

Our derivation of Newton’s method also allows us to develop intuition about the role of the learning rate in GD. Let
us first consider the special case of using GD to find the minimum of a quadratic energy function of a single parameter
✓ (LeCun et al., 1998b). Given the current value of our parameter ✓ , we can ask what is the optimal choice of the learning
rate ⌘opt, where ⌘opt is defined as the value of ⌘ that allows us to reach the minimum of the quadratic energy function
in a single step (see Fig. 8). To find ⌘opt, we expand the energy function to second order around the current value

E(✓ + v) = E(✓c) + @✓E(✓)v +
1
2
@2
✓ E(✓)v

2. (15)

Differentiating with respect to v and setting ✓min = ✓ � v yields

✓min = ✓ � [@2
✓ E(✓)]

�1@✓E(✓). (16)

Comparing with (11) gives,

⌘opt = [@2
✓ E(✓)]

�1. (17)

Gradient Descent vs Newton’s Method

• Newton’s method requires knowledge of 2nd derivatives (n2

component Hessian) which is computationally expensive.

• Calculating inverse of the Hessian is expensive especially for
millions of parameters (common in neural network applications).

⇒ Newton’s method unfeasible for typical ML systems.

• However, useful to get intuition how to choose the learning rate:

• Newton’s method automatically adjusts the learning rate: takes
larger steps in flat directions and smaller steps in steep directions.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 15

Fig. 8. Effect of learning rate on convergence. For a one dimensional quadratic potential, one can show that there exists four different qualitative
behaviors for gradient descent (GD) as a function of the learning rate ⌘ depending on the relationship between ⌘ and ⌘opt = [@2

✓ E(✓)]
�1. (a) For

⌘ < ⌘opt, GD converges to the minimum. (b) For ⌘ = ⌘opt, GD converges in a single step. (c) For ⌘opt < ⌘ < 2⌘opt, GD oscillates around the minima
and eventually converges. (d) For ⌘ > 2⌘opt, GD moves away from the minima.
Source: This figure is adapted from (LeCun et al., 1998b).

Rearranging this expression results in the desired update rules for Newton’s method

vt = H�1(✓t)r✓E(✓t) (13)
✓t+1 = ✓t � vt . (14)

Since we have no guarantee that the Hessian is well conditioned, in almost all applications of Newton’s method, one
replaces the inverse of the Hessian H�1(✓t) by some suitably regularized pseudo-inverse such as [H(✓t) + ✏I]�1 with ✏ a
small parameter (Battiti, 1992).

For the purposes of machine learning, Newton’s method is not practical for two interrelated reasons. First, calculating
a Hessian is an extremely expensive numerical computation. Second, even if we employ first-order approximation
methods to approximate the Hessian (commonly called quasi-Newton methods), we must store and invert a matrix
with n2 entries, where n is the number of parameters. For models with millions of parameters such as those commonly
employed in the neural network literature, this is close to impossible with present-day computational power. Despite
these practical shortcomings, Newton’s method gives many important intuitions about how to modify GD algorithms to
improve their performance. Notice that, unlike in GD where the learning rate is the same for all parameters, Newton’s
method automatically ‘‘adapts’’ the learning rate of different parameters depending on the Hessian matrix. Since the
Hessian encodes the curvature of the surface we are trying to find the minimum of – more specifically, the singular
values of the Hessian are inversely proportional to the squares of the local curvatures of the surface – Newton’s method
automatically adjusts the step size so that one takes larger steps in flat directions with small curvature and smaller steps
in steep directions with large curvature.

Our derivation of Newton’s method also allows us to develop intuition about the role of the learning rate in GD. Let
us first consider the special case of using GD to find the minimum of a quadratic energy function of a single parameter
✓ (LeCun et al., 1998b). Given the current value of our parameter ✓ , we can ask what is the optimal choice of the learning
rate ⌘opt, where ⌘opt is defined as the value of ⌘ that allows us to reach the minimum of the quadratic energy function
in a single step (see Fig. 8). To find ⌘opt, we expand the energy function to second order around the current value

E(✓ + v) = E(✓c) + @✓E(✓)v +
1
2
@2
✓ E(✓)v

2. (15)

Differentiating with respect to v and setting ✓min = ✓ � v yields

✓min = ✓ � [@2
✓ E(✓)]

�1@✓E(✓). (16)

Comparing with (11) gives,

⌘opt = [@2
✓ E(✓)]

�1. (17)(1-dim)

Regimes of Learning Rate (for a quadratic loss)
P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 15

Fig. 8. Effect of learning rate on convergence. For a one dimensional quadratic potential, one can show that there exists four different qualitative
behaviors for gradient descent (GD) as a function of the learning rate ⌘ depending on the relationship between ⌘ and ⌘opt = [@2

✓ E(✓)]
�1. (a) For

⌘ < ⌘opt, GD converges to the minimum. (b) For ⌘ = ⌘opt, GD converges in a single step. (c) For ⌘opt < ⌘ < 2⌘opt, GD oscillates around the minima
and eventually converges. (d) For ⌘ > 2⌘opt, GD moves away from the minima.
Source: This figure is adapted from (LeCun et al., 1998b).

Rearranging this expression results in the desired update rules for Newton’s method

vt = H�1(✓t)r✓E(✓t) (13)
✓t+1 = ✓t � vt . (14)

Since we have no guarantee that the Hessian is well conditioned, in almost all applications of Newton’s method, one
replaces the inverse of the Hessian H�1(✓t) by some suitably regularized pseudo-inverse such as [H(✓t) + ✏I]�1 with ✏ a
small parameter (Battiti, 1992).

For the purposes of machine learning, Newton’s method is not practical for two interrelated reasons. First, calculating
a Hessian is an extremely expensive numerical computation. Second, even if we employ first-order approximation
methods to approximate the Hessian (commonly called quasi-Newton methods), we must store and invert a matrix
with n2 entries, where n is the number of parameters. For models with millions of parameters such as those commonly
employed in the neural network literature, this is close to impossible with present-day computational power. Despite
these practical shortcomings, Newton’s method gives many important intuitions about how to modify GD algorithms to
improve their performance. Notice that, unlike in GD where the learning rate is the same for all parameters, Newton’s
method automatically ‘‘adapts’’ the learning rate of different parameters depending on the Hessian matrix. Since the
Hessian encodes the curvature of the surface we are trying to find the minimum of – more specifically, the singular
values of the Hessian are inversely proportional to the squares of the local curvatures of the surface – Newton’s method
automatically adjusts the step size so that one takes larger steps in flat directions with small curvature and smaller steps
in steep directions with large curvature.

Our derivation of Newton’s method also allows us to develop intuition about the role of the learning rate in GD. Let
us first consider the special case of using GD to find the minimum of a quadratic energy function of a single parameter
✓ (LeCun et al., 1998b). Given the current value of our parameter ✓ , we can ask what is the optimal choice of the learning
rate ⌘opt, where ⌘opt is defined as the value of ⌘ that allows us to reach the minimum of the quadratic energy function
in a single step (see Fig. 8). To find ⌘opt, we expand the energy function to second order around the current value

E(✓ + v) = E(✓c) + @✓E(✓)v +
1
2
@2
✓ E(✓)v

2. (15)

Differentiating with respect to v and setting ✓min = ✓ � v yields

✓min = ✓ � [@2
✓ E(✓)]

�1@✓E(✓). (16)

Comparing with (11) gives,

⌘opt = [@2
✓ E(✓)]

�1. (17)

multiple

small steps

single

step

oscillate across

both sides diverges

LeCun et al, 1998

Convergence in Higher Dimensions

• Natural generalization of is the Hessian.

• Perform a singular value decomposition of the Hessian matrix:

where U and V are orthogonal matrices and D is diagonal with
eigenvalues .

• Convergence of gradient descent requires:

• If , convergence is slow in the direction.
Convergence time scale scales with .

∂2
θE(θ)

{λmin, …, λmax}

λmin ≪ λmax λmin
κ = λmax /λmin

24 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

This means that for any t � 0 and solution ŵRidge in Eq. (44), there exists a value � � 0 such that ŵRidge solves Eq. (43),
and vice versa.4 With this equivalence, it is obvious that by adding a regularization term �||w||22, to our least squares loss
function, we are effectively constraining the magnitude of the parameter vector learned from the data.

To see this, let us solve Eq. (43) explicitly. Differentiating w.r.t. w, we obtain,

ŵRidge(�) = (XTX + �Ip⇥p)�1XTy. (45)

In fact, when X is orthogonal, one can simplify this expression further:

ŵRidge(�) =
ŵLS

1 + �
, for orthogonal X, (46)

where ŵLS is the least squares solution given by Eq. (39). This implies that the ridge estimate is merely the least squares
estimate scaled by a factor (1 + �)�1.

Can we derive a similar relation between the fitted vector ŷ = XŵRidge and the prediction made by least squares linear
regression? To answer this, let us do a singular value decomposition (SVD) on X . Recall that the SVD of an n ⇥ p matrix
X has the form

X = UDV T, (47)

where U 2 Rn⇥p and V 2 Rp⇥p are orthogonal matrices such that the columns of U span the column space of X
while the columns of V span the row space of X . D 2 Rp⇥p =diag(d1, d2, . . . , dp) is a diagonal matrix with entries
d1 � d2 � · · · dp � 0 called the singular values of X . Note that X is singular if there is at least one dj = 0. By writing X
in terms of its SVD, one can recast the Ridge estimator Eq. (45) as

ŵRidge = V (D2
+ �I)�1DU Ty, (48)

which implies that the Ridge predictor satisfies

ŷRidge = XŵRidge

= UD(D2
+ �I)�1DU Ty

=

pX

j=1

U :,j
d2j

d2j + �
U T

:jy (49)

 UU Ty (50)
= Xŷ ⌘ ŷLS, (51)

where U :,j are the columns of U . Note that in the inequality step we assumed � � 0 and used SVD to simplify Eq. (39).
By comparing Eq. (49) with Eq. (51), it is clear that in order to compute the fitted vector ŷ, both Ridge and least squares
linear regression have to project y to the column space of X . The only difference is that Ridge regression further shrinks
each basis component j by a factor d2j /(d

2
j + �). We encourage the reader to do the exercises in Notebook 3 to develop

further intuition about how Ridge regression works.

6.3. LASSO And sparse regression

In this section, we study the effects of adding an L1 regularization penalty, conventionally called LASSO, which stands
for ‘‘least absolute shrinkage and selection operator’’. Concretely, LASSO in the penalized form is defined by the following
regularized regression problem:

ŵLASSO(�) = argmin
w2Rp

||Xw � y||
2
2+�||w||1. (52)

As in Ridge regression, there is another formulation for LASSO based on constrained optimization, namely,

ŵLASSO(t) = argmin
w2Rp: ||w||1t

||Xw � y||
2
2. (53)

The equivalence interpretation is the same as in Ridge regression, namely, for any t � 0 and solution ŵLASSO in Eq. (53),
there is a value � � 0 such that ŵLASSO solves Eq. (52), and vice versa. However, to get the analytic solution of LASSO, we
cannot simply take the gradient of Eq. (52) with respect to w, since the L1-regularizer is not everywhere differentiable, in
particular at any point where wj = 0 (see Fig. 13). Nonetheless, LASSO is a convex problem. Therefore, we can invoke the

4 Note that the equivalence between the penalized and the constrained (regularized) form of least square optimization does not always hold. It
holds for Ridge and LASSO (introduced later), but not for best subset selection which is defined by choosing a L0 norm: �||w||0. In this case, for
every � > 0 and any ŵBS that solves the penalized form of best subset selection, there is a value t � 0 such that ŵBS also solves that constrained
form of best subset selection, but the converse is not true.

16 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

One can show that there are four qualitatively different regimes possible (see Fig. 8) (LeCun et al., 1998b). If ⌘ < ⌘opt,
then GD will take multiple small steps to reach the bottom of the potential. For ⌘ = ⌘opt, GD reaches the bottom of the
potential in a single step. If ⌘opt < ⌘ < 2⌘opt, then the GD algorithm will oscillate across both sides of the potential before
eventually converging to the minimum. However, when ⌘ > 2⌘opt, the algorithm actually diverges!

It is straightforward to generalize this to the multidimensional case. The natural multidimensional generalization of
the second derivative is the Hessian H(✓). We can always perform a singular value decomposition (i.e. a rotation by an
orthogonal matrix for quadratic minima where the Hessian is symmetric, see Section 6.2 for a brief introduction to SVD)
and consider the singular values {�} of the Hessian. If we use a single learning rate for all parameters, in analogy with
(17), convergence requires that

⌘ <
2

�max
, (18)

where �max is the largest singular value of the Hessian. If the minimum eigenvalue �min differs significantly from the largest
value �max, then convergence in the �min-direction will be extremely slow! One can actually show that the convergence
time scales with the condition number  = �max/�min (LeCun et al., 1998b).

4.2. Limitations of the simplest gradient descent algorithm

The last section hints at some of the major shortcomings of the simple GD algorithm described in (11). Before
proceeding, we briefly summarize these limitations and discuss general strategies for modifying GD to overcome these
deficiencies.

• GD finds local minima of the cost function. Since the GD algorithm is deterministic, if it converges, it will converge to
a local minimum of our energy function. Because in ML we are often dealing with extremely rugged landscapes with
many local minima, this can lead to poor performance. A similar problem is encountered in physics. To overcome this,
physicists often use methods like simulated annealing that introduce a fictitious ‘‘temperature’’ which is eventually
taken to zero. The ‘‘temperature’’ term introduces stochasticity in the form of thermal fluctuations that allow the
algorithm to thermally tunnel over energy barriers. This suggests that, in the context of ML, we should modify GD
to include stochasticity.

• Gradients are computationally expensive to calculate for large datasets. In many cases in statistics and ML, the energy
function is a sum of terms, with one term for each data point. For example, in linear regression, E /

Pn
i=1(yi�wT ·xi)2;

for logistic regression, the square error is replaced by the cross entropy, see Sections 6, 7. Thus, to calculate the
gradient we have to sum over all n data points. Doing this at every GD step becomes extremely computationally
expensive. An ingenious solution to this, discussed below, is to calculate the gradients using small subsets of the
data called ‘‘mini batches’’. This has the added benefit of introducing stochasticity into our algorithm.

• GD is very sensitive to choices of the learning rates. As discussed above, GD is extremely sensitive to the choice of
learning rates. If the learning rate is very small, the training process takes an extremely long time. For larger learning
rates, GD can diverge and give poor results. Furthermore, depending on what the local landscape looks like, we have
to modify the learning rates to ensure convergence. Ideally, we would ‘‘adaptively’’ choose the learning rates to
match the landscape.

• GD treats all directions in parameter space uniformly. Another major drawback of GD is that unlike Newton’s method,
the learning rate for GD is the same in all directions in parameter space. For this reason, the maximum learning rate
is set by the behavior of the steepest direction and this can significantly slow down training. Ideally, we would like
to take large steps in flat directions and small steps in steep directions. Since we are exploring rugged landscapes
where curvatures change, this requires us to keep track of not only the gradient but second derivatives of the energy
function (note as discussed above, the ideal scenario would be to calculate the Hessian but this proves to be too
computationally expensive).

• GD is sensitive to initial conditions. One consequence of the local nature of GD is that initial conditions matter.
Depending on where one starts, one will end up at a different local minimum. Therefore, it is very important to
think about how one initializes the training process. This is true for GD as well as more complicated variants of GD
introduced below.

• GD can take exponential time to escape saddle points, even with random initialization. As we mentioned, GD is extremely
sensitive to the initial condition since it determines the particular local minimum GD would eventually reach.
However, even with a good initialization scheme, through randomness (to be introduced later), GD can still take
exponential time to escape saddle points, which are prevalent in high-dimensional spaces, even for non-pathological
objective functions (Du et al., 2017). Indeed, there are modified GD methods developed recently to accelerate the
escape. The details of these boosted method are beyond the scope of this review, and we refer avid readers to (Jin
et al., 2017) for details.

In the next few subsections, we will introduce variants of GD that address many of these shortcomings. These
generalized gradient descent methods form the backbone of much of modern deep learning and neural networks, see
Section 9. For this reason, the reader is encouraged to really experiment with different methods in landscapes of varying
complexity using the accompanying notebook.

Gradient Descent — Limitations

• Finds local minima: Needs a
“temperature” (stochasticity) to
tunnel over energy barriers.

• Sensitive to initial conditions
(which local minimum depends on
starting point)

→ important to consider sensible
initialization of training process.

• Gradients computationally
expensive for large datasets

→ calculate gradient using small
subset of data:
“mini-batches” (gives
stochasticity)

Stochastic Gradient Descent (SGD)

Gradient Descent — Limitations

• Sensitive to choice of learning rates (too small would take a long time to
train, too large would diverge from minima).

→ Furthermore need to adaptively choose learning rate.

• Treats all directions uniformly. In steep directions a large learning rate can
cause instability, while in flat directions a small learning rate is inefficient.

→ We would like to take larger steps in flat directions, smaller steps in steep
directions

→ second derivatives needed to account for “curvature effects”.

• Takes exponential amount of time to escape a saddle point.

You are encouraged to experiment with gradient descent and its variants using
the Juypter notebook on:

https://physics.bu.edu/%7Epankajm/MLnotebooks.html

https://physics.bu.edu/%7Epankajm/MLnotebooks.html

SGD with Mini-batches

• Stochasticity by approximating gradient on subset of data, so-called
mini-batches, denoted as Bk (size varies ~10-100):

• Speed up gradient computation:

• Perform gradient descent:

• Cycle through mini-batches. One entire cycle is known as an epoch.

• Bonus: works effectively as a natural regularizer that prevents overfitting
in deep, isolated minima (Bishop 1995).

D → B1, B2, …, Bn

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 17

4.3. Stochastic Gradient Descent (SGD) with mini-batches

One of the most widely-applied variants of the gradient descent algorithm is stochastic gradient descent (SGD) (Bottou,
2012; Williams and Hinton, 1986). As the name suggests, unlike ordinary GD, the algorithm is stochastic. Stochasticity is
incorporated by approximating the gradient on a subset of the data called a minibatch.2 The size of the minibatches is
almost always much smaller than the total number of data points n, with typical minibatch sizes ranging from ten to a
few hundred data points. If there are n points in total, and the mini-batch size is M , there will be n/M minibatches. Let
us denote these minibatches by Bk where k = 1, . . . , n/M . Thus, in SGD, at each gradient descent step we approximate
the gradient using a single minibatch Bk,

r✓E(✓) =

nX

i=1

r✓ei(xi, ✓) �!

X

i2Bk

r✓ei(xi, ✓). (19)

We then cycle over all k = 1, . . . , n/M minibatches one at a time, and use the mini-batch approximation to the gradient to
update the parameters ✓ at every step k. A full iteration over all n data points – in other words using all n/M minibatches
– is called an epoch. For notational convenience, we will denote the mini-batch approximation to the gradient by

r✓EMB(✓) =

X

i2Bk

r✓ei(xi, ✓). (20)

With this notation, we can rewrite the SGD algorithm as

vt = ⌘tr✓EMB(✓),
✓t+1 = ✓t � vt . (21)

Thus, in SGD, we replace the actual gradient over the full data at each gradient descent step by an approximation to
the gradient computed using a minibatch. This has two important benefits. First, it introduces stochasticity and decreases
the chance that our fitting algorithm gets stuck in isolated local minima. Second, it significantly speeds up the calculation
as one does not have to use all n data points to approximate the gradient. Empirical and theoretical work suggests that
SGD has additional benefits. Chief among these is that introducing stochasticity is thought to act as a natural regularizer
that prevents overfitting in deep, isolated minima (Bishop, 1995b; Keskar et al., 2016).

4.4. Adding momentum

In practice, SGD is almost always used with a ‘‘momentum’’ or inertia term that serves as a memory of the direction
we are moving in parameter space. This is typically implemented as follows

vt = � vt�1 + ⌘tr✓E(✓t)
✓t+1 = ✓t � vt , (22)

where we have introduced a momentum parameter � , with 0  �  1, and for brevity we dropped the explicit notation
to indicate the gradient is to be taken over a different mini-batch at each step. We call this algorithm gradient descent
with momentum (GDM). From these equations, it is clear that vt is a running average of recently encountered gradients
and (1 � �)�1 sets the characteristic time scale for the memory used in the averaging procedure. Consistent with this,
when � = 0, this just reduces down to ordinary SGD as described in Eq. (21). An equivalent way of writing the updates
is

�✓t+1 = ��✓t � ⌘tr✓E(✓t), (23)

where we have defined �✓t = ✓t � ✓t�1. In what should be a familiar scenario to many physicists, momentum based
methods were first introduced in old, largely forgotten (until recently) Soviet papers (Nesterov, 1983; Polyak, 1964).

Before proceeding further, let us try to get more intuition from these equations. It is helpful to consider a simple
physical analogy with a particle of mass m moving in a viscous medium with viscous damping coefficient µ and potential
E(w) (Qian, 1999). If we denote the particle’s position by w, then its motion is described by

m
d2w
dt2

+ µ
dw
dt

= �rwE(w). (24)

We can discretize this equation in the usual way to get

m
wt+�t � 2wt + wt��t

(�t)2
+ µ

wt+�t � wt

�t
= �rwE(w). (25)

2 Traditionally, SGD was reserved for the case where you train on a single example — in other words minibatches of size 1. However, we will
use SGD to mean any approximation to the gradient on a subset of the data.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 17

4.3. Stochastic Gradient Descent (SGD) with mini-batches

One of the most widely-applied variants of the gradient descent algorithm is stochastic gradient descent (SGD) (Bottou,
2012; Williams and Hinton, 1986). As the name suggests, unlike ordinary GD, the algorithm is stochastic. Stochasticity is
incorporated by approximating the gradient on a subset of the data called a minibatch.2 The size of the minibatches is
almost always much smaller than the total number of data points n, with typical minibatch sizes ranging from ten to a
few hundred data points. If there are n points in total, and the mini-batch size is M , there will be n/M minibatches. Let
us denote these minibatches by Bk where k = 1, . . . , n/M . Thus, in SGD, at each gradient descent step we approximate
the gradient using a single minibatch Bk,

r✓E(✓) =

nX

i=1

r✓ei(xi, ✓) �!

X

i2Bk

r✓ei(xi, ✓). (19)

We then cycle over all k = 1, . . . , n/M minibatches one at a time, and use the mini-batch approximation to the gradient to
update the parameters ✓ at every step k. A full iteration over all n data points – in other words using all n/M minibatches
– is called an epoch. For notational convenience, we will denote the mini-batch approximation to the gradient by

r✓EMB(✓) =

X

i2Bk

r✓ei(xi, ✓). (20)

With this notation, we can rewrite the SGD algorithm as

vt = ⌘tr✓EMB(✓),
✓t+1 = ✓t � vt . (21)

Thus, in SGD, we replace the actual gradient over the full data at each gradient descent step by an approximation to
the gradient computed using a minibatch. This has two important benefits. First, it introduces stochasticity and decreases
the chance that our fitting algorithm gets stuck in isolated local minima. Second, it significantly speeds up the calculation
as one does not have to use all n data points to approximate the gradient. Empirical and theoretical work suggests that
SGD has additional benefits. Chief among these is that introducing stochasticity is thought to act as a natural regularizer
that prevents overfitting in deep, isolated minima (Bishop, 1995b; Keskar et al., 2016).

4.4. Adding momentum

In practice, SGD is almost always used with a ‘‘momentum’’ or inertia term that serves as a memory of the direction
we are moving in parameter space. This is typically implemented as follows

vt = � vt�1 + ⌘tr✓E(✓t)
✓t+1 = ✓t � vt , (22)

where we have introduced a momentum parameter � , with 0  �  1, and for brevity we dropped the explicit notation
to indicate the gradient is to be taken over a different mini-batch at each step. We call this algorithm gradient descent
with momentum (GDM). From these equations, it is clear that vt is a running average of recently encountered gradients
and (1 � �)�1 sets the characteristic time scale for the memory used in the averaging procedure. Consistent with this,
when � = 0, this just reduces down to ordinary SGD as described in Eq. (21). An equivalent way of writing the updates
is

�✓t+1 = ��✓t � ⌘tr✓E(✓t), (23)

where we have defined �✓t = ✓t � ✓t�1. In what should be a familiar scenario to many physicists, momentum based
methods were first introduced in old, largely forgotten (until recently) Soviet papers (Nesterov, 1983; Polyak, 1964).

Before proceeding further, let us try to get more intuition from these equations. It is helpful to consider a simple
physical analogy with a particle of mass m moving in a viscous medium with viscous damping coefficient µ and potential
E(w) (Qian, 1999). If we denote the particle’s position by w, then its motion is described by

m
d2w
dt2

+ µ
dw
dt

= �rwE(w). (24)

We can discretize this equation in the usual way to get

m
wt+�t � 2wt + wt��t

(�t)2
+ µ

wt+�t � wt

�t
= �rwE(w). (25)

2 Traditionally, SGD was reserved for the case where you train on a single example — in other words minibatches of size 1. However, we will
use SGD to mean any approximation to the gradient on a subset of the data.

GD with Momentum (GDM)

• Idea: add memory of the direction we move in parameter space

by introducing a momentum parameter , with

• The step taken is a running average of recently encountered
gradients with the characteristic time scale for the memory set by .

• To get some physics intuition, consider a massive particle in viscous
medium with viscous damping coefficient , and potential : 

γ 0 ≤ γ ≤ 1

v
γ

μ E(θ)

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 17

4.3. Stochastic Gradient Descent (SGD) with mini-batches

One of the most widely-applied variants of the gradient descent algorithm is stochastic gradient descent (SGD) (Bottou,
2012; Williams and Hinton, 1986). As the name suggests, unlike ordinary GD, the algorithm is stochastic. Stochasticity is
incorporated by approximating the gradient on a subset of the data called a minibatch.2 The size of the minibatches is
almost always much smaller than the total number of data points n, with typical minibatch sizes ranging from ten to a
few hundred data points. If there are n points in total, and the mini-batch size is M , there will be n/M minibatches. Let
us denote these minibatches by Bk where k = 1, . . . , n/M . Thus, in SGD, at each gradient descent step we approximate
the gradient using a single minibatch Bk,

r✓E(✓) =

nX

i=1

r✓ei(xi, ✓) �!

X

i2Bk

r✓ei(xi, ✓). (19)

We then cycle over all k = 1, . . . , n/M minibatches one at a time, and use the mini-batch approximation to the gradient to
update the parameters ✓ at every step k. A full iteration over all n data points – in other words using all n/M minibatches
– is called an epoch. For notational convenience, we will denote the mini-batch approximation to the gradient by

r✓EMB(✓) =

X

i2Bk

r✓ei(xi, ✓). (20)

With this notation, we can rewrite the SGD algorithm as

vt = ⌘tr✓EMB(✓),
✓t+1 = ✓t � vt . (21)

Thus, in SGD, we replace the actual gradient over the full data at each gradient descent step by an approximation to
the gradient computed using a minibatch. This has two important benefits. First, it introduces stochasticity and decreases
the chance that our fitting algorithm gets stuck in isolated local minima. Second, it significantly speeds up the calculation
as one does not have to use all n data points to approximate the gradient. Empirical and theoretical work suggests that
SGD has additional benefits. Chief among these is that introducing stochasticity is thought to act as a natural regularizer
that prevents overfitting in deep, isolated minima (Bishop, 1995b; Keskar et al., 2016).

4.4. Adding momentum

In practice, SGD is almost always used with a ‘‘momentum’’ or inertia term that serves as a memory of the direction
we are moving in parameter space. This is typically implemented as follows

vt = � vt�1 + ⌘tr✓E(✓t)
✓t+1 = ✓t � vt , (22)

where we have introduced a momentum parameter � , with 0  �  1, and for brevity we dropped the explicit notation
to indicate the gradient is to be taken over a different mini-batch at each step. We call this algorithm gradient descent
with momentum (GDM). From these equations, it is clear that vt is a running average of recently encountered gradients
and (1 � �)�1 sets the characteristic time scale for the memory used in the averaging procedure. Consistent with this,
when � = 0, this just reduces down to ordinary SGD as described in Eq. (21). An equivalent way of writing the updates
is

�✓t+1 = ��✓t � ⌘tr✓E(✓t), (23)

where we have defined �✓t = ✓t � ✓t�1. In what should be a familiar scenario to many physicists, momentum based
methods were first introduced in old, largely forgotten (until recently) Soviet papers (Nesterov, 1983; Polyak, 1964).

Before proceeding further, let us try to get more intuition from these equations. It is helpful to consider a simple
physical analogy with a particle of mass m moving in a viscous medium with viscous damping coefficient µ and potential
E(w) (Qian, 1999). If we denote the particle’s position by w, then its motion is described by

m
d2w
dt2

+ µ
dw
dt

= �rwE(w). (24)

We can discretize this equation in the usual way to get

m
wt+�t � 2wt + wt��t

(�t)2
+ µ

wt+�t � wt

�t
= �rwE(w). (25)

2 Traditionally, SGD was reserved for the case where you train on a single example — in other words minibatches of size 1. However, we will
use SGD to mean any approximation to the gradient on a subset of the data.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 17

4.3. Stochastic Gradient Descent (SGD) with mini-batches

One of the most widely-applied variants of the gradient descent algorithm is stochastic gradient descent (SGD) (Bottou,
2012; Williams and Hinton, 1986). As the name suggests, unlike ordinary GD, the algorithm is stochastic. Stochasticity is
incorporated by approximating the gradient on a subset of the data called a minibatch.2 The size of the minibatches is
almost always much smaller than the total number of data points n, with typical minibatch sizes ranging from ten to a
few hundred data points. If there are n points in total, and the mini-batch size is M , there will be n/M minibatches. Let
us denote these minibatches by Bk where k = 1, . . . , n/M . Thus, in SGD, at each gradient descent step we approximate
the gradient using a single minibatch Bk,

r✓E(✓) =

nX

i=1

r✓ei(xi, ✓) �!

X

i2Bk

r✓ei(xi, ✓). (19)

We then cycle over all k = 1, . . . , n/M minibatches one at a time, and use the mini-batch approximation to the gradient to
update the parameters ✓ at every step k. A full iteration over all n data points – in other words using all n/M minibatches
– is called an epoch. For notational convenience, we will denote the mini-batch approximation to the gradient by

r✓EMB(✓) =

X

i2Bk

r✓ei(xi, ✓). (20)

With this notation, we can rewrite the SGD algorithm as

vt = ⌘tr✓EMB(✓),
✓t+1 = ✓t � vt . (21)

Thus, in SGD, we replace the actual gradient over the full data at each gradient descent step by an approximation to
the gradient computed using a minibatch. This has two important benefits. First, it introduces stochasticity and decreases
the chance that our fitting algorithm gets stuck in isolated local minima. Second, it significantly speeds up the calculation
as one does not have to use all n data points to approximate the gradient. Empirical and theoretical work suggests that
SGD has additional benefits. Chief among these is that introducing stochasticity is thought to act as a natural regularizer
that prevents overfitting in deep, isolated minima (Bishop, 1995b; Keskar et al., 2016).

4.4. Adding momentum

In practice, SGD is almost always used with a ‘‘momentum’’ or inertia term that serves as a memory of the direction
we are moving in parameter space. This is typically implemented as follows

vt = � vt�1 + ⌘tr✓E(✓t)
✓t+1 = ✓t � vt , (22)

where we have introduced a momentum parameter � , with 0  �  1, and for brevity we dropped the explicit notation
to indicate the gradient is to be taken over a different mini-batch at each step. We call this algorithm gradient descent
with momentum (GDM). From these equations, it is clear that vt is a running average of recently encountered gradients
and (1 � �)�1 sets the characteristic time scale for the memory used in the averaging procedure. Consistent with this,
when � = 0, this just reduces down to ordinary SGD as described in Eq. (21). An equivalent way of writing the updates
is

�✓t+1 = ��✓t � ⌘tr✓E(✓t), (23)

where we have defined �✓t = ✓t � ✓t�1. In what should be a familiar scenario to many physicists, momentum based
methods were first introduced in old, largely forgotten (until recently) Soviet papers (Nesterov, 1983; Polyak, 1964).

Before proceeding further, let us try to get more intuition from these equations. It is helpful to consider a simple
physical analogy with a particle of mass m moving in a viscous medium with viscous damping coefficient µ and potential
E(w) (Qian, 1999). If we denote the particle’s position by w, then its motion is described by

m
d2w
dt2

+ µ
dw
dt

= �rwE(w). (24)

We can discretize this equation in the usual way to get

m
wt+�t � 2wt + wt��t

(�t)2
+ µ

wt+�t � wt

�t
= �rwE(w). (25)

2 Traditionally, SGD was reserved for the case where you train on a single example — in other words minibatches of size 1. However, we will
use SGD to mean any approximation to the gradient on a subset of the data.

GD with Momentum (GDM)

• Discrete version of this EOM:

• Bringing it to a form of a GDM:

• The momentum parameter and the learning rate are then identified:

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 17

4.3. Stochastic Gradient Descent (SGD) with mini-batches

One of the most widely-applied variants of the gradient descent algorithm is stochastic gradient descent (SGD) (Bottou,
2012; Williams and Hinton, 1986). As the name suggests, unlike ordinary GD, the algorithm is stochastic. Stochasticity is
incorporated by approximating the gradient on a subset of the data called a minibatch.2 The size of the minibatches is
almost always much smaller than the total number of data points n, with typical minibatch sizes ranging from ten to a
few hundred data points. If there are n points in total, and the mini-batch size is M , there will be n/M minibatches. Let
us denote these minibatches by Bk where k = 1, . . . , n/M . Thus, in SGD, at each gradient descent step we approximate
the gradient using a single minibatch Bk,

r✓E(✓) =

nX

i=1

r✓ei(xi, ✓) �!

X

i2Bk

r✓ei(xi, ✓). (19)

We then cycle over all k = 1, . . . , n/M minibatches one at a time, and use the mini-batch approximation to the gradient to
update the parameters ✓ at every step k. A full iteration over all n data points – in other words using all n/M minibatches
– is called an epoch. For notational convenience, we will denote the mini-batch approximation to the gradient by

r✓EMB(✓) =

X

i2Bk

r✓ei(xi, ✓). (20)

With this notation, we can rewrite the SGD algorithm as

vt = ⌘tr✓EMB(✓),
✓t+1 = ✓t � vt . (21)

Thus, in SGD, we replace the actual gradient over the full data at each gradient descent step by an approximation to
the gradient computed using a minibatch. This has two important benefits. First, it introduces stochasticity and decreases
the chance that our fitting algorithm gets stuck in isolated local minima. Second, it significantly speeds up the calculation
as one does not have to use all n data points to approximate the gradient. Empirical and theoretical work suggests that
SGD has additional benefits. Chief among these is that introducing stochasticity is thought to act as a natural regularizer
that prevents overfitting in deep, isolated minima (Bishop, 1995b; Keskar et al., 2016).

4.4. Adding momentum

In practice, SGD is almost always used with a ‘‘momentum’’ or inertia term that serves as a memory of the direction
we are moving in parameter space. This is typically implemented as follows

vt = � vt�1 + ⌘tr✓E(✓t)
✓t+1 = ✓t � vt , (22)

where we have introduced a momentum parameter � , with 0  �  1, and for brevity we dropped the explicit notation
to indicate the gradient is to be taken over a different mini-batch at each step. We call this algorithm gradient descent
with momentum (GDM). From these equations, it is clear that vt is a running average of recently encountered gradients
and (1 � �)�1 sets the characteristic time scale for the memory used in the averaging procedure. Consistent with this,
when � = 0, this just reduces down to ordinary SGD as described in Eq. (21). An equivalent way of writing the updates
is

�✓t+1 = ��✓t � ⌘tr✓E(✓t), (23)

where we have defined �✓t = ✓t � ✓t�1. In what should be a familiar scenario to many physicists, momentum based
methods were first introduced in old, largely forgotten (until recently) Soviet papers (Nesterov, 1983; Polyak, 1964).

Before proceeding further, let us try to get more intuition from these equations. It is helpful to consider a simple
physical analogy with a particle of mass m moving in a viscous medium with viscous damping coefficient µ and potential
E(w) (Qian, 1999). If we denote the particle’s position by w, then its motion is described by

m
d2w
dt2

+ µ
dw
dt

= �rwE(w). (24)

We can discretize this equation in the usual way to get

m
wt+�t � 2wt + wt��t

(�t)2
+ µ

wt+�t � wt

�t
= �rwE(w). (25)

2 Traditionally, SGD was reserved for the case where you train on a single example — in other words minibatches of size 1. However, we will
use SGD to mean any approximation to the gradient on a subset of the data.

18 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Rearranging this equation, we can rewrite this as

�wt+�t = �
(�t)2

m + µ�t
rwE(w) +

m
m + µ�t

�wt . (26)

Notice that this equation is identical to Eq. (23) if we identify the position of the particle, w, with the parameters ✓. This
allows us to identify the momentum parameter and learning rate with the mass of the particle and the viscous damping
as:

� =
m

m + µ�t
, ⌘ =

(�t)2

m + µ�t
. (27)

Thus, as the name suggests, the momentum parameter is proportional to the mass of the particle and effectively provides
inertia. Furthermore, in the large viscosity/small learning rate limit, our memory time scales as (1 � �)�1 ⇡ m/(µ�t).

Why is momentum useful? SGD momentum helps the gradient descent algorithm gain speed in directions with
persistent but small gradients even in the presence of stochasticity, while suppressing oscillations in high-curvature
directions. This becomes especially important in situations where the landscape is shallow and flat in some directions
and narrow and steep in others. It has been argued that first-order methods (with appropriate initial conditions) can
perform comparable to more expensive second order methods, especially in the context of complex deep learning
models (Sutskever et al., 2013). Empirical studies suggest that the benefits of including momentum are especially
pronounced in complex models in the initial ‘‘transient phase’’ of training, rather than during a subsequent fine-tuning
of a coarse minimum. The reason for this is that, in this transient phase, correlations in the gradient persist across many
gradient descent steps, accentuating the role of inertia and memory.

These beneficial properties of momentum can sometimes become even more pronounced by using a slight modification
of the classical momentum algorithm called Nesterov Accelerated Gradient (NAG) (Nesterov, 1983; Sutskever et al., 2013).
In the NAG algorithm, rather than calculating the gradient at the current parameters, r✓E(✓t), one calculates the gradient
at the expected value of the parameters given our current momentum, r✓E(✓t + � vt�1). This yields the NAG update rule

vt = � vt�1 + ⌘tr✓E(✓t + � vt�1)
✓t+1 = ✓t � vt . (28)

One of the major advantages of NAG is that it allows for the use of a larger learning rate than GDM for the same choice
of � .

4.5. Methods that use the second moment of the gradient

In stochastic gradient descent, with and without momentum, we still have to specify a ‘‘schedule’’ for tuning the
learning rate ⌘t as a function of time. As discussed in the context of Newton’s method, this presents a number of
dilemmas. The learning rate is limited by the steepest direction which can change depending on the current position
in the landscape. To circumvent this problem, ideally our algorithm would keep track of curvature and take large steps in
shallow, flat directions and small steps in steep, narrow directions. Second-order methods accomplish this by calculating
or approximating the Hessian and normalizing the learning rate by the curvature. However, this is very computationally
expensive for models with extremely large number of parameters. Ideally, we would like to be able to adaptively change
the step size to match the landscape without paying the steep computational price of calculating or approximating
Hessians.

Recently, a number of methods have been introduced that accomplish this by tracking not only the gradient, but
also the second moment of the gradient. These methods include AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
RMSprop (Tieleman and Hinton, 2012), and ADAM (Kingma and Ba, 2014). Here, we discuss the last two as representatives
of this class of algorithms.

In RMSprop, in addition to keeping a running average of the first moment of the gradient, we also keep track of the
second moment denoted by st = E[g2

t]. The update rule for RMSprop is given by

gt = r✓E(✓) (29)
st = �st�1 + (1 � �)g2

t

✓t+1 = ✓t � ⌘t
gt

p
st + ✏

,

where � controls the averaging time of the second moment and is typically taken to be about � = 0.9, ⌘t is a learning
rate typically chosen to be 10�3, and ✏ ⇠ 10�8 is a small regularization constant to prevent divergences. Multiplication
and division by vectors is understood as an element-wise operation. It is clear from this formula that the learning rate is
reduced in directions where the gradient is consistently large. This greatly speeds up the convergence by allowing us to
use a larger learning rate for flat directions.

A related algorithm is the ADAM optimizer. In ADAM, we keep a running average of both the first and second moment
of the gradient and use this information to adaptively change the learning rate for different parameters. In addition to

18 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Rearranging this equation, we can rewrite this as

�wt+�t = �
(�t)2

m + µ�t
rwE(w) +

m
m + µ�t

�wt . (26)

Notice that this equation is identical to Eq. (23) if we identify the position of the particle, w, with the parameters ✓. This
allows us to identify the momentum parameter and learning rate with the mass of the particle and the viscous damping
as:

� =
m

m + µ�t
, ⌘ =

(�t)2

m + µ�t
. (27)

Thus, as the name suggests, the momentum parameter is proportional to the mass of the particle and effectively provides
inertia. Furthermore, in the large viscosity/small learning rate limit, our memory time scales as (1 � �)�1 ⇡ m/(µ�t).

Why is momentum useful? SGD momentum helps the gradient descent algorithm gain speed in directions with
persistent but small gradients even in the presence of stochasticity, while suppressing oscillations in high-curvature
directions. This becomes especially important in situations where the landscape is shallow and flat in some directions
and narrow and steep in others. It has been argued that first-order methods (with appropriate initial conditions) can
perform comparable to more expensive second order methods, especially in the context of complex deep learning
models (Sutskever et al., 2013). Empirical studies suggest that the benefits of including momentum are especially
pronounced in complex models in the initial ‘‘transient phase’’ of training, rather than during a subsequent fine-tuning
of a coarse minimum. The reason for this is that, in this transient phase, correlations in the gradient persist across many
gradient descent steps, accentuating the role of inertia and memory.

These beneficial properties of momentum can sometimes become even more pronounced by using a slight modification
of the classical momentum algorithm called Nesterov Accelerated Gradient (NAG) (Nesterov, 1983; Sutskever et al., 2013).
In the NAG algorithm, rather than calculating the gradient at the current parameters, r✓E(✓t), one calculates the gradient
at the expected value of the parameters given our current momentum, r✓E(✓t + � vt�1). This yields the NAG update rule

vt = � vt�1 + ⌘tr✓E(✓t + � vt�1)
✓t+1 = ✓t � vt . (28)

One of the major advantages of NAG is that it allows for the use of a larger learning rate than GDM for the same choice
of � .

4.5. Methods that use the second moment of the gradient

In stochastic gradient descent, with and without momentum, we still have to specify a ‘‘schedule’’ for tuning the
learning rate ⌘t as a function of time. As discussed in the context of Newton’s method, this presents a number of
dilemmas. The learning rate is limited by the steepest direction which can change depending on the current position
in the landscape. To circumvent this problem, ideally our algorithm would keep track of curvature and take large steps in
shallow, flat directions and small steps in steep, narrow directions. Second-order methods accomplish this by calculating
or approximating the Hessian and normalizing the learning rate by the curvature. However, this is very computationally
expensive for models with extremely large number of parameters. Ideally, we would like to be able to adaptively change
the step size to match the landscape without paying the steep computational price of calculating or approximating
Hessians.

Recently, a number of methods have been introduced that accomplish this by tracking not only the gradient, but
also the second moment of the gradient. These methods include AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
RMSprop (Tieleman and Hinton, 2012), and ADAM (Kingma and Ba, 2014). Here, we discuss the last two as representatives
of this class of algorithms.

In RMSprop, in addition to keeping a running average of the first moment of the gradient, we also keep track of the
second moment denoted by st = E[g2

t]. The update rule for RMSprop is given by

gt = r✓E(✓) (29)
st = �st�1 + (1 � �)g2

t

✓t+1 = ✓t � ⌘t
gt

p
st + ✏

,

where � controls the averaging time of the second moment and is typically taken to be about � = 0.9, ⌘t is a learning
rate typically chosen to be 10�3, and ✏ ⇠ 10�8 is a small regularization constant to prevent divergences. Multiplication
and division by vectors is understood as an element-wise operation. It is clear from this formula that the learning rate is
reduced in directions where the gradient is consistently large. This greatly speeds up the convergence by allowing us to
use a larger learning rate for flat directions.

A related algorithm is the ADAM optimizer. In ADAM, we keep a running average of both the first and second moment
of the gradient and use this information to adaptively change the learning rate for different parameters. In addition to

GD with Momentum (GDM)
• Gain speed in directions with persistent but small gradient, while

suppressing oscillations in high curvature directions.

• Especially useful when is shallow and flat in some directions,
and narrow and steep in others.

• More useful during the transient phase than the fine-tuning phase.

• Slight modification: Nesterov accelerated gradient (NAG) descent
(update at expected value of parameters with current momentum):

improves stability and prevents excessive overshooting.

E(θ)

18 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Rearranging this equation, we can rewrite this as

�wt+�t = �
(�t)2

m + µ�t
rwE(w) +

m
m + µ�t

�wt . (26)

Notice that this equation is identical to Eq. (23) if we identify the position of the particle, w, with the parameters ✓. This
allows us to identify the momentum parameter and learning rate with the mass of the particle and the viscous damping
as:

� =
m

m + µ�t
, ⌘ =

(�t)2

m + µ�t
. (27)

Thus, as the name suggests, the momentum parameter is proportional to the mass of the particle and effectively provides
inertia. Furthermore, in the large viscosity/small learning rate limit, our memory time scales as (1 � �)�1 ⇡ m/(µ�t).

Why is momentum useful? SGD momentum helps the gradient descent algorithm gain speed in directions with
persistent but small gradients even in the presence of stochasticity, while suppressing oscillations in high-curvature
directions. This becomes especially important in situations where the landscape is shallow and flat in some directions
and narrow and steep in others. It has been argued that first-order methods (with appropriate initial conditions) can
perform comparable to more expensive second order methods, especially in the context of complex deep learning
models (Sutskever et al., 2013). Empirical studies suggest that the benefits of including momentum are especially
pronounced in complex models in the initial ‘‘transient phase’’ of training, rather than during a subsequent fine-tuning
of a coarse minimum. The reason for this is that, in this transient phase, correlations in the gradient persist across many
gradient descent steps, accentuating the role of inertia and memory.

These beneficial properties of momentum can sometimes become even more pronounced by using a slight modification
of the classical momentum algorithm called Nesterov Accelerated Gradient (NAG) (Nesterov, 1983; Sutskever et al., 2013).
In the NAG algorithm, rather than calculating the gradient at the current parameters, r✓E(✓t), one calculates the gradient
at the expected value of the parameters given our current momentum, r✓E(✓t + � vt�1). This yields the NAG update rule

vt = � vt�1 + ⌘tr✓E(✓t + � vt�1)
✓t+1 = ✓t � vt . (28)

One of the major advantages of NAG is that it allows for the use of a larger learning rate than GDM for the same choice
of � .

4.5. Methods that use the second moment of the gradient

In stochastic gradient descent, with and without momentum, we still have to specify a ‘‘schedule’’ for tuning the
learning rate ⌘t as a function of time. As discussed in the context of Newton’s method, this presents a number of
dilemmas. The learning rate is limited by the steepest direction which can change depending on the current position
in the landscape. To circumvent this problem, ideally our algorithm would keep track of curvature and take large steps in
shallow, flat directions and small steps in steep, narrow directions. Second-order methods accomplish this by calculating
or approximating the Hessian and normalizing the learning rate by the curvature. However, this is very computationally
expensive for models with extremely large number of parameters. Ideally, we would like to be able to adaptively change
the step size to match the landscape without paying the steep computational price of calculating or approximating
Hessians.

Recently, a number of methods have been introduced that accomplish this by tracking not only the gradient, but
also the second moment of the gradient. These methods include AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
RMSprop (Tieleman and Hinton, 2012), and ADAM (Kingma and Ba, 2014). Here, we discuss the last two as representatives
of this class of algorithms.

In RMSprop, in addition to keeping a running average of the first moment of the gradient, we also keep track of the
second moment denoted by st = E[g2

t]. The update rule for RMSprop is given by

gt = r✓E(✓) (29)
st = �st�1 + (1 � �)g2

t

✓t+1 = ✓t � ⌘t
gt

p
st + ✏

,

where � controls the averaging time of the second moment and is typically taken to be about � = 0.9, ⌘t is a learning
rate typically chosen to be 10�3, and ✏ ⇠ 10�8 is a small regularization constant to prevent divergences. Multiplication
and division by vectors is understood as an element-wise operation. It is clear from this formula that the learning rate is
reduced in directions where the gradient is consistently large. This greatly speeds up the convergence by allowing us to
use a larger learning rate for flat directions.

A related algorithm is the ADAM optimizer. In ADAM, we keep a running average of both the first and second moment
of the gradient and use this information to adaptively change the learning rate for different parameters. In addition to

Using the 2nd Moment
• Ideally calculate/approximate Hessian and normalize learning rates

accordingly.

• In addition to keeping a running average of the first moment of the
gradient (momentum), we also keep track of the second moment:

• Methods include: AdaGrad (2011), AdaDelta (2012), RMS-Prop
(2012), ADAM (2014).

• RMS-Prop update rules:

St = 𝔼[g2
t]

18 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Rearranging this equation, we can rewrite this as

�wt+�t = �
(�t)2

m + µ�t
rwE(w) +

m
m + µ�t

�wt . (26)

Notice that this equation is identical to Eq. (23) if we identify the position of the particle, w, with the parameters ✓. This
allows us to identify the momentum parameter and learning rate with the mass of the particle and the viscous damping
as:

� =
m

m + µ�t
, ⌘ =

(�t)2

m + µ�t
. (27)

Thus, as the name suggests, the momentum parameter is proportional to the mass of the particle and effectively provides
inertia. Furthermore, in the large viscosity/small learning rate limit, our memory time scales as (1 � �)�1 ⇡ m/(µ�t).

Why is momentum useful? SGD momentum helps the gradient descent algorithm gain speed in directions with
persistent but small gradients even in the presence of stochasticity, while suppressing oscillations in high-curvature
directions. This becomes especially important in situations where the landscape is shallow and flat in some directions
and narrow and steep in others. It has been argued that first-order methods (with appropriate initial conditions) can
perform comparable to more expensive second order methods, especially in the context of complex deep learning
models (Sutskever et al., 2013). Empirical studies suggest that the benefits of including momentum are especially
pronounced in complex models in the initial ‘‘transient phase’’ of training, rather than during a subsequent fine-tuning
of a coarse minimum. The reason for this is that, in this transient phase, correlations in the gradient persist across many
gradient descent steps, accentuating the role of inertia and memory.

These beneficial properties of momentum can sometimes become even more pronounced by using a slight modification
of the classical momentum algorithm called Nesterov Accelerated Gradient (NAG) (Nesterov, 1983; Sutskever et al., 2013).
In the NAG algorithm, rather than calculating the gradient at the current parameters, r✓E(✓t), one calculates the gradient
at the expected value of the parameters given our current momentum, r✓E(✓t + � vt�1). This yields the NAG update rule

vt = � vt�1 + ⌘tr✓E(✓t + � vt�1)
✓t+1 = ✓t � vt . (28)

One of the major advantages of NAG is that it allows for the use of a larger learning rate than GDM for the same choice
of � .

4.5. Methods that use the second moment of the gradient

In stochastic gradient descent, with and without momentum, we still have to specify a ‘‘schedule’’ for tuning the
learning rate ⌘t as a function of time. As discussed in the context of Newton’s method, this presents a number of
dilemmas. The learning rate is limited by the steepest direction which can change depending on the current position
in the landscape. To circumvent this problem, ideally our algorithm would keep track of curvature and take large steps in
shallow, flat directions and small steps in steep, narrow directions. Second-order methods accomplish this by calculating
or approximating the Hessian and normalizing the learning rate by the curvature. However, this is very computationally
expensive for models with extremely large number of parameters. Ideally, we would like to be able to adaptively change
the step size to match the landscape without paying the steep computational price of calculating or approximating
Hessians.

Recently, a number of methods have been introduced that accomplish this by tracking not only the gradient, but
also the second moment of the gradient. These methods include AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
RMSprop (Tieleman and Hinton, 2012), and ADAM (Kingma and Ba, 2014). Here, we discuss the last two as representatives
of this class of algorithms.

In RMSprop, in addition to keeping a running average of the first moment of the gradient, we also keep track of the
second moment denoted by st = E[g2

t]. The update rule for RMSprop is given by

gt = r✓E(✓) (29)
st = �st�1 + (1 � �)g2

t

✓t+1 = ✓t � ⌘t
gt

p
st + ✏

,

where � controls the averaging time of the second moment and is typically taken to be about � = 0.9, ⌘t is a learning
rate typically chosen to be 10�3, and ✏ ⇠ 10�8 is a small regularization constant to prevent divergences. Multiplication
and division by vectors is understood as an element-wise operation. It is clear from this formula that the learning rate is
reduced in directions where the gradient is consistently large. This greatly speeds up the convergence by allowing us to
use a larger learning rate for flat directions.

A related algorithm is the ADAM optimizer. In ADAM, we keep a running average of both the first and second moment
of the gradient and use this information to adaptively change the learning rate for different parameters. In addition to

RMS-Prop

• RMS-Prop update rules:

• Learning rate is reduced in directions where the norm of the gradient
is consistently large.

• Speeds up convergence by allowing us to use a larger learning rate
for flat directions.

18 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Rearranging this equation, we can rewrite this as

�wt+�t = �
(�t)2

m + µ�t
rwE(w) +

m
m + µ�t

�wt . (26)

Notice that this equation is identical to Eq. (23) if we identify the position of the particle, w, with the parameters ✓. This
allows us to identify the momentum parameter and learning rate with the mass of the particle and the viscous damping
as:

� =
m

m + µ�t
, ⌘ =

(�t)2

m + µ�t
. (27)

Thus, as the name suggests, the momentum parameter is proportional to the mass of the particle and effectively provides
inertia. Furthermore, in the large viscosity/small learning rate limit, our memory time scales as (1 � �)�1 ⇡ m/(µ�t).

Why is momentum useful? SGD momentum helps the gradient descent algorithm gain speed in directions with
persistent but small gradients even in the presence of stochasticity, while suppressing oscillations in high-curvature
directions. This becomes especially important in situations where the landscape is shallow and flat in some directions
and narrow and steep in others. It has been argued that first-order methods (with appropriate initial conditions) can
perform comparable to more expensive second order methods, especially in the context of complex deep learning
models (Sutskever et al., 2013). Empirical studies suggest that the benefits of including momentum are especially
pronounced in complex models in the initial ‘‘transient phase’’ of training, rather than during a subsequent fine-tuning
of a coarse minimum. The reason for this is that, in this transient phase, correlations in the gradient persist across many
gradient descent steps, accentuating the role of inertia and memory.

These beneficial properties of momentum can sometimes become even more pronounced by using a slight modification
of the classical momentum algorithm called Nesterov Accelerated Gradient (NAG) (Nesterov, 1983; Sutskever et al., 2013).
In the NAG algorithm, rather than calculating the gradient at the current parameters, r✓E(✓t), one calculates the gradient
at the expected value of the parameters given our current momentum, r✓E(✓t + � vt�1). This yields the NAG update rule

vt = � vt�1 + ⌘tr✓E(✓t + � vt�1)
✓t+1 = ✓t � vt . (28)

One of the major advantages of NAG is that it allows for the use of a larger learning rate than GDM for the same choice
of � .

4.5. Methods that use the second moment of the gradient

In stochastic gradient descent, with and without momentum, we still have to specify a ‘‘schedule’’ for tuning the
learning rate ⌘t as a function of time. As discussed in the context of Newton’s method, this presents a number of
dilemmas. The learning rate is limited by the steepest direction which can change depending on the current position
in the landscape. To circumvent this problem, ideally our algorithm would keep track of curvature and take large steps in
shallow, flat directions and small steps in steep, narrow directions. Second-order methods accomplish this by calculating
or approximating the Hessian and normalizing the learning rate by the curvature. However, this is very computationally
expensive for models with extremely large number of parameters. Ideally, we would like to be able to adaptively change
the step size to match the landscape without paying the steep computational price of calculating or approximating
Hessians.

Recently, a number of methods have been introduced that accomplish this by tracking not only the gradient, but
also the second moment of the gradient. These methods include AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
RMSprop (Tieleman and Hinton, 2012), and ADAM (Kingma and Ba, 2014). Here, we discuss the last two as representatives
of this class of algorithms.

In RMSprop, in addition to keeping a running average of the first moment of the gradient, we also keep track of the
second moment denoted by st = E[g2

t]. The update rule for RMSprop is given by

gt = r✓E(✓) (29)
st = �st�1 + (1 � �)g2

t

✓t+1 = ✓t � ⌘t
gt

p
st + ✏

,

where � controls the averaging time of the second moment and is typically taken to be about � = 0.9, ⌘t is a learning
rate typically chosen to be 10�3, and ✏ ⇠ 10�8 is a small regularization constant to prevent divergences. Multiplication
and division by vectors is understood as an element-wise operation. It is clear from this formula that the learning rate is
reduced in directions where the gradient is consistently large. This greatly speeds up the convergence by allowing us to
use a larger learning rate for flat directions.

A related algorithm is the ADAM optimizer. In ADAM, we keep a running average of both the first and second moment
of the gradient and use this information to adaptively change the learning rate for different parameters. In addition to

 controls the averaging

time of the 2nd moment

β ≈ 0.9

 regularizes divergencesϵ ≈ 10−8

ADAM optimizer
• Using a running average of both the 1st and 2nd moments:

• Memory lifetimes of the 1st and 2nd moment are typically:

• Adam works very well for a wide domain of problems.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 19

keeping a running average of the first and second moments of the gradient (i.e. mt = E[gt] and st = E[g2
t], respectively),

ADAM performs an additional bias correction to account for the fact that we are estimating the first two moments of the
gradient using a running average (denoted by the hats in the update rule below). The update rule for ADAM is given by
(where multiplication and division are once again understood to be element-wise operations)

gt = r✓E(✓) (30)
mt = �1mt�1 + (1 � �1)gt

st = �2st�1 + (1 � �2)g2
t

m̂t =
mt

1 � (�1)t

ŝt =
st

1 � (�2)t

✓t+1 = ✓t � ⌘t
m̂tp
ŝt + ✏

, (31)

where �1 and �2 set the memory lifetime of the first and second moment and are typically taken to be 0.9 and 0.99
respectively, and (�j)t denotes �j to the power t . The parameters ⌘ and ✏ have the same role as in RMSprop.

Like in RMSprop, the effective step size of a parameter depends on the magnitude of its gradient squared. To understand
this better, let us rewrite this expression in terms of the variance �2

t = ŝt � (m̂t)2. Consider a single parameter ✓t . The
update rule for this parameter is given by

�✓t+1 = �⌘t
m̂tp

� 2
t + m̂2

t + ✏
. (32)

We now examine different limiting cases of this expression. Assume that our gradient estimates are consistent so that
the variance is small. In this case our update rule tends to �✓t+1 ! �⌘t (here we have assumed that m̂t � ✏). This
is equivalent to cutting off large persistent gradients at 1 and limiting the maximum step size in steep directions. On
the other hand, imagine that the gradient is widely fluctuating between gradient descent steps. In this case � 2 � m̂2

t
so that our update becomes �✓t+1 ! �⌘t m̂t/�t . In other words, we adapt our learning rate so that it is proportional to
the signal-to-noise ratio (i.e. the mean in units of the standard deviation). From a physics standpoint, this is extremely
desirable: the standard deviation serves as a natural adaptive scale for deciding whether a gradient is large or small. Thus,
ADAM has the beneficial effects of (i) adapting our step size so that we cut off large gradient directions (and hence prevent
oscillations and divergences), and (ii) measuring gradients in terms of a natural length scale, the standard deviation �t .
The discussion above also explains empirical observations showing that the performance of both ADAM and RMSprop is
drastically reduced if the square root is omitted in the update rule. It is also worth noting that recent studies have shown
adaptive methods like RMSProp, ADAM, and AdaGrad to generalize worse than SGD in classification tasks, though they
achieve smaller training error. Such discussion is beyond the scope of this review so we refer readers to (Wilson et al.,
2017) for more details.

4.6. Comparison of various methods

To better understand these methods, it is helpful to visualize the performance of the five methods discussed above
— gradient descent (GD), gradient descent with momentum (GDM), NAG, ADAM, and RMSprop. To do so, we will use
Beale’s function:

f (x, y) = (1.5 � x + xy)2 (33)
+ (2.25 � x + xy2)2 + (2.625 � x + xy3)2.

This function has a global minimum at (x, y) = (3, 0.5) and an interesting structure that can be seen in Fig. 9. The figure
shows the results of using all five methods for Nsteps = 104 steps for three different initial conditions. In the figure, the
learning rate for GD, GDM, and NAG are set to ⌘ = 10�6 whereas RMSprop and ADAM have a learning rate of ⌘ = 10�3.
The learning rates for RMSprop and ADAM can be set significantly higher than the other methods due to their adaptive step
sizes. For this reason, ADAM and RMSprop tend to be much quicker at navigating the landscape than simple momentum
based methods (see Fig. 9). Notice that in some cases (e.g. initial condition of (�1, 4)), the trajectories do not find the
global minimum but instead follow the deep, narrow ravine that occurs along y = 1. This kind of landscape structure is
generic in high-dimensional spaces where saddle points proliferate. Once again, the adaptive step size and momentum
of ADAM and RMSprop allows these methods to traverse the landscape faster than the simpler first-order methods. The
reader is encouraged to consult the corresponding Jupyter notebook and experiment with changing initial conditions, the
cost function surface being minimized, and hyper-parameters to gain more intuition about all these methods.

β1 = 0.9, β2 = 0.99

mt = 𝔼[gt]

Which optimizer to use?

• There is no absolute superior optimizer; one should experiment
which optimizer and which hyperparameters are suitable for the
problem at hand.

• Standard tools: mini-batches, momentum, randomize your batches,
transform input to get uniform loss landscape

• Often people use Adam by default and only experiment with the
learning rate.

Example of recent related work in physics:
Energy-Conserving Optimizer

Unit 2: Machine
Learning Basics
2.6 Understanding Shallow
and Deep Neural Networks

Resources:

- Based on Simon Prince “Understanding Deep Learning”. Free online: https://udlbook.github.io/udlbook/

- Figures from that book unless otherwise stated

https://udlbook.github.io/udlbook/

More details on MLPs

• In previous lectures we have proposed stacks of linear layers and
activation functions (called Multilayer Perceptron or MLP) and used
them on SUSY data. MLPs are also sometimes called Fully
Connected Neural Networks.

• In the following we will understand these functions in some more
detail.

• The following section does not introduce any new neural networks
technology, but helps interpret the one we have been using.

• We will first understand “shallow neural networks”, which have one
activation function and two linear transformations. Then we will
extrapolate to deep neural networks which stack many more layers.

Learning a function

• A NN is a parametrization of “big” (multivariate, non-linear) functions.

• Shallow NNs parametrize piecewise linear functions and are
already expressive enough to approximate arbitrarily complex
relationships between multi-dimensional inputs and outputs.

30 3 Shallow neural networks

Figure 3.5 Approximation of a 1D function (dashed line) by a piecewise linear
model. a–c) As the number of regions increases, the model becomes closer and
closer to the continuous function. A neural network with a scalar input creates
one extra linear region per hidden unit. The universal approximation theorem
proves that, with enough hidden units, there exists a shallow neural network that
can describe any given continuous function defined on a compact subset of RDi

to arbitrary precision.

3.3 Multivariate inputs and outputs

In the above example, the network has a single scalar input x and a single scalar output y.
However, the universal approximation theorem also holds for the more general case
where the network maps multivariate inputs x = [x1, x2, . . . , xDi]

T to multivariate output
predictions y = [y1, y2, . . . , yDo]

T . We first explore how to extend the model to predict
multivariate outputs. Then we consider multivariate inputs. Finally, in section 3.4, we
present a general definition of a shallow neural network.

3.3.1 Visualizing multivariate outputs

To extend the network to multivariate outputs y, we simply use a different linear function
of the hidden units for each output. So, a network with a scalar input x, four hidden
units h1, h2, h3, and h4, and a 2D multivariate output y = [y1, y2]T would be defined as:

h1 = a[θ10 + θ11x]

h2 = a[θ20 + θ21x]

h3 = a[θ30 + θ31x]

h4 = a[θ40 + θ41x], (3.7)

and

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Figure from Simon Prince “Understanding Deep Learning"

Shallow Neural Networks
• Shallow neural networks are functions with parameters

that map multivariate inputs to multivariate outputs .

• As a warmup, consider that maps a scalar input to a scalar
output and has ten parameters :

• is known as the activation function. It cannot be a linear
function in order for the NN to go beyond linear regression.

• Given a training dataset , we can define a least squares
loss function to measure how effectively the model describes
this dataset. To train the model, we find that minimizes .

y = f(x, ϕ) ϕ
x y

f(x, ϕ) x
y ϕ = {ϕ0, ϕ1, ϕ2, ϕ3, θ10, θ11, θ20, θ21, θ30, θ31}

a[⋅]

{xi, yi}I
i=1

L[ϕ]
̂ϕ L[ϕ]

Chapter 3

Shallow neural networks

Chapter 2 introduced supervised learning using 1D linear regression. However, this model
can only describe the input/output relationship as a line. This chapter introduces shallow
neural networks. These describe piecewise linear functions and are expressive enough
to approximate arbitrarily complex relationships between multi-dimensional inputs and
outputs.

3.1 Neural network example

Shallow neural networks are functions y = f[x,φ] with parameters φ that map multivari-
ate inputs x to multivariate outputs y. We defer a full definition until section 3.4 and
introduce the main ideas using an example network f[x,φ] that maps a scalar input x to
a scalar output y and has ten parameters φ = {φ0,φ1,φ2,φ3, θ10, θ11, θ20, θ21, θ30, θ31}:

y = f[x,φ]
= φ0 + φ1a[θ10 + θ11x] + φ2a[θ20 + θ21x] + φ3a[θ30 + θ31x]. (3.1)

We can break down this calculation into three parts: first, we compute three linear
functions of the input data (θ10 + θ11x, θ20 + θ21x, and θ30 + θ31x). Second, we pass the
three results through an activation function a[•]. Finally, we weight the three resulting
activations with φ1,φ2, and φ3, sum them, and add an offset φ0.

To complete the description, we must define the activation function a[•]. There are
many possibilities, but the most common choice is the rectified linear unit or ReLU:

a[z] = ReLU[z] =

{
0 z < 0

z z ≥ 0
. (3.2)

This returns the input when it is positive and zero otherwise (figure 3.1).
It is probably not obvious which family of input/output relations is represented by

equation 3.1. Nonetheless, the ideas from the previous chapter are all applicable. Equa-
tion 3.1 represents a family of functions where the particular member of the family

Draft: please send errata to udlbookmail@gmail.com.

Activation Functions

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 51

Fig. 35. Basic architecture of neural networks. (A) The basic components of a neural network are stylized neurons consisting of a linear transformation
that weights the importance of various inputs, followed by a non-linear activation function. (b) Neurons are arranged into layers with the output
of one layer serving as the input to the next layer.

Fig. 36. Possible non-linear activation functions for neurons. In modern DNNs, it has become common to use non-linear functions that do not
saturate for large inputs (bottom row) rather than saturating functions (top row).

Historically in the neural network literature, common choices of nonlinearities included step-functions (perceptrons),
sigmoids (i.e. Fermi functions), and the hyperbolic tangent. More recently, it has become more common to use rectified
linear units (ReLUs), leaky rectified linear units (leaky ReLUs), and exponential linear units (ELUs) (see Fig. 36). Different
choices of non-linearities lead to different computational and training properties for neurons. The underlying reason for
this is that we train neural nets using gradient descent based methods, see Section 4, that require us to take derivatives
of the neural input–output function with respect to the weights w(i) and the bias b(i).

Notice that the derivatives of the aforementioned non-linearities � (z) have very different properties. The derivative
of the perceptron is zero everywhere except where the input is zero. This discontinuous behavior makes it impossible to
train perceptrons using gradient descent. For this reason, until recently the most popular choice of non-linearity was the
tanh function or a sigmoid/Fermi function. However, this choice of non-linearity has a major drawback. When the input
weights become large, as they often do in training, the activation function saturates and the derivative of the output with
respect to the weights tends to zero since @�/@z ! 0 for z � 1. Such ‘‘vanishing gradients’’ are a feature of any saturating
activation function (top row of Fig. 36), making it harder to train deep networks. In contrast, for a non-saturating activation
function such as ReLUs or ELUs, the gradients stay finite even for large inputs.

9.1.2. Layering neurons to build deep networks: network architecture
The basic idea of all neural networks is to layer neurons in a hierarchical fashion, the general structure of which is

known as the network architecture (see Fig. 35). In the simplest feed-forward networks, each neuron in the input layer
of the neurons takes the inputs x and produces an output ai(x) that depends on its current weights, see Eq. (118). The

Exponential Linear Unit

• For illustrative purpose, we consider the most common choice known
as the rectified linear unit or ReLU:

Chapter 3

Shallow neural networks

Chapter 2 introduced supervised learning using 1D linear regression. However, this model
can only describe the input/output relationship as a line. This chapter introduces shallow
neural networks. These describe piecewise linear functions and are expressive enough
to approximate arbitrarily complex relationships between multi-dimensional inputs and
outputs.

3.1 Neural network example

Shallow neural networks are functions y = f[x,φ] with parameters φ that map multivari-
ate inputs x to multivariate outputs y. We defer a full definition until section 3.4 and
introduce the main ideas using an example network f[x,φ] that maps a scalar input x to
a scalar output y and has ten parameters φ = {φ0,φ1,φ2,φ3, θ10, θ11, θ20, θ21, θ30, θ31}:

y = f[x,φ]
= φ0 + φ1a[θ10 + θ11x] + φ2a[θ20 + θ21x] + φ3a[θ30 + θ31x]. (3.1)

We can break down this calculation into three parts: first, we compute three linear
functions of the input data (θ10 + θ11x, θ20 + θ21x, and θ30 + θ31x). Second, we pass the
three results through an activation function a[•]. Finally, we weight the three resulting
activations with φ1,φ2, and φ3, sum them, and add an offset φ0.

To complete the description, we must define the activation function a[•]. There are
many possibilities, but the most common choice is the rectified linear unit or ReLU:

a[z] = ReLU[z] =

{
0 z < 0

z z ≥ 0
. (3.2)

This returns the input when it is positive and zero otherwise (figure 3.1).
It is probably not obvious which family of input/output relations is represented by

equation 3.1. Nonetheless, the ideas from the previous chapter are all applicable. Equa-
tion 3.1 represents a family of functions where the particular member of the family

Draft: please send errata to udlbookmail@gmail.com.

NN Intuition
• In the ten-parameter example, we model the dataset with a family of

continuous piecewise linear functions with up to 4 linear regions.

• To see why, we define the intermediate quantities as hidden units:

• The output is given by combining the hidden units w/ a linear function:

26 3 Shallow neural networks

Figure 3.1 Rectified linear unit (ReLU).
This activation function returns zero if
the input is less than zero and returns
the input unchanged otherwise. In other
words, it clips negative values to zero.
Note that there are many other possi-
ble choices for the activation function
(see figure 3.13), but the ReLU is the
most commonly used and the easiest to
understand.

Figure 3.2 Family of functions defined by equation 3.1. a–c) Functions for three
different choices of the ten parameters φ. In each case, the input/output relation
is piecewise linear. However, the positions of the joints, the slopes of the linear
regions between them, and the overall height vary.

depends on the ten parameters in φ. If we know these parameters, we can perform
inference (predict y) by evaluating the equation for a given input x. Given a training
dataset {xi, yi}Ii=1, we can define a least squares loss function L[φ] and use this to mea-
sure how effectively the model describes this dataset for any given parameter values φ.
To train the model, we search for the values φ̂ that minimize this loss.

3.1.1 Neural network intuition

In fact, equation 3.1 represents a family of continuous piecewise linear functions (fig-
ure 3.2) with up to four linear regions. We now break down equation 3.1 and show why
it describes this family. To make this easier to understand, we split the function into
two parts. First, we introduce the intermediate quantities:

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

3.1 Neural network example 27

h1 = a[θ10 + θ11x]

h2 = a[θ20 + θ21x]

h3 = a[θ30 + θ31x], (3.3)

where we refer to h1, h2, and h3 as hidden units. Second, we compute the output by
combining these hidden units with a linear function:1

y = φ0 + φ1h1 + φ2h2 + φ3h3. (3.4)

Figure 3.3 shows the flow of computation that creates the function in figure 3.2a.
Each hidden unit contains a linear function θ•0 + θ•1x of the input, and that line is
clipped by the ReLU function a[•] below zero. The positions where the three lines cross
zero become the three “joints” in the final output. The three clipped lines are then
weighted by φ1, φ2, and φ3, respectively. Finally, the offset φ0 is added, which controls
the overall height of the final function. Problems 3.1–3.8

Each linear region in figure 3.3j corresponds to a different activation pattern in the
hidden units. When a unit is clipped, we refer to it as inactive, and when it is not
clipped, we refer to it as active. For example, the shaded region receives contributions
from h1 and h3 (which are active) but not from h2 (which is inactive). The slope of
each linear region is determined by (i) the original slopes θ•1 of the active inputs for this
region and (ii) the weights φ• that were subsequently applied. For example, the slope in
the shaded region (see problem 3.3) is θ11φ1 + θ31φ3, where the first term is the slope in
panel (g) and the second term is the slope in panel (i).

Each hidden unit contributes one “joint” to the function, so with three hidden units, Notebook 3.1
Shallow networks Ithere can be four linear regions. However, only three of the slopes of these regions are

independent; the fourth is either zero (if all the hidden units are inactive in this region)
Problem 3.9or is a sum of slopes from the other regions.

3.1.2 Depicting neural networks

We have been discussing a neural network with one input, one output, and three hidden
units. We visualize this network in figure 3.4a. The input is on the left, the hidden units
are in the middle, and the output is on the right. Each connection represents one of the
ten parameters. To simplify this representation, we do not typically draw the intercept
parameters, so this network is usually depicted as in figure 3.4b.

1For the purposes of this book, a linear function has the form z′ = φ0 +
∑

i φizi. Any other type of
function is nonlinear. For instance, the ReLU function (equation 3.2) and the example neural network
that contains it (equation 3.1) are both nonlinear. See notes at end of chapter for further clarification.

Draft: please send errata to udlbookmail@gmail.com.

3.1 Neural network example 27

h1 = a[θ10 + θ11x]

h2 = a[θ20 + θ21x]

h3 = a[θ30 + θ31x], (3.3)

where we refer to h1, h2, and h3 as hidden units. Second, we compute the output by
combining these hidden units with a linear function:1

y = φ0 + φ1h1 + φ2h2 + φ3h3. (3.4)

Figure 3.3 shows the flow of computation that creates the function in figure 3.2a.
Each hidden unit contains a linear function θ•0 + θ•1x of the input, and that line is
clipped by the ReLU function a[•] below zero. The positions where the three lines cross
zero become the three “joints” in the final output. The three clipped lines are then
weighted by φ1, φ2, and φ3, respectively. Finally, the offset φ0 is added, which controls
the overall height of the final function. Problems 3.1–3.8

Each linear region in figure 3.3j corresponds to a different activation pattern in the
hidden units. When a unit is clipped, we refer to it as inactive, and when it is not
clipped, we refer to it as active. For example, the shaded region receives contributions
from h1 and h3 (which are active) but not from h2 (which is inactive). The slope of
each linear region is determined by (i) the original slopes θ•1 of the active inputs for this
region and (ii) the weights φ• that were subsequently applied. For example, the slope in
the shaded region (see problem 3.3) is θ11φ1 + θ31φ3, where the first term is the slope in
panel (g) and the second term is the slope in panel (i).

Each hidden unit contributes one “joint” to the function, so with three hidden units, Notebook 3.1
Shallow networks Ithere can be four linear regions. However, only three of the slopes of these regions are

independent; the fourth is either zero (if all the hidden units are inactive in this region)
Problem 3.9or is a sum of slopes from the other regions.

3.1.2 Depicting neural networks

We have been discussing a neural network with one input, one output, and three hidden
units. We visualize this network in figure 3.4a. The input is on the left, the hidden units
are in the middle, and the output is on the right. Each connection represents one of the
ten parameters. To simplify this representation, we do not typically draw the intercept
parameters, so this network is usually depicted as in figure 3.4b.

1For the purposes of this book, a linear function has the form z′ = φ0 +
∑

i φizi. Any other type of
function is nonlinear. For instance, the ReLU function (equation 3.2) and the example neural network
that contains it (equation 3.1) are both nonlinear. See notes at end of chapter for further clarification.

Draft: please send errata to udlbookmail@gmail.com.

Activation Pattern28 3 Shallow neural networks

Figure 3.3 Computation for function in figure 3.2a. a–c) The input x is passed
through three linear functions, each with a different y-intercept θ•0 and slope θ•1.
d–f) Each line is passed through the ReLU activation function, which clips neg-
ative values to zero. g–i) The three clipped lines are then weighted (scaled) by
φ1,φ2, and φ3, respectively. j) Finally, the clipped and weighted functions are
summed, and an offset φ0 that controls the height is added. Each of the four
linear regions corresponds to a different activation pattern in the hidden units.
In the shaded region, h2 is inactive (clipped), but h1 and h3 are both active.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

clipped by ReLU

define locations
of the 3 joints
 4 linear regions

[Only 3 of the slopes
are independent; the

4-th is either zero
or sum of slopes from

the other regions.]

⇒

in the shaded region
 are active

 is inactive.
h1, h3
h2

Depicting Neural Networks
3.2 Universal approximation theorem 29

Figure 3.4 Depicting neural networks. a) The input x is on the left, the hidden
units h1, h2, and h3 in the center, and the output y on the right. Computation
flows from left to right. The input is used to compute the hidden units, which are
combined to create the output. Each of the ten arrows represents a parameter
(intercepts in orange and slopes in black). Each parameter multiplies its source
and adds the result to its target. For example, we multiply the parameter φ1

by source h1 and add it to y. We introduce additional nodes containing ones
(orange circles) to incorporate the offsets into this scheme, so we multiply φ0 by
one (with no effect) and add it to y. ReLU functions are applied at the hidden
units. b) More typically, the intercepts, ReLU functions, and parameter names
are omitted; this simpler depiction represents the same network.

3.2 Universal approximation theorem

In the previous section, we introduced an example neural network with one input, one
output, ReLU activation functions, and three hidden units. Let’s now generalize this
slightly and consider the case with D hidden units where the dth hidden unit is:

hd = a[θd0 + θd1x], (3.5)
and these are combined linearly to create the output:

y = φ0 +
D∑

d=1

φdhd. (3.6)

The number of hidden units in a shallow network is a measure of the network capacity.
With ReLU activation functions, the output of a network with D hidden units has at Problem 3.10most D joints and so is a piecewise linear function with at most D+1 linear regions. As
we add more hidden units, the model can approximate more complex functions.

Indeed, with enough capacity (hidden units), a shallow network can describe any
continuous 1D function defined on a compact subset of the real line to arbitrary precision.
To see this, consider that every time we add a hidden unit, we add another linear region to
the function. As these regions become more numerous, they represent smaller sections
of the function, which are increasingly well approximated by a line (figure 3.5). The
universal approximation theorem proves that for any continuous function, there exists a
shallow network that can approximate this function to any specified precision.

Draft: please send errata to udlbookmail@gmail.com.

inputs hidden units outputs hidden units outputsinputs

• The intercepts (known as biases) are usually not shown in the NN
architecture, the NN is simplified to the picture on the right.

Universal Approximation Theorem

• Generalizing to hidden units:

• = network capacity; there are joints and linear regions.

• Universal approximation theorem: continuous function, a
shallow network that can approximate it to any specified precision;
holds for networks that map multivariate inputs to multivariate outputs.

D

D D D + 1
∀ ∃

3.2 Universal approximation theorem 29

Figure 3.4 Depicting neural networks. a) The input x is on the left, the hidden
units h1, h2, and h3 in the center, and the output y on the right. Computation
flows from left to right. The input is used to compute the hidden units, which are
combined to create the output. Each of the ten arrows represents a parameter
(intercepts in orange and slopes in black). Each parameter multiplies its source
and adds the result to its target. For example, we multiply the parameter φ1

by source h1 and add it to y. We introduce additional nodes containing ones
(orange circles) to incorporate the offsets into this scheme, so we multiply φ0 by
one (with no effect) and add it to y. ReLU functions are applied at the hidden
units. b) More typically, the intercepts, ReLU functions, and parameter names
are omitted; this simpler depiction represents the same network.

3.2 Universal approximation theorem

In the previous section, we introduced an example neural network with one input, one
output, ReLU activation functions, and three hidden units. Let’s now generalize this
slightly and consider the case with D hidden units where the dth hidden unit is:

hd = a[θd0 + θd1x], (3.5)
and these are combined linearly to create the output:

y = φ0 +
D∑

d=1

φdhd. (3.6)

The number of hidden units in a shallow network is a measure of the network capacity.
With ReLU activation functions, the output of a network with D hidden units has at Problem 3.10most D joints and so is a piecewise linear function with at most D+1 linear regions. As
we add more hidden units, the model can approximate more complex functions.

Indeed, with enough capacity (hidden units), a shallow network can describe any
continuous 1D function defined on a compact subset of the real line to arbitrary precision.
To see this, consider that every time we add a hidden unit, we add another linear region to
the function. As these regions become more numerous, they represent smaller sections
of the function, which are increasingly well approximated by a line (figure 3.5). The
universal approximation theorem proves that for any continuous function, there exists a
shallow network that can approximate this function to any specified precision.

Draft: please send errata to udlbookmail@gmail.com.

3.2 Universal approximation theorem 29

Figure 3.4 Depicting neural networks. a) The input x is on the left, the hidden
units h1, h2, and h3 in the center, and the output y on the right. Computation
flows from left to right. The input is used to compute the hidden units, which are
combined to create the output. Each of the ten arrows represents a parameter
(intercepts in orange and slopes in black). Each parameter multiplies its source
and adds the result to its target. For example, we multiply the parameter φ1

by source h1 and add it to y. We introduce additional nodes containing ones
(orange circles) to incorporate the offsets into this scheme, so we multiply φ0 by
one (with no effect) and add it to y. ReLU functions are applied at the hidden
units. b) More typically, the intercepts, ReLU functions, and parameter names
are omitted; this simpler depiction represents the same network.

3.2 Universal approximation theorem

In the previous section, we introduced an example neural network with one input, one
output, ReLU activation functions, and three hidden units. Let’s now generalize this
slightly and consider the case with D hidden units where the dth hidden unit is:

hd = a[θd0 + θd1x], (3.5)
and these are combined linearly to create the output:

y = φ0 +
D∑

d=1

φdhd. (3.6)

The number of hidden units in a shallow network is a measure of the network capacity.
With ReLU activation functions, the output of a network with D hidden units has at Problem 3.10most D joints and so is a piecewise linear function with at most D+1 linear regions. As
we add more hidden units, the model can approximate more complex functions.

Indeed, with enough capacity (hidden units), a shallow network can describe any
continuous 1D function defined on a compact subset of the real line to arbitrary precision.
To see this, consider that every time we add a hidden unit, we add another linear region to
the function. As these regions become more numerous, they represent smaller sections
of the function, which are increasingly well approximated by a line (figure 3.5). The
universal approximation theorem proves that for any continuous function, there exists a
shallow network that can approximate this function to any specified precision.

Draft: please send errata to udlbookmail@gmail.com.

30 3 Shallow neural networks

Figure 3.5 Approximation of a 1D function (dashed line) by a piecewise linear
model. a–c) As the number of regions increases, the model becomes closer and
closer to the continuous function. A neural network with a scalar input creates
one extra linear region per hidden unit. The universal approximation theorem
proves that, with enough hidden units, there exists a shallow neural network that
can describe any given continuous function defined on a compact subset of RDi

to arbitrary precision.

3.3 Multivariate inputs and outputs

In the above example, the network has a single scalar input x and a single scalar output y.
However, the universal approximation theorem also holds for the more general case
where the network maps multivariate inputs x = [x1, x2, . . . , xDi]

T to multivariate output
predictions y = [y1, y2, . . . , yDo]

T . We first explore how to extend the model to predict
multivariate outputs. Then we consider multivariate inputs. Finally, in section 3.4, we
present a general definition of a shallow neural network.

3.3.1 Visualizing multivariate outputs

To extend the network to multivariate outputs y, we simply use a different linear function
of the hidden units for each output. So, a network with a scalar input x, four hidden
units h1, h2, h3, and h4, and a 2D multivariate output y = [y1, y2]T would be defined as:

h1 = a[θ10 + θ11x]

h2 = a[θ20 + θ21x]

h3 = a[θ30 + θ31x]

h4 = a[θ40 + θ41x], (3.7)

and

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Multivariate Outputs
• For example, :

• The hidden units for both outputs are the same:

• The joints are the same but the slopes of the linear regions and the
vertical offsets can differ:

y = [y1, y2]T
3.3 Multivariate inputs and outputs 31

Figure 3.6 Network with one input, four hidden units, and two outputs. a)
Visualization of network structure. b) This network produces two piecewise linear
functions, y1[x] and y2[x]. The four “joints” of these functions (at vertical dotted
lines) are constrained to be in the same places since they share the same hidden
units, but the slopes and overall height may differ.

Figure 3.7 Visualization of neural net-
work with 2D multivariate input x =
[x1, x2]

T and scalar output y.

y1 = φ10 + φ11h1 + φ12h2 + φ13h3 + φ14h4

y2 = φ20 + φ21h1 + φ22h2 + φ23h3 + φ24h4. (3.8)

The two outputs are two different linear functions of the hidden units.
As we saw in figure 3.3, the “joints” in the piecewise functions depend on where the

initial linear functions θ•0 + θ•1x are clipped by the ReLU functions a[•] at the hidden
units. Since both outputs y1 and y2 are different linear functions of the same four hidden Problem 3.11units, the four “joints” in each must be in the same places. However, the slopes of the
linear regions and the overall vertical offset can differ (figure 3.6).

3.3.2 Visualizing multivariate inputs

To cope with multivariate inputs x, we extend the linear relations between the input
and the hidden units. So a network with two inputs x = [x1, x2]T and a scalar output y
(figure 3.7) might have three hidden units defined by:

Draft: please send errata to udlbookmail@gmail.com.

3.3 Multivariate inputs and outputs 31

Figure 3.6 Network with one input, four hidden units, and two outputs. a)
Visualization of network structure. b) This network produces two piecewise linear
functions, y1[x] and y2[x]. The four “joints” of these functions (at vertical dotted
lines) are constrained to be in the same places since they share the same hidden
units, but the slopes and overall height may differ.

Figure 3.7 Visualization of neural net-
work with 2D multivariate input x =
[x1, x2]

T and scalar output y.

y1 = φ10 + φ11h1 + φ12h2 + φ13h3 + φ14h4

y2 = φ20 + φ21h1 + φ22h2 + φ23h3 + φ24h4. (3.8)

The two outputs are two different linear functions of the hidden units.
As we saw in figure 3.3, the “joints” in the piecewise functions depend on where the

initial linear functions θ•0 + θ•1x are clipped by the ReLU functions a[•] at the hidden
units. Since both outputs y1 and y2 are different linear functions of the same four hidden Problem 3.11units, the four “joints” in each must be in the same places. However, the slopes of the
linear regions and the overall vertical offset can differ (figure 3.6).

3.3.2 Visualizing multivariate inputs

To cope with multivariate inputs x, we extend the linear relations between the input
and the hidden units. So a network with two inputs x = [x1, x2]T and a scalar output y
(figure 3.7) might have three hidden units defined by:

Draft: please send errata to udlbookmail@gmail.com.

30 3 Shallow neural networks

Figure 3.5 Approximation of a 1D function (dashed line) by a piecewise linear
model. a–c) As the number of regions increases, the model becomes closer and
closer to the continuous function. A neural network with a scalar input creates
one extra linear region per hidden unit. The universal approximation theorem
proves that, with enough hidden units, there exists a shallow neural network that
can describe any given continuous function defined on a compact subset of RDi

to arbitrary precision.

3.3 Multivariate inputs and outputs

In the above example, the network has a single scalar input x and a single scalar output y.
However, the universal approximation theorem also holds for the more general case
where the network maps multivariate inputs x = [x1, x2, . . . , xDi]

T to multivariate output
predictions y = [y1, y2, . . . , yDo]

T . We first explore how to extend the model to predict
multivariate outputs. Then we consider multivariate inputs. Finally, in section 3.4, we
present a general definition of a shallow neural network.

3.3.1 Visualizing multivariate outputs

To extend the network to multivariate outputs y, we simply use a different linear function
of the hidden units for each output. So, a network with a scalar input x, four hidden
units h1, h2, h3, and h4, and a 2D multivariate output y = [y1, y2]T would be defined as:

h1 = a[θ10 + θ11x]

h2 = a[θ20 + θ21x]

h3 = a[θ30 + θ31x]

h4 = a[θ40 + θ41x], (3.7)

and

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Multivariate Inputs
32 3 Shallow neural networks

Figure 3.8 Processing in network with two inputs x = [x1, x2]
T , three hidden

units h1, h2, h3, and one output y. a–c) The input to each hidden unit is a
linear function of the two inputs, which corresponds to an oriented plane. Bright-
ness indicates function output. For example, in panel (a), the brightness repre-
sents θ10 + θ11x1 + θ12x2. Thin lines are contours. d–f) Each plane is clipped by
the ReLU activation function (cyan lines are equivalent to “joints” in figures 3.3d–
f). g-i) The clipped planes are then weighted, and j) summed together with an
offset that determines the overall height of the surface. The result is a continuous
surface made up of convex piecewise linear polygonal regions.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

The hidden units depend on both inputs

3.4 Shallow neural networks: general case 33

h1 = a[θ10 + θ11x1 + θ12x2]

h2 = a[θ20 + θ21x1 + θ22x2]

h3 = a[θ30 + θ31x1 + θ32x2], (3.9)

where there is now one slope parameter for each input. The hidden units are combined
to form the output in the usual way:

y = φ0 + φ1h1 + φ2h2 + φ3h3. (3.10)

Figure 3.8 illustrates the processing of this network. Each hidden unit receives a linear Problems 3.12–3.13combination of the two inputs, which forms an oriented plane in the 3D input/output
Notebook 3.2

Shallow networks II
space. The activation function clips the negative values of these planes to zero. The
clipped planes are then recombined in a second linear function (equation 3.10) to create
a continuous piecewise linear surface consisting of convex polygonal regions (figure 3.8j).

Appendix B.1.2
Convex region

Each region corresponds to a different activation pattern. For example, in the central
triangular region, the first and third hidden units are active, and the second is inactive.

When there are more than two inputs to the model, it becomes difficult to visualize.
However, the interpretation is similar. The output will be a continuous piecewise linear
function of the input, where the linear regions are now convex polytopes in the multi-
dimensional input space.

Note that as the input dimensions grow, the number of linear regions increases rapidly
(figure 3.9). To get a feeling for how rapidly, consider that each hidden unit defines a
hyperplane that delineates the part of space where this unit is active from the part Notebook 3.3

Shallow network
regions

where it is not (cyan lines in 3.8d–f). If we had the same number of hidden units as
input dimensions Di, we could align each hyperplane with one of the coordinate axes
(figure 3.10). For two input dimensions, this would divide the space into four quadrants.
For three dimensions, this would create eight octants, and for Di dimensions, this would
create 2Di orthants. Shallow neural networks usually have more hidden units than input
dimensions, so they typically create more than 2Di linear regions.

3.4 Shallow neural networks: general case

We have described several example shallow networks to help develop intuition about how
they work. We now define a general equation for a shallow neural network y = f[x,φ]
that maps a multi-dimensional input x ∈ RDi to a multi-dimensional output y ∈ RDo

using h ∈ RD hidden units. Each hidden unit is computed as:

hd = a
[
θd0 +

Di∑

i=1

θdixi

]
, (3.11)

and these are combined linearly to create the output:

Draft: please send errata to udlbookmail@gmail.com.

They create a continuous piecewise
linear surface consisting of convex

polygonal regions, each with a
different activation patten.

This depicts 2 inputs and 1 output.
Generalizable to more than 2 inputs
but difficult to visualize such cases.

General Case

• In general, a shallow NN is a function that maps a multi-
dimensional input to a multi-dimensional output
using hidden units:

• Graphically, a shallow NN is depicted as e.g.

y = f(x, ϕ)
x ∈ ℝDi y ∈ ℝD0

h ∈ ℝD

3.4 Shallow neural networks: general case 33

h1 = a[θ10 + θ11x1 + θ12x2]

h2 = a[θ20 + θ21x1 + θ22x2]

h3 = a[θ30 + θ31x1 + θ32x2], (3.9)

where there is now one slope parameter for each input. The hidden units are combined
to form the output in the usual way:

y = φ0 + φ1h1 + φ2h2 + φ3h3. (3.10)

Figure 3.8 illustrates the processing of this network. Each hidden unit receives a linear Problems 3.12–3.13combination of the two inputs, which forms an oriented plane in the 3D input/output
Notebook 3.2

Shallow networks II
space. The activation function clips the negative values of these planes to zero. The
clipped planes are then recombined in a second linear function (equation 3.10) to create
a continuous piecewise linear surface consisting of convex polygonal regions (figure 3.8j).

Appendix B.1.2
Convex region

Each region corresponds to a different activation pattern. For example, in the central
triangular region, the first and third hidden units are active, and the second is inactive.

When there are more than two inputs to the model, it becomes difficult to visualize.
However, the interpretation is similar. The output will be a continuous piecewise linear
function of the input, where the linear regions are now convex polytopes in the multi-
dimensional input space.

Note that as the input dimensions grow, the number of linear regions increases rapidly
(figure 3.9). To get a feeling for how rapidly, consider that each hidden unit defines a
hyperplane that delineates the part of space where this unit is active from the part Notebook 3.3

Shallow network
regions

where it is not (cyan lines in 3.8d–f). If we had the same number of hidden units as
input dimensions Di, we could align each hyperplane with one of the coordinate axes
(figure 3.10). For two input dimensions, this would divide the space into four quadrants.
For three dimensions, this would create eight octants, and for Di dimensions, this would
create 2Di orthants. Shallow neural networks usually have more hidden units than input
dimensions, so they typically create more than 2Di linear regions.

3.4 Shallow neural networks: general case

We have described several example shallow networks to help develop intuition about how
they work. We now define a general equation for a shallow neural network y = f[x,φ]
that maps a multi-dimensional input x ∈ RDi to a multi-dimensional output y ∈ RDo

using h ∈ RD hidden units. Each hidden unit is computed as:

hd = a
[
θd0 +

Di∑

i=1

θdixi

]
, (3.11)

and these are combined linearly to create the output:

Draft: please send errata to udlbookmail@gmail.com.

3.5 Terminology 35

Figure 3.11 Visualization of neural net-
work with three inputs and two out-
puts. This network has twenty param-
eters. There are fifteen slopes (indicated
by arrows) and five offsets (not shown).

yj = φj0 +
D∑

d=1

φjdhd, (3.12)

where a[•] is a nonlinear activation function. The model has parameters φ = {θ••,φ••}.
Figure 3.11 shows an example with three inputs, three hidden units, and two outputs. Problems 3.14–3.17

The activation function permits the model to describe nonlinear relations between
input and the output, and as such, it must be nonlinear itself; with no activation func-
tion, or a linear activation function, the overall mapping from input to output would
be restricted to be linear. Many different activation functions have been tried (see fig-
ure 3.13), but the most common choice is the ReLU (figure 3.1), which has the merit Notebook 3.4

Activation
functions

of being easily interpretable. With ReLU activations, the network divides the input
space into convex polytopes defined by the intersections of hyperplanes computed by
the “joints” in the ReLU functions. Each convex polytope contains a different linear
function. The polytopes are the same for each output, but the linear functions they
contain can differ.

3.5 Terminology

We conclude this chapter by introducing some terminology. Regrettably, neural networks
have a lot of associated jargon. They are often referred to in terms of layers. The left of
figure 3.12 is the input layer, the center is the hidden layer, and to the right is the output
layer. We would say that the network in figure 3.12 has one hidden layer containing
four hidden units. The hidden units themselves are sometimes referred to as neurons.
When we pass data through the network, the values of the inputs to the hidden layer
(i.e., before the ReLU functions are applied) are termed pre-activations. The values at
the hidden layer (i.e., after the ReLU functions) are termed activations.

For historical reasons, any neural network with at least one hidden layer is also called
a multi-layer perceptron, or MLP for short. Networks with one hidden layer (as described
in this chapter) are sometimes referred to as shallow neural networks. Networks with
multiple hidden layers (as described in the next chapter) are referred to as deep neural
networks. Neural networks in which the connections form an acyclic graph (i.e., a graph
with no loops, as in all the examples in this chapter) are referred to as feed-forward
networks. If every element in one layer connects to every element in the next (as in
all the examples in this chapter), the network is fully connected. These connections

Draft: please send errata to udlbookmail@gmail.com.

3.5 Terminology 35

Figure 3.11 Visualization of neural net-
work with three inputs and two out-
puts. This network has twenty param-
eters. There are fifteen slopes (indicated
by arrows) and five offsets (not shown).

yj = φj0 +
D∑

d=1

φjdhd, (3.12)

where a[•] is a nonlinear activation function. The model has parameters φ = {θ••,φ••}.
Figure 3.11 shows an example with three inputs, three hidden units, and two outputs. Problems 3.14–3.17

The activation function permits the model to describe nonlinear relations between
input and the output, and as such, it must be nonlinear itself; with no activation func-
tion, or a linear activation function, the overall mapping from input to output would
be restricted to be linear. Many different activation functions have been tried (see fig-
ure 3.13), but the most common choice is the ReLU (figure 3.1), which has the merit Notebook 3.4

Activation
functions

of being easily interpretable. With ReLU activations, the network divides the input
space into convex polytopes defined by the intersections of hyperplanes computed by
the “joints” in the ReLU functions. Each convex polytope contains a different linear
function. The polytopes are the same for each output, but the linear functions they
contain can differ.

3.5 Terminology

We conclude this chapter by introducing some terminology. Regrettably, neural networks
have a lot of associated jargon. They are often referred to in terms of layers. The left of
figure 3.12 is the input layer, the center is the hidden layer, and to the right is the output
layer. We would say that the network in figure 3.12 has one hidden layer containing
four hidden units. The hidden units themselves are sometimes referred to as neurons.
When we pass data through the network, the values of the inputs to the hidden layer
(i.e., before the ReLU functions are applied) are termed pre-activations. The values at
the hidden layer (i.e., after the ReLU functions) are termed activations.

For historical reasons, any neural network with at least one hidden layer is also called
a multi-layer perceptron, or MLP for short. Networks with one hidden layer (as described
in this chapter) are sometimes referred to as shallow neural networks. Networks with
multiple hidden layers (as described in the next chapter) are referred to as deep neural
networks. Neural networks in which the connections form an acyclic graph (i.e., a graph
with no loops, as in all the examples in this chapter) are referred to as feed-forward
networks. If every element in one layer connects to every element in the next (as in
all the examples in this chapter), the network is fully connected. These connections

Draft: please send errata to udlbookmail@gmail.com.

Terminology36 3 Shallow neural networks

Figure 3.12 Terminology. A shallow network consists of an input layer, a hidden
layer, and an output layer. Each layer is connected to the next by forward con-
nections (arrows). For this reason, these models are referred to as feed-forward
networks. When every variable in one layer connects to every variable in the
next, we call this a fully connected network. Each connection represents a slope
parameter in the underlying equation, and these parameters are termed weights.
The variables in the hidden layer are termed neurons or hidden units. The values
feeding into the hidden units are termed pre-activations, and the values at the
hidden units (i.e., after the ReLU function is applied) are termed activations.

represent slope parameters in the underlying equations and are referred to as network
weights. The offset parameters (not shown in figure 3.12) are called biases.

3.6 Summary

Shallow neural networks have one hidden layer. They (i) compute several linear functions
of the input, (ii) pass each result through an activation function, and then (iii) take a
linear combination of these activations to form the outputs. Shallow neural networks
make predictions y based on inputs x by dividing the input space into a continuous
surface of piecewise linear regions. With enough hidden units (neurons), shallow neural
networks can approximate any continuous function to arbitrary precision.

Chapter 4 discusses deep neural networks, which extend the models from this chapter
by adding more hidden layers. Chapters 5–7 describe how to train these models.

Notes

“Neural” networks: If the models in this chapter are just functions, why are they called
“neural networks”? The connection is, unfortunately, tenuous. Visualizations like figure 3.12
consist of nodes (inputs, hidden units, and outputs) that are densely connected to one another.
This bears a superficial similarity to neurons in the mammalian brain, which also have dense
connections. However, there is scant evidence that brain computation works in the same way
as neural networks, and it is unhelpful to think about biology going forward.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

• Any NN with at least one hidden layer is called a multi-layer perceptron, or MLP.

• NNs with one hidden layer are called shallow NNs. NNs with multiple hidden layers
are called deep NNs.

• NNs with connections form an acyclic graph (a graph w/0 loops) are feedforward NNs.

• Every element in one layer connects to every element in the next: fully connected
NNs.

Why going deep?

• A shallow NN with only a single hidden layer can already approximate any
continuous function to a specific precision, using piecewise linear
functions.

• However, the network capacity (# hidden units) may be impractically large.
A deep NN can produce more linear regions for a given # parameters.

30 3 Shallow neural networks

Figure 3.5 Approximation of a 1D function (dashed line) by a piecewise linear
model. a–c) As the number of regions increases, the model becomes closer and
closer to the continuous function. A neural network with a scalar input creates
one extra linear region per hidden unit. The universal approximation theorem
proves that, with enough hidden units, there exists a shallow neural network that
can describe any given continuous function defined on a compact subset of RDi

to arbitrary precision.

3.3 Multivariate inputs and outputs

In the above example, the network has a single scalar input x and a single scalar output y.
However, the universal approximation theorem also holds for the more general case
where the network maps multivariate inputs x = [x1, x2, . . . , xDi]

T to multivariate output
predictions y = [y1, y2, . . . , yDo]

T . We first explore how to extend the model to predict
multivariate outputs. Then we consider multivariate inputs. Finally, in section 3.4, we
present a general definition of a shallow neural network.

3.3.1 Visualizing multivariate outputs

To extend the network to multivariate outputs y, we simply use a different linear function
of the hidden units for each output. So, a network with a scalar input x, four hidden
units h1, h2, h3, and h4, and a 2D multivariate output y = [y1, y2]T would be defined as:

h1 = a[θ10 + θ11x]

h2 = a[θ20 + θ21x]

h3 = a[θ30 + θ31x]

h4 = a[θ40 + θ41x], (3.7)

and

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Deep Neural Networks
• The composition of 2 shallow networks results in a 2-layer network:

• First layer:

• Second layer:

• Output:

4.3 Deep neural networks 45

Figure 4.4 Neural network with one input, one output, and two hidden layers,
each containing three hidden units.

where ψ10 = θ′10 + θ′11φ0,ψ11 = θ′11φ1,ψ12 = θ′11φ2 and so on. The result is a network
with two hidden layers (figure 4.4).

It follows that a network with two layers can represent the family of functions created
by passing the output of one single-layer network into another. In fact, it represents a
broader family because in equation 4.6, the nine slope parameters ψ11,ψ21, . . . ,ψ33 can
take arbitrary values, whereas, in equation 4.5, these parameters are constrained to be
the outer product [θ′11, θ

′
21, θ

′
31]

T [φ1,φ2,φ3].

4.3 Deep neural networks

In the previous section, we showed that composing two shallow networks yields a special
case of a deep network with two hidden layers. Now we consider the general case of a
deep network with two hidden layers, each containing three hidden units (figure 4.4).
The first layer is defined by:

h1 = a[θ10 + θ11x]

h2 = a[θ20 + θ21x]

h3 = a[θ30 + θ31x], (4.7)

the second layer by:

h′
1 = a[ψ10 + ψ11h1 + ψ12h2 + ψ13h3]

h′
2 = a[ψ20 + ψ21h1 + ψ22h2 + ψ23h3]

h′
3 = a[ψ30 + ψ31h1 + ψ32h2 + ψ33h3], (4.8)

and the output by:

y′ = φ′0 + φ′1h
′
1 + φ′2h

′
2 + φ′3h

′
3. (4.9)

Draft: please send errata to udlbookmail@gmail.com.

Deep Neural Networks4.3 Deep neural networks 47

Figure 4.5 Computation for the deep network in figure 4.4. a–c) The inputs
to the second hidden layer (i.e., the pre-activations) are three piecewise linear
functions where the “joints” between the linear regions are at the same places
(see figure 3.6). d–f) Each piecewise linear function is clipped to zero by the
ReLU activation function. g–i) These clipped functions are then weighted with
parameters φ′

1,φ
′
2, and φ′

3, respectively. j) Finally, the clipped and weighted
functions are summed and an offset φ′

0 that controls the overall height is added.

Draft: please send errata to udlbookmail@gmail.com.

A complicated (piece-wise linear) function emerges.

Hyperparameters
48 4 Deep neural networks

Figure 4.6 Matrix notation for network with Di = 3-dimensional input x, Do = 2-
dimensional output y, and K = 3 hidden layers h1,h2, and h3 of dimensions
D1 = 4, D2 = 2, and D3 = 3 respectively. The weights are stored in matrices
Ωk that pre-multiply the activations from the preceding layer to create the pre-
activations at the subsequent layer. For example, the weight matrix Ω1 that
computes the pre-activations at h2 from the activations at h1 has dimension
2× 4. It is applied to the four hidden units in layer one and creates the inputs to
the two hidden units at layer two. The biases are stored in vectors βk and have
the dimension of the layer into which they feed. For example, the bias vector β2
is length three because layer h3 contains three hidden units.

4.4 Matrix notation

We have seen that a deep neural network consists of linear transformations alternatingAppendix B.3
Matrices with activation functions. We could equivalently describe equations 4.7–4.9 in matrix

notation as:
⎡

⎣
h1

h2

h3

⎤

⎦ = a

⎡

⎣

⎡

⎣
θ10
θ20
θ30

⎤

⎦+

⎡

⎣
θ11
θ21
θ31

⎤

⎦x

⎤

⎦ , (4.11)

⎡

⎣
h′
1

h′
2

h′
3

⎤

⎦ = a

⎡

⎣

⎡

⎣
ψ10

ψ20

ψ30

⎤

⎦+

⎡

⎣
ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33

⎤

⎦

⎡

⎣
h1

h2

h3

⎤

⎦

⎤

⎦ , (4.12)

and

y′ = φ′0 +
[
φ′1 φ′2 φ′3

]
⎡

⎣
h′
1

h′
2

h′
3

⎤

⎦ , (4.13)

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

• Modern deep NNs can have layers with of hidden units in each
layer.

• The number of layers = depth, & the number of hidden units in each layer (=width)
 are hyperparameters. The network capacity = # number of hidden units.

• For fixed hyperparameters, the model describes a family of functions, and the parameters
 (known as weights) determine a specific function.

𝒪(10) to 𝒪(102) 𝒪(103)

K
D1, D2, …, DK

θ

Back to matrix notation
• We can express a 2-layer network in matrix notation:

• More generally, a -layer network:K

48 4 Deep neural networks

Figure 4.6 Matrix notation for network with Di = 3-dimensional input x, Do = 2-
dimensional output y, and K = 3 hidden layers h1,h2, and h3 of dimensions
D1 = 4, D2 = 2, and D3 = 3 respectively. The weights are stored in matrices
Ωk that pre-multiply the activations from the preceding layer to create the pre-
activations at the subsequent layer. For example, the weight matrix Ω1 that
computes the pre-activations at h2 from the activations at h1 has dimension
2× 4. It is applied to the four hidden units in layer one and creates the inputs to
the two hidden units at layer two. The biases are stored in vectors βk and have
the dimension of the layer into which they feed. For example, the bias vector β2
is length three because layer h3 contains three hidden units.

4.4 Matrix notation

We have seen that a deep neural network consists of linear transformations alternatingAppendix B.3
Matrices with activation functions. We could equivalently describe equations 4.7–4.9 in matrix

notation as:
⎡

⎣
h1

h2

h3

⎤

⎦ = a

⎡

⎣

⎡

⎣
θ10
θ20
θ30

⎤

⎦+

⎡

⎣
θ11
θ21
θ31

⎤

⎦x

⎤

⎦ , (4.11)

⎡

⎣
h′
1

h′
2

h′
3

⎤

⎦ = a

⎡

⎣

⎡

⎣
ψ10

ψ20

ψ30

⎤

⎦+

⎡

⎣
ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33

⎤

⎦

⎡

⎣
h1

h2

h3

⎤

⎦

⎤

⎦ , (4.12)

and

y′ = φ′0 +
[
φ′1 φ′2 φ′3

]
⎡

⎣
h′
1

h′
2

h′
3

⎤

⎦ , (4.13)

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

4.5 Shallow vs. deep neural networks 49

or even more compactly in matrix notation as:

h = a [θ0 + θx]

h′ = a [ψ0 +Ψh]

y′ = φ′0 + φ
′h′, (4.14)

where, in each case, the function a[•] applies the activation function separately to every
element of its vector input.

4.4.1 General formulation

This notation becomes cumbersome for networks with many layers. Hence, from now
on, we will describe the vector of hidden units at layer k as hk, the vector of biases
(intercepts) that contribute to hidden layer k+1 as βk, and the weights (slopes) that
are applied to the kth layer and contribute to the (k+1)th layer as Ωk. A general deep
network y = f[x,φ] with K layers can now be written as:

h1 = a[β0 +Ω0x]

h2 = a[β1 +Ω1h1]

h3 = a[β2 +Ω2h2]

...
hK = a[βK−1 +ΩK−1hK−1]

y = βK +ΩKhK . (4.15)

The parameters φ of this model comprise all of these weight matrices and bias vectors
φ = {βk,Ωk}Kk=0.

If the kth layer has Dk hidden units, then the bias vector βk−1 will be of size Dk.
The last bias vector βK has the size Do of the output. The first weight matrix Ω0 has Notebook 4.3

Deep networkssize D1 ×Di where Di is the size of the input. The last weight matrix ΩK is Do ×DK ,
and the remaining matrices Ωk are Dk+1 ×Dk (figure 4.6).

We can equivalently write the network as a single function: Problems 4.3–4.6

y = βK +ΩKa
[
βK−1 +ΩK−1a [. . .β2 +Ω2a [β1 +Ω1a [β0 +Ω0x]] . . .]

]
.

(4.16)

4.5 Shallow vs. deep neural networks

Chapter 3 discussed shallow networks (with a single hidden layer), and here we have
described deep networks (with multiple hidden layers). We now compare these models.

Draft: please send errata to udlbookmail@gmail.com.

4.5 Shallow vs. deep neural networks 49

or even more compactly in matrix notation as:

h = a [θ0 + θx]

h′ = a [ψ0 +Ψh]

y′ = φ′0 + φ
′h′, (4.14)

where, in each case, the function a[•] applies the activation function separately to every
element of its vector input.

4.4.1 General formulation

This notation becomes cumbersome for networks with many layers. Hence, from now
on, we will describe the vector of hidden units at layer k as hk, the vector of biases
(intercepts) that contribute to hidden layer k+1 as βk, and the weights (slopes) that
are applied to the kth layer and contribute to the (k+1)th layer as Ωk. A general deep
network y = f[x,φ] with K layers can now be written as:

h1 = a[β0 +Ω0x]

h2 = a[β1 +Ω1h1]

h3 = a[β2 +Ω2h2]

...
hK = a[βK−1 +ΩK−1hK−1]

y = βK +ΩKhK . (4.15)

The parameters φ of this model comprise all of these weight matrices and bias vectors
φ = {βk,Ωk}Kk=0.

If the kth layer has Dk hidden units, then the bias vector βk−1 will be of size Dk.
The last bias vector βK has the size Do of the output. The first weight matrix Ω0 has Notebook 4.3

Deep networkssize D1 ×Di where Di is the size of the input. The last weight matrix ΩK is Do ×DK ,
and the remaining matrices Ωk are Dk+1 ×Dk (figure 4.6).

We can equivalently write the network as a single function: Problems 4.3–4.6

y = βK +ΩKa
[
βK−1 +ΩK−1a [. . .β2 +Ω2a [β1 +Ω1a [β0 +Ω0x]] . . .]

]
.

(4.16)

4.5 Shallow vs. deep neural networks

Chapter 3 discussed shallow networks (with a single hidden layer), and here we have
described deep networks (with multiple hidden layers). We now compare these models.

Draft: please send errata to udlbookmail@gmail.com.

Parameters: biases and matrices

Hyperparameters:

K, D1, D2, …, DK

Shallow vs Deep

• Universal approximation theorem: deep NNs can approximate
any continuous function arbitrarily closely given sufficient capacity.

We can reproduce a shallow network if all but one layer is the
identity function. Since we showed that a shallow NN can
approximate any continuous function, deep NNs also work.

• More expressive (more linear regions per parameter):

A shallow NN with 1 input, 1 output, hidden units (in 1 layer)
can create up to linear regions using parameters.

A deep NN with 1 input, 1 output, hidden units in K layers of
same dimension D can create up to linear regions using

 parameters.

This exponential growth in linear regions is what makes deep NN
more expressive.

D > 2
D + 1 3D + 1

D > 2
(D + 1)K

3D + 1 + (K − 1)D(D + 1)

Shallow vs Deep

• The counting of parameters for shallow NNs goes as follows:

There are D hidden units, each has two parameters (bias,
weight). The output layer has D weights and one bias. #
parameter=2D+D+1=3D+1.

• The counting of parameters for deep NNs goes as follows:

There are weights between the input and the first hidden
layer, lots of inputs between adjacent hidden
layers, and weights between the last hidden layer and the
output. There are biases at each of the hidden layers
a n d 1 b i a s f o r t h e o u t p u t . T h i s g i v e s

parameters.

D
K − 1 D × D

D
D K

D + (K − 1)D2 + D + KD + 1 = 3D + (K − 1)D2 + (K − 1)D + 1

Shallow vs Deep

• Deep NNs create much more linear regions for a fixed parameter
budget, but they contain complex dependence and symmetries.

• The greater number of regions is an advantage if:

1. there are similar symmetries in the function to approximate;

2. the input output map is a composition of simpler functions.

• Depth efficiency refers to the phenomenon that a shallow NN
needs exponentially more hidden units to achieve an equivalent
approximation to that of a deep NN.

→

Shallow vs Deep

• Training and generalization: It is easier to train moderately deep
networks than to train shallow ones.

• Deep NNs also seem to generalize to new data better than
shallow ones.

• Empirically, one finds best results for most tasks using networks
with a few (or more) hidden layers layers.

404 20 Why does deep learning work?

Figure 20.2 MNIST-1D training. Four
fully connected networks were fit to 4000
MNIST-1D examples with random labels
using full batch gradient descent, He ini-
tialization, no momentum or regulariza-
tion, and learning rate 0.0025. Mod-
els with 1,2,3,4 layers had 298, 100, 75,
and 63 hidden units per layer and 15208,
15210, 15235, and 15139 parameters, re-
spectively. All models train successfully,
but deeper models require fewer epochs.

datasets (including CIFAR-100 and MNIST) almost perfectly with very large batches of
5000-6000 images. This eliminates most of the randomness but training still succeeds.

Figure 20.2 shows training results for four fully connected models fitted to 4000Notebook 20.2
Full batch

gradient descent
MNIST-1D examples with randomized labels using full-batch (i.e., non-stochastic) gra-
dient descent. There was no explicit regularization, and the learning rate was set to a
small constant value of 0.0025 to minimize implicit regularization. Here, the true map-

Problem 20.3 ping from data to labels has no structure, the training is deterministic, and there is no
regularization, and yet the training error still decreases to zero. This suggests that these
loss functions may genuinely have no local minima.

20.2.4 Overparameterization

Overparameterization almost certainly is an important factor that contributes to ease
of training. It implies that there is a large family of degenerate solutions, so there may
always be a direction in which the parameters can be modified to decrease the loss.
Sejnowski (2020) suggests that “. . . the degeneracy of solutions changes the nature of
the problem from finding a needle in a haystack to a haystack of needles.”

In practice, networks are frequently overparameterized by one or two orders of mag-
nitude (figure 20.3). However, data augmentation makes it difficult to make precise
statements. Augmentation may increase the data by several orders of magnitude, but
these are manipulations of existing examples rather than independent new data points.
Moreover, figure 8.10 shows that neural networks can sometimes fit the training data
well when there are the same number or fewer parameters than data points. This is
presumably due to redundancy in training examples from the same underlying function.

Several theoretical convergence results show that, under certain circumstances, SGD
converges to a global minimum when the network is sufficiently overparameterized. For
example, Du et al. (2019b) show that randomly initialized SGD converges to a global
minimum for shallow fully connected ReLU networks with a least squares loss with
enough hidden units. Similarly, Du et al. (2019a) consider deep, residual, and convolu-
tional networks when the activation function is smooth and Lipschitz. Zou et al. (2020)
analyzed the convergence of gradient descent on deep, fully connected networks using a
hinge loss. Allen-Zhu et al. (2019) considered deep networks with ReLU functions.

If a neural network is sufficiently overparameterized so that it can memorize any

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

• Reading for this lecture:
• https://arxiv.org/pdf/1803.08823 (Optimization)
• Simon Prince “Understanding Deep Learning”

(Shallow and Deep NN sections). Free online:
https://udlbook.github.io/udlbook/

• Problem set: Second problem due next Wednesday

Course logistics

https://arxiv.org/pdf/1803.08823
https://udlbook.github.io/udlbook/

