
Moritz Münchmeyer  (with slides from Gary Shiu)

Physics 361 - Machine Learning in 
Physics 

Lecture 8 – Unsupervised methods 

Feb. 13th 2025 



Colab notebook
We first want to tie up some lose ends from the last lecture on decision trees. 



Decision tree ensembles

4.Details of the training 
process



In our decision tree training notebook we will encounter a few concepts 
which we have not yet discussed in the lecture. 


These are not specific to decision trees, but let’s cover them here. In 
particular we need to know about

- R2-score

- Cross-Validation

- Hyperparameter optimization



R2-score
• The tree-regressor in scikit learn does not report the MSE loss, but rather the R2 score. How 

does it measure the quality of a regression? 

• The R2 score also known as the coefficient of determination, is a statistical measure that 
indicates how well a regression model explains the variance in the dependent variable. It is 
defined as. 

• We can attempt to measure the fraction of observed variance of the target variable  
(“outcome”) that can be explained by the features (”predictors”): 

• where yi = true values, i is the index of the training example.    
• the bar denotes the mean, and the hat denotes the prediction. 

• SStot = Sum of Total Squares 
• SSres = Sum of Squares due to Residuals
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N , these metrics read:

MAE =

PN
i=1 |(yi � ŷi)|

N
; MSE =

PN
i=1(yi � ŷi)2

N
; RMSE =

sPN
i=1(yi � ŷi)2

N
;

(5.1)
Another very common estimator for the quality of a predictive model is the

R2 score, or coe�cient of determination, which describes the amount of variability
(variance) in our dependent variable that is explained by our predictive model. It
can be expressed as a function of two variables, the sum of total squares, which is
proportional to the variance of y and quantifies the intrinsic variability in the data,
and the sum of squares of residuals, which measures how well the predictions fit
the data:

SStot =
NX

i=1

(yi � ȳ)2; SSres =
NX

i=1

(yi � ŷi)
2
, (5.2)

where ȳ is the mean value of the true values (y) vector, the coe�cient of deter-
mination is simply

R
2 = 1 � SSres/SStot. (5.3)

In a perfect model, each predictions ŷ coincides with the true value yi; the
residuals vector is null, SSres is zero and R

2 = 1. This is the best case scenario.
A model that predicts the mean of the observed target values has a R2 score of
zero: the model can’t explain any of the variance in the predictions. However,
despite its name, the R2 score can actually be negative, because the predictions
can be arbitrarily bad (worse than always predicting the mean!). **Check and add
ref: Why is it called R2 score then? The sum of squares is always positive on the
training set.**

In most pre-packaged machine learning libraries, including sklearn, the R2

score is the default evaluation metric for regression algorithms. However, it is worth
noting that unlike what happens in classification problems, there is no straightfor-
ward quantitative interpretation of the R

2 score (or, some say, as anything at all,
see these notes).

For example, a R
2 score of 0.9 does not give any quantitative assessment of

how close the predicted values are to the true values; in fact, by transforming
the dependent variable (for example, taking its log) we can easily change the R

2

score without changing the model at all (we see an example of this in the lecture
notebook on Poisson regression, **link**). However, this score is useful when
comparing di↵erent models that have the exact same feature/target setup, or in
feature selection schemes.

In many real-science cases, as we saw already in classification problems, the
evaluation metric will be a custom one, based on the problem under consideration.

5.2 LINEAR REGRESSION

The part below needs to be rewritten, making a distinction between
inference and finding coe�cients. The ML approach is simplistic; all we



R2-score
How “strong” is relationship between predictors & outcome?  

where: 
  SSres = sum of squares due to residuals 
  SStot = total sum of squares  

1 indicates perfect correlation, and 0 indicates no relationship (a model that predicts the mean of true 
values will have R2 = 0). 

R2 can be negative on the test set (e.g., the predictions can be arbitrarily bad, worse than the mean!)  



R2-score

• Example: If R2 has a value of 0.6, this means 60% of the variation in the dependent variable (y) is 

explained by your regression model. The remaining 40% is unexplained. 

• In terms of optimization, minimizing MSE and maximizing R2 are equivalent because the model 

weights only influence the residual sum of squares SSres.  

• Interpretation: 

• The higher the value of R2, the better the model fits the data.  

• R2 is dimensionless. 

• When it is used in a machine learning setting (i.e. we look at R2 for predictions, on test set), it is a 

useful tool to compare models. 

• If features and targets are the same, a model with higher R2 score on the predicted values is 

better. 

• But we can’t distinguish between a poor R2 that comes from bad modeling, and a poor R2 that 

comes from noisy data. 



Cross-Validation
• We have not yet explained an important practice of supervised training, of particular importance 

when the data set is small: Cross-Validation 

• The idea is to split the data set in multiple ways into training and test data. Then we train the model 
K times, and evaluate its average performance. 

• This is a good idea because: 
• We want to use all the data for training (and not “lose” the test data) 
• We avoid the risk of under/overestimating performance because of a non-typical performance of 

a particular training/test split. 
• We get an estimate of how much scores fluctuate because of variance in the data. 

• K-fold cross validation looks like this (for K=5) 

• Disadvantage: We need to train the model K times, which takes more computation time.  

• If we used cross-validation to pick hyper parameters we can then train a new model on the entire 
dataset using the same hyperparameters that performed best on average across the folds, using 
the full data set.



Hyperparameter tuning
• The most common procedure to optimize hyperparameters is a cross-validated Grid Search of the 

hyperparameter space.  

• As a reminder, we do this to pick optimal hyperparameters, but the test scores we obtain are still optimistic 
(there is leakage of information between the optimization and the test scores). 

• The correct procedure involves a 3-tiered structure: train/validation/test set 

• Like with any parameter space search, the grid method can be inefficient, or too time-consuming.  
Alternatives are varying parameters one at a time (ignores correlations), Random Search (often good 
enough), Bayesian parameter search.  

• There are elaborate hyper parameter optimization algorithms. Libraries specifically designed for this 
purpose include: 
• RayTune https://docs.ray.io/en/latest/tune/index.html  
• HyperOpt https://github.com/hyperopt/hyperopt  
• These libraries include several hyperparameter tuning algorithms. Rather than just performing a grid 

search, these algorithms optimize the hyper parameters by approximating the gradient of the 
optimization target (e.g. MSE) with respect to the hyper parameters. 

https://docs.ray.io/en/latest/tune/index.html
https://github.com/hyperopt/hyperopt


Hyperparameter tuning with scikit-learn

• It is recommended to search the hyper-parameter space for the best cross validation score. 

• A search consists of: 
• an estimator (regressor or classifier such as sklearn.tree.DecisionTreeRegressor); 
• a parameter space; 
• a method for searching or sampling candidates; 
• a cross-validation scheme; and 
• a score function (e.g. R2 score). 

• Two generic approaches to parameter search are provided in scikit-learn: for given values,  
• GridSearchCV exhaustively considers all parameter combinations while 
• RandomizedSearchCV can sample a given number of candidates from a parameter space 

with a specified distribution.  

• We use GridSearchCV in the notebook. It systematically works through multiple combinations 
of parameter tunes, cross-validating as it goes to determine which tune gives the best 
performance based on a specified score. 
• https://scikit-learn.org/stable/modules/grid_search.html#grid-search

https://scikit-learn.org/stable/modules/grid_search.html#grid-search


Classic Unsupervised 
ML Methods



Classic Unsupervised 
ML Methods

Overview



Unsupervised Methods
• After discussing two classic and important supervised methods 

(Feed Forward Neural Networks and Random Forrests), we now 
want to discuss some basic unsupervised methods.


• Unsupervised machine learning is a type of machine learning where 
the model learns patterns and structures from unlabeled data—
meaning there are no predefined outputs or labels. It is mainly 
used for 

• clustering 
• dimensionality reduction 
• anomaly detection


• In addition, generative models are usually trained unsupervised, but 
we will talk about them in a later unit. E.g. (variational) Auto-
encoders, Diffusion models, normalizing flows etc.



Classic Unsupervised 
ML Methods
Dimensionality reduction - 
PCA

References: 1803.08823, Deep Learning Book



Dimensionality Reduction and Latent Space

• Discovering structure in unlabelled data

• Need to dimensionally reduce data. Raw data is often impractical 
for data analysis or modeling.

• We call the dimensionally reduced space latent space.

• By dimensional reduction we often loose information. This is not 
necessarily bad. Some of the information might be noise or 
irrelevant. By loosing only irrelevant information, we can find good 
representations.



Challenges of High-dimensional Data

• Real-world data is usually not random or uniformly distributed 
(data lives in a lower-dim. space compared with original space).

• “Blessing of non-uniformity”: Data will typically be locally smooth 
(local variation will not incur a large change in the target variable).

• Objective: preserve relative pairwise distances between data 
points when going to latent space. 



Challenges of High-dimensional Data

• Intrinsic dimensionality and the crowding problem:P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 69

Fig. 48. The ‘‘Swiss roll’’. Data distributed in a three-dimensional space (a) that can effectively be described on a two-dimensional surface (b). A
common goal of dimensional reduction techniques is to preserve ordination in the data: points that are close-by in the original space are also
near-by in the mapped (latent) space. This is true of the mapping (a) to (b) as can be seen by inspecting the color gradient.

Fig. 49. Illustration of the crowding problem. (Left) A two-dimensional dataset X consisting of 3 equidistant points. (Right) Mapping X to a
one-dimensional space while trying to preserve relative distances leads to a collapse of the mapped data points.

12.2. Principal component analysis (PCA)

A ubiquitous method for dimensional reduction, data visualization and analysis is Principal Component Analysis (PCA).
The goal of PCA is to perform an orthogonal transformation of the data in order to find high-variance directions. PCA is
inspired by the observation that in many cases, the relevant information in a signal is contained in the directions with
largest13 variance (see Fig. 50). Directions with small variance are ascribed to ‘‘noise’’ and can potentially be removed or
ignored.

Surprisingly, such PCA-based projections often capture a lot of the large scale structure of many datasets. For example,
Fig. 51 shows the projection of samples drawn from the 2D Ising model at various temperatures on the first two principal
components. Despite living in a 1600 dimensional space (the samples are 40 ⇥ 40 spin configurations), a single principal
component (i.e. a single direction in this 1600 dimensional space) can capture 50% of the variability contained in our
samples. In fact, one can verify that this direction weights all 1600 spins nearly equally and thus corresponds to the
magnetization order parameter. Thus, even without any prior physical knowledge, one can extract relevant order param-
eters using a simple PCA-based projection. Recently, a correspondence between PCA and Renormalization Group flows
across the phase transition in the 2D Ising model (Foreman et al., 2017) and in a more general setting (Bradde and Bialek,
2017) has been proposed. In statistical physics, PCA has also found application in detecting phase transitions (Wetzel,
2017), e.g. in the XY model on frustrated triangular and union jack lattices (Wang and Zhai, 2017). PCA was also used
to classify dislocation patterns in crystals (Papanikolaou et al., 2017; Wang and Zhai, 2018), and to find correlations in
the shear flow of athermal amorphous solids (Ruscher and Rottler, 2018). PCA is widely employed in biological physics
when working with high-dimensional data. Physics has also inspired PCA-based algorithms to infer relevant features in
unlabeled data (Bény, 2018). Concretely, consider N data points, {x1, . . . xN} that live in a p-dimensional feature space
Rp. Without loss of generality, we assume that the empirical mean x̄ = N�1

P
i xi of these data points is zero.14 Denote

the N ⇥ p design matrix as X = [x1, x2, . . . ; xN ]T whose rows are the data points and columns correspond to different
features. The p⇥ p (symmetric) covariance matrix is therefore

⌃ (X) =
1

N � 1
X TX . (129)

13 This assumes that the features are measured and compared using the same units.
14 We can always center around the mean: x̄. xi � x̄

In  this example a two-dimensional 
space is sufficient to capture 

almost the entirety of the 
information in the data.

Intrinsic dim = min. # parameters
 to parametrize the data.

Attempts to represent data in a 
space 

with dim < intrinsic dimensionality
lead to a “crowding” problem.

all mapped data points collapse to 
the center of the map.



Principal Component Analysis

• A ubiquitous method for dimensional reduction, data visualization 
and analysis is Principal Component Analysis (PCA). It is based 
on linear algebra.

• The goal of PCA is to perform an orthogonal transformation of the 
data in order to find high-variance directions.

• PCA is inspired by the observation that in many cases, the relevant 
information in a signal is contained in the directions with largest 
variance. Directions with small variance are ascribed to “noise” and 
can potentially be removed or ignored.



Principal Component Analysis (PCA)

• Perform an orthogonal transformation of the data to find the 
high variance directions ⇔ minimizing the error in projection.

70 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 50. PCA seeks to find the set of orthogonal directions with largest variance. This can be seen as ‘‘fitting’’ an ellipse to the data with the major
axis corresponding to the first principal component (direction of largest variance). PCA assumes that directions with large variance correspond to
the true signal in the data while directions with low variance correspond to noise.

Fig. 51. (a) The first 2 principal components of the Ising dataset with temperature indicated by the coloring. PCA was performed on a joined dataset
of 1000 samples taken at each temperatures T = 0.25, 0.5, . . . , 4.0. Almost all the variance is explained in the first component which corresponds to
the magnetization order parameter (linear combination of the features with weights all roughly equal). The paramagnetic phase corresponds to the
middle cluster and the left and right clusters correspond to the symmetry-related ferromagnetic phases. (b) Log of the spectrum of the covariance
matrix versus rank ordering. Only one dimension has high-variance.



PCA — Maximizing Variance
• The covariance matrix of data (design) matrix  is defined as:

•  corresponds to the variance of the -th feature while  
measures the covariance (correlation) between feature  & feature .

• We want to find a new basis that emphasizes highly variable 
directions while reducing redundancy between basis vectors. Perform 
singular value decomposition (SVD):

X

Σ(X)jj j Σ(X)ij
i j

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 69

Fig. 48. The ‘‘Swiss roll’’. Data distributed in a three-dimensional space (a) that can effectively be described on a two-dimensional surface (b). A
common goal of dimensional reduction techniques is to preserve ordination in the data: points that are close-by in the original space are also
near-by in the mapped (latent) space. This is true of the mapping (a) to (b) as can be seen by inspecting the color gradient.

Fig. 49. Illustration of the crowding problem. (Left) A two-dimensional dataset X consisting of 3 equidistant points. (Right) Mapping X to a
one-dimensional space while trying to preserve relative distances leads to a collapse of the mapped data points.

12.2. Principal component analysis (PCA)

A ubiquitous method for dimensional reduction, data visualization and analysis is Principal Component Analysis (PCA).
The goal of PCA is to perform an orthogonal transformation of the data in order to find high-variance directions. PCA is
inspired by the observation that in many cases, the relevant information in a signal is contained in the directions with
largest13 variance (see Fig. 50). Directions with small variance are ascribed to ‘‘noise’’ and can potentially be removed or
ignored.

Surprisingly, such PCA-based projections often capture a lot of the large scale structure of many datasets. For example,
Fig. 51 shows the projection of samples drawn from the 2D Ising model at various temperatures on the first two principal
components. Despite living in a 1600 dimensional space (the samples are 40 ⇥ 40 spin configurations), a single principal
component (i.e. a single direction in this 1600 dimensional space) can capture 50% of the variability contained in our
samples. In fact, one can verify that this direction weights all 1600 spins nearly equally and thus corresponds to the
magnetization order parameter. Thus, even without any prior physical knowledge, one can extract relevant order param-
eters using a simple PCA-based projection. Recently, a correspondence between PCA and Renormalization Group flows
across the phase transition in the 2D Ising model (Foreman et al., 2017) and in a more general setting (Bradde and Bialek,
2017) has been proposed. In statistical physics, PCA has also found application in detecting phase transitions (Wetzel,
2017), e.g. in the XY model on frustrated triangular and union jack lattices (Wang and Zhai, 2017). PCA was also used
to classify dislocation patterns in crystals (Papanikolaou et al., 2017; Wang and Zhai, 2018), and to find correlations in
the shear flow of athermal amorphous solids (Ruscher and Rottler, 2018). PCA is widely employed in biological physics
when working with high-dimensional data. Physics has also inspired PCA-based algorithms to infer relevant features in
unlabeled data (Bény, 2018). Concretely, consider N data points, {x1, . . . xN} that live in a p-dimensional feature space
Rp. Without loss of generality, we assume that the empirical mean x̄ = N�1

P
i xi of these data points is zero.14 Denote

the N ⇥ p design matrix as X = [x1, x2, . . . ; xN ]T whose rows are the data points and columns correspond to different
features. The p⇥ p (symmetric) covariance matrix is therefore

⌃ (X) =
1

N � 1
X TX . (129)

13 This assumes that the features are measured and compared using the same units.
14 We can always center around the mean: x̄. xi � x̄P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 71

Notice that the jth diagonal entry of ⌃ (X) corresponds to the variance of the jth feature and ⌃ (X)ij measures the
covariance (i.e. connected correlation in the language of physics) between feature i and feature j.

We are interested in finding a new basis for the data that emphasizes highly variable directions while reducing
redundancy between basis vectors. In particular, we will look for a linear transformation that reduces the covariance
between different features. To do so, we first perform singular value decomposition (SVD) on the design matrix X , namely,
X = USV T , where S is a diagonal matrix of singular value si, the orthogonal matrix U contains (as its columns) the left
singular vectors of X , and similarly V contains (as its columns) the right singular vectors of X . With this, one can rewrite
the covariance matrix as

⌃ (X) =
1

N � 1
VSU TUSV T

= V
✓

S2

N � 1

◆
V T

⌘ V⇤V T . (130)

where ⇤ is a diagonal matrix with eigenvalues �i in the decreasing order along the diagonal (i.e. eigendecomposition). It
is clear that the right singular vectors of X (i.e. the columns of V ) are principal directions of ⌃ (X), and the singular values
of X are related to the eigenvalues of the covariance matrix ⌃ (X) via �i = s2i /(N � 1). To reduce the dimensionality of
data from p to p̃ < p, we first construct the p ⇥ p̃ projection matrix Ṽ p0 by selecting the singular components with the p̃
largest singular values. The projection of the data from p to a p̃ dimensional space is simply Ỹ = XṼ p0 . The same idea is
central to matrix-product-state-like techniques used to compress the number of components in quantum wavefunctions
in studies of low-dimensional many-body lattice systems.

The singular vector with the largest singular value (i.e the largest variance) is referred to as the first principal
component; the singular vector with the second largest singular value as the second principal component, and so on.
An important quantity is the ratio �i/

Pp
i=1 �i which is referred as the percentage of the explained variance contained in

a principal component (see Fig. 51.b).
It is common in data visualization to present the data projected on the first few principal components. This is valid

as long as a large part of the variance is explained in those components. Low values of explained variance may imply
that the intrinsic dimensionality of the data is high or simply that it cannot be captured by a linear representation. For a
detailed introduction to PCA, see the tutorials by Shlens (Shlens, 2014) and Bishop (Bishop, 2006).

12.3. Multidimensional scaling

Multidimensional scaling (MDS) is a non-linear dimensional reduction technique which preserves the pairwise
distance or dissimilarity dij between data points (Cox and Cox, 2000). Moving forward, we use the term ‘‘distance’’
and ‘‘dissimilarity’’ interchangeably. There are two types of MDS: metric and non-metric. In metric MDS, the distance
is computed under a pre-defined metric and the latent coordinates Ỹ are obtained by minimizing the difference between
the distance measured in the original space (dij(X)) and that in the latent space (dij(Y )):

Ỹ = argmin
Y

X

i<j

wij|dij(X) � dij(Y )|, (131)

where wij � 0 are weight values. The weight matrix wij is a set of free parameters that specify the level of confidence
(or precision) in the value of dij(X). If Euclidean metric is used, MDS gives the same result as PCA and is usually referred
to as classical scaling (Torgerson, 1958). Thus MDS is often considered as a generalization of PCA. In non-metric MDS, dij
can be any distance matrix. The objective function is then to preserve the ordination in the data, i.e. if d12(X) < d13(X)
in the original space, then in the latent space we should have d12(Y ) < d13(Y ).

Both MDS and PCA can be implemented using standard Python packages such as Scikit. MDS algorithms typically have
a scaling of O(N3) where N corresponds to the number of data points, and are thus very limited in their application to
large datasets. However, sample-based methods have been introduce to reduce this scaling to O(N logN) (Yang et al.,
2006). In the case of PCA, a complete decomposition has a scaling of O(Np2 + p3), where p is the number of features.
Note that the first term Np2 is due to the computation of covariance matrix Eq. (129) while the second, p3, stems from
eigenvalue decomposition. Note that PCA can be improved to bear complexity O(Np2 + p) if only the first few principal
components are desired (using iterative approaches). PCA and MDS are often among the first data visualization techniques
one resorts to.

12.4. t-SNE

It is often desirable to preserve local structures in high-dimensional datasets. However, when dealing with datasets
having clusters delimitated by complicated surfaces or datasets with a large number of clusters, preserving local structures
becomes difficult using linear techniques such as PCA. Many non-linear techniques such as non-classical MDS (Cox and
Cox, 2000), self-organizing map (Kohonen, 1998), Isomap (Tenenbaum et al., 2000) and Locally Linear Embedding (Roweis



Recall SVD



PCA — Maximizing Variance
• Back to the PCA: Using singular value decomposition (SVD):

We get

• The eigenvalues  of  are given by .λi Λ λi = s2
i /(N − 1)

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 71
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between different features. To do so, we first perform singular value decomposition (SVD) on the design matrix X , namely,
X = USV T , where S is a diagonal matrix of singular value si, the orthogonal matrix U contains (as its columns) the left
singular vectors of X , and similarly V contains (as its columns) the right singular vectors of X . With this, one can rewrite
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◆
V T

⌘ V⇤V T . (130)

where ⇤ is a diagonal matrix with eigenvalues �i in the decreasing order along the diagonal (i.e. eigendecomposition). It
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component; the singular vector with the second largest singular value as the second principal component, and so on.
An important quantity is the ratio �i/

Pp
i=1 �i which is referred as the percentage of the explained variance contained in

a principal component (see Fig. 51.b).
It is common in data visualization to present the data projected on the first few principal components. This is valid

as long as a large part of the variance is explained in those components. Low values of explained variance may imply
that the intrinsic dimensionality of the data is high or simply that it cannot be captured by a linear representation. For a
detailed introduction to PCA, see the tutorials by Shlens (Shlens, 2014) and Bishop (Bishop, 2006).
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(or precision) in the value of dij(X). If Euclidean metric is used, MDS gives the same result as PCA and is usually referred
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Both MDS and PCA can be implemented using standard Python packages such as Scikit. MDS algorithms typically have
a scaling of O(N3) where N corresponds to the number of data points, and are thus very limited in their application to
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Note that the first term Np2 is due to the computation of covariance matrix Eq. (129) while the second, p3, stems from
eigenvalue decomposition. Note that PCA can be improved to bear complexity O(Np2 + p) if only the first few principal
components are desired (using iterative approaches). PCA and MDS are often among the first data visualization techniques
one resorts to.

12.4. t-SNE

It is often desirable to preserve local structures in high-dimensional datasets. However, when dealing with datasets
having clusters delimitated by complicated surfaces or datasets with a large number of clusters, preserving local structures
becomes difficult using linear techniques such as PCA. Many non-linear techniques such as non-classical MDS (Cox and
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between different features. To do so, we first perform singular value decomposition (SVD) on the design matrix X , namely,
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where ⇤ is a diagonal matrix with eigenvalues �i in the decreasing order along the diagonal (i.e. eigendecomposition). It
is clear that the right singular vectors of X (i.e. the columns of V ) are principal directions of ⌃ (X), and the singular values
of X are related to the eigenvalues of the covariance matrix ⌃ (X) via �i = s2i /(N � 1). To reduce the dimensionality of
data from p to p̃ < p, we first construct the p ⇥ p̃ projection matrix Ṽ p0 by selecting the singular components with the p̃
largest singular values. The projection of the data from p to a p̃ dimensional space is simply Ỹ = XṼ p0 . The same idea is
central to matrix-product-state-like techniques used to compress the number of components in quantum wavefunctions
in studies of low-dimensional many-body lattice systems.

The singular vector with the largest singular value (i.e the largest variance) is referred to as the first principal
component; the singular vector with the second largest singular value as the second principal component, and so on.
An important quantity is the ratio �i/

Pp
i=1 �i which is referred as the percentage of the explained variance contained in

a principal component (see Fig. 51.b).
It is common in data visualization to present the data projected on the first few principal components. This is valid

as long as a large part of the variance is explained in those components. Low values of explained variance may imply
that the intrinsic dimensionality of the data is high or simply that it cannot be captured by a linear representation. For a
detailed introduction to PCA, see the tutorials by Shlens (Shlens, 2014) and Bishop (Bishop, 2006).

12.3. Multidimensional scaling

Multidimensional scaling (MDS) is a non-linear dimensional reduction technique which preserves the pairwise
distance or dissimilarity dij between data points (Cox and Cox, 2000). Moving forward, we use the term ‘‘distance’’
and ‘‘dissimilarity’’ interchangeably. There are two types of MDS: metric and non-metric. In metric MDS, the distance
is computed under a pre-defined metric and the latent coordinates Ỹ are obtained by minimizing the difference between
the distance measured in the original space (dij(X)) and that in the latent space (dij(Y )):

Ỹ = argmin
Y

X

i<j

wij|dij(X) � dij(Y )|, (131)

where wij � 0 are weight values. The weight matrix wij is a set of free parameters that specify the level of confidence
(or precision) in the value of dij(X). If Euclidean metric is used, MDS gives the same result as PCA and is usually referred
to as classical scaling (Torgerson, 1958). Thus MDS is often considered as a generalization of PCA. In non-metric MDS, dij
can be any distance matrix. The objective function is then to preserve the ordination in the data, i.e. if d12(X) < d13(X)
in the original space, then in the latent space we should have d12(Y ) < d13(Y ).

Both MDS and PCA can be implemented using standard Python packages such as Scikit. MDS algorithms typically have
a scaling of O(N3) where N corresponds to the number of data points, and are thus very limited in their application to
large datasets. However, sample-based methods have been introduce to reduce this scaling to O(N logN) (Yang et al.,
2006). In the case of PCA, a complete decomposition has a scaling of O(Np2 + p3), where p is the number of features.
Note that the first term Np2 is due to the computation of covariance matrix Eq. (129) while the second, p3, stems from
eigenvalue decomposition. Note that PCA can be improved to bear complexity O(Np2 + p) if only the first few principal
components are desired (using iterative approaches). PCA and MDS are often among the first data visualization techniques
one resorts to.

12.4. t-SNE

It is often desirable to preserve local structures in high-dimensional datasets. However, when dealing with datasets
having clusters delimitated by complicated surfaces or datasets with a large number of clusters, preserving local structures
becomes difficult using linear techniques such as PCA. Many non-linear techniques such as non-classical MDS (Cox and
Cox, 2000), self-organizing map (Kohonen, 1998), Isomap (Tenenbaum et al., 2000) and Locally Linear Embedding (Roweis



PCA — Maximizing Variance

• To reduce the dimensionality of data from  to , construct the 
 projection matrix  by selecting the singular components with 

the  largest singular values. The projection is then

• The singular vector with the largest singular value (largest variance) 
is the first principal component; the singular vector with the second 
largest variance is the second principal component, etc.

• Common in data visualization is to project on the first few principal 
components (as long as a large part of the variance is explained in 
those components, e.g., Ising Model). 

• Low explained variance may imply that the intrinsic dimensionality of 
the data is high, or it cannot be captured by a linear representation.
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Fig. 50. PCA seeks to find the set of orthogonal directions with largest variance. This can be seen as ‘‘fitting’’ an ellipse to the data with the major
axis corresponding to the first principal component (direction of largest variance). PCA assumes that directions with large variance correspond to
the true signal in the data while directions with low variance correspond to noise.

Fig. 51. (a) The first 2 principal components of the Ising dataset with temperature indicated by the coloring. PCA was performed on a joined dataset
of 1000 samples taken at each temperatures T = 0.25, 0.5, . . . , 4.0. Almost all the variance is explained in the first component which corresponds to
the magnetization order parameter (linear combination of the features with weights all roughly equal). The paramagnetic phase corresponds to the
middle cluster and the left and right clusters correspond to the symmetry-related ferromagnetic phases. (b) Log of the spectrum of the covariance
matrix versus rank ordering. Only one dimension has high-variance.
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Non-linear generalizations of PCA

• there are several nonlinear generalizations of PCA designed to 
handle data that lies on a nonlinear manifold rather than a linear 
subspace.

• Here are some of the most important ones:

• Kernel PCA (kPCA)

• Autoencoders (Neural Network-based PCA). See later!

• t-SNE (t-Distributed Stochastic Neighbor Embedding)

• UMAP (Uniform Manifold Approximation and Projection)
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t-SNE
• t-SNE is a nonlinear dimensionality 

reduction technique used primarily for 
visualizing high-dimensional data in 
2D or 3D while preserving local 
structure. 

• It works by converting high-
dimensional distances into probabilities 
and minimizing the divergence 
between probability distributions in the 
high- and low-dimensional spaces.

• Similar points in high-dimensional 
space stay close together in lower 
dimensions.



Summary of how t-SNE works
Overview of the approach, before looking into the math

• Measure Similarities in High-Dimensional Space

• It calculates how similar each data point is to others based on distances.

• Instead of raw distances, it converts distances into probabilities.

• Measure Similarities in Low-Dimensional Space

• It maps the data into a lower-dimensional space (e.g., 2D) and tries to preserve the same 
probability-based relationships.

• Instead of using Gaussian distributions, it uses a Student’s t-distribution (which prevents 
crowding).

• Match the Two Representations

• t-SNE minimizes the difference between the high-dimensional and low-dimensional probability 
distributions.

• It does this using an optimization method called gradient descent, which fine-tunes the 
positions of points in lower dimensions.



t-SNE math
Step 1: Compute Pairwise Similarities in High-Dimensional Space 



t-SNE math
Step 2: Compute Pairwise Similarities in Low-Dimensional Space 



t-SNE math
Step 3: Minimize the KL Divergence Between Distributions
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Fig. 53. Different visualizations of a Gaussian mixture formed of K = 30 mixtures in a D = 40 dimensional space. The Gaussians have the same
covariance but have means drawn uniformly at random in the space [�10, 10]40. (a) Plot of the first two coordinates. The labels of the different
Gaussian are indicated by the different colors. Note that in a realistic setting, label information is of course not available, thus making it very hard to
distinguish the different clusters. (b) Random projection of the data onto a 2 dimensional space. (c) Projection onto the first 2 principal components.
Only a small fraction of the variance is explained by those components (the ratio is indicated along the axis). (d) t-SNE embedding (perplexity =
60, # iteration = 1000) in a 2 dimensional latent space. t-SNE captures correctly the local structure of the data.

Fig. 54. Visualization of the MNIST handwritten digits training dataset (here N = 60 000). (a) First two principal components. (b) t-SNE applied
with a perplexity of 30, a Barnes–Hut angle of 0.5 and 1000 gradient descent iterations. In order to reduce the noise and speed-up computation, PCA
was first applied to the dataset to project it down to 40 dimensions. We used an open-source implementation to produce the results (Linderman
et al., 2017), see https://github.com/KlugerLab/FIt-SNE.

the simplest way to look for hidden structure in a dataset and for this reason, is among the most widely used and employed
data analysis and machine learning techniques.

The field of clustering is vast and there exists a flurry of clustering methods suited for different purposes. Some
common considerations one has to take into account when choosing a particular method is the distribution of the
clusters (overlapping/noisy clusters vs. well-separated clusters), the geometry of the data (flat vs. non-flat), the cluster
size distribution (multiple sizes vs. uniform sizes), the dimensionality of the data (low vs. high dimensional) and the
computational efficiency of the desired method (small vs. large dataset).

We begin Section 13.1 with a focus on popular practical clustering methods such as K -means clustering, hierarchical
clustering and density clustering. Our goal is to highlight the strength, weaknesses and differences between these
techniques, while laying out some of the theoretical framework required for clustering analysis. There exist many more
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data analysis and machine learning techniques.

The field of clustering is vast and there exists a flurry of clustering methods suited for different purposes. Some
common considerations one has to take into account when choosing a particular method is the distribution of the
clusters (overlapping/noisy clusters vs. well-separated clusters), the geometry of the data (flat vs. non-flat), the cluster
size distribution (multiple sizes vs. uniform sizes), the dimensionality of the data (low vs. high dimensional) and the
computational efficiency of the desired method (small vs. large dataset).

We begin Section 13.1 with a focus on popular practical clustering methods such as K -means clustering, hierarchical
clustering and density clustering. Our goal is to highlight the strength, weaknesses and differences between these
techniques, while laying out some of the theoretical framework required for clustering analysis. There exist many more
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Clustering

• Clustering is a way to look for hidden structure in high dimensions 
(coarse features or high-level structures in unlabelled data). 

• Points to take into account when choosing a particular method: 

• Distribution of clusters (overlapping/noisy clusters vs. well-separated 
clusters)

• Geometry of the data (flat vs. non-flat)

• Cluster size distribution (multiple vs. uniform sizes) 

• Dimensionality of the data (low-dimensional vs. high-dimensional) 

• Computational efficiency of desired method 



Clustering and Latent Variables
• Central to unsupervised learning is the idea of a latent or hidden 

variable (not directly observable; yet influence visible 
structure).

• Example: The cluster identity of each datapoint is a latent 
variable. We cannot observe the label directly, but points in the 
same cluster are “close”.

• In this abstract language, clustering is an algorithm to learn the 
most probably value of a latent variable associated with each 
datapoint.

• Need to make assumption about the structure of data (common to 
unsupervised learning), e.g., underlying probability distribution from 
which the data was generated.



K-means Clustering

• Divide data set into  different clusters of data points which are 
near each-other. 

• Consider a set of  unlabeled data points  where .

•  cluster centers called the cluster means:  with .

• Minimize the cost:

• One-hot encoding:  if cluster  and  otherwise;

• Find the best cluster means (center of mass) such that variance 
(moment of inertia) is minimized.

K

N {xn}N
n=1 xn ∈ ℝp

K {μk}K
k=1 μk ∈ ℝp

rnk = 1 xn ∈ k 0
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Fig. 55. K -means with K = 3 applied to an artificial two-dimensional dataset. The cluster means at each iteration are indicated by cyan star markers.
t indicates the iteration number and C the value of the objective function. (a) The algorithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)–(c) For well separated clusters, the algorithm converges rapidly to the true clusters. (d) The objective
function as a function of the iteration. C converges after t = 18 iterations for this choice of random seed (for center initialization).

clustering methods beyond those discussed in this section.16 The methods we discuss were chosen for their pedagogical
value and/or their applicability to problems in physics.

In Section 13.2 we discuss Gaussian mixture models and the formulation of clustering through latent variable models.
This section introduces many of the methods we will encounter when discussing other unsupervised learning methods
later in the review. Finally, in Section 13.3 we discuss the problem of clustering in high-dimensional data and possible
ways to tackle this difficult problem. The reader is also urged to experiment with various clustering methods using
Notebook 15.

13.1. Practical clustering methods

Throughout this section we focus on the Euclidean distance as a similarity measure. Other measures may be better
suited for specific problems. We refer the enthusiast reader to (Rokach and Maimon, 2005) for a more in-depth discussion
of the different possible similarity measures.

13.1.1. K-Means
We begin our discussion with K -means clustering since this method is simple to implement and understand, and

covers the core concepts of clustering. Consider a set of N unlabeled observations {xn}Nn=1 where xn 2 Rp and where p is
the number of features. Also consider a set of K cluster centers called the cluster means:

�
µk

 K
k=1, with µk 2 Rp, which

we will compute ‘‘empirically" in the clustering procedure. The cluster means can be thought of as the representatives
of each cluster, to which data points are assigned (see Fig. 55). K -means clustering can be formulated as follows: given a
fixed integer K , find the cluster means {µ} and the data point assignments in order to minimize the following objective
function:

C({x, µ}) =

KX

k=1

NX

n=1

rnk(xn � µk)
2, (137)

where rnk 2 {0, 1} is a binary variable called the assignment. The assignment rnk is 1 if xn is assigned to cluster k and
0 otherwise. Notice that

P
k rnk = 1 8 n and

P
n rnk ⌘ Nk, where Nk the number of points assigned to cluster k. The

minimization of this objective function can be understood as trying to find the best cluster means such that the variance

16 Our complementary Python notebook introduces some of these other methods.
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of each cluster, to which data points are assigned (see Fig. 55). K -means clustering can be formulated as follows: given a
fixed integer K , find the cluster means {µ} and the data point assignments in order to minimize the following objective
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where rnk 2 {0, 1} is a binary variable called the assignment. The assignment rnk is 1 if xn is assigned to cluster k and
0 otherwise. Notice that
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k rnk = 1 8 n and

P
n rnk ⌘ Nk, where Nk the number of points assigned to cluster k. The

minimization of this objective function can be understood as trying to find the best cluster means such that the variance

16 Our complementary Python notebook introduces some of these other methods.



K-means Algorithm

• Expectation: Given , minimize  with respect to :

• Maximization: Given , find  which minimizes :

• Alternative between the above two steps until some convergence criterion is 
met (e.g., change in C is smaller than a threshold).

• Guaranteed to converge to local minimum. Complexity .

• Hard-assignment limit of the Gaussian mixture model (introduce later), where 
all cluster variances are assumed to be the same. 

• If the true clusters have very different variances (spreads), K-means can lead 
to spurious results since the underlying assumption is that the latent 
model has uniform variances.

{rnk} C μk

{μk} {rnk} C

𝒪(kN)
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within each cluster is minimized. In physical terms, C is equivalent to the sum of the moments of inertia of every cluster.
Indeed, as we will see below, the cluster means µk correspond to the centers of mass of their respective cluster.

K-Means algorithm. The K -means algorithm alternates between two steps:

1. Expectation: Given a set of assignments {rnk}, minimize C with respect to µk. Taking a simple derivative and setting
it to zero yields the following update rule:

µk =
1
Nk

X

n

rnkxn. (138)

2. Maximization: Given a set of cluster means
�
µk

 
, find the assignments {rnk} which minimizes C. Clearly, this is

achieved by assigning each data point to their nearest cluster-mean:

rnk =

⇢
1 if k = argmink0 (xn � µk0 )2

0 otherwise
(139)

K -means clustering consists in alternating between these two steps until some convergence criterion is met. Practically,
the algorithm should terminate when the change in the objective function from one iteration to another becomes smaller
than a pre-specified threshold. A simple example of K -means is presented in Fig. 55.

A nice property of the K -means algorithm is that it is guaranteed to converge. To see this, one can verify explicitly
(by taking second-order derivatives) that the expectation step always decreases C. This is also true for the assignment
step. Thus, since C is bounded from below, the two-step iteration of K -means always converges to a local minimum of
C. Since C is generally a non-convex function, in practice one usually needs to run the algorithm with different initial
random cluster center initializations and post-select the best local minimum. A simple implementation of K -means has
an average computational complexity which scales linearly in the size of the dataset (more specifically the complexity is
O(KN) per iteration) and is thus scalable to very large datasets.

As we will see in Section 13.2, K -means is a hard-assignment limit of the Gaussian mixture model where all cluster
variances are assumed to be the same. This highlights a common drawback of K -means: if the true clusters have very
different variances (spreads), K -means can lead to spurious results since the underlying assumption is that the latent
model has uniform variances.

13.1.2. Hierarchical clustering: Agglomerative methods
Agglomerative clustering is a bottom up approach that starts from small initial clusters which are then progressively

merged to form larger clusters. The merging process generates a hierarchy of clusters that can be visualized in the form of
a dendrogram (see Fig. 56). This hierarchy can be useful to analyze the relation between clusters and the subcomponents
of individual clusters. Agglomerative methods are usually specified by defining a distance measure between clusters.17 We
denote the distance between clusters X and Y by d(X, Y ) 2 R. Different choices of distance result in different clustering
algorithms. At each step, the two clusters that are the closest with respect to the distance measure are merged until a
single cluster is left.

Agglomerative clustering algorithm. Agglomerative clustering algorithms can thus be summarized as follows:

1. Initialize each point to its own cluster.
2. Given a set of K clusters X1, X2, . . . , XK , merge clusters until one cluster is left (K = 1):

(1) Find the closest pair of clusters (Xi, Xj): (i, j) = argmin(i0,j0) d(Xi0 , Xj0 )
(2) Merge the pair. Update: K  K � 1

Here we list a few of the most popular distances used in agglomerative methods, often called linkage methods in the
clustering literature.

1. Single-linkage: the distance between clusters i and j is defined as the minimum distance between two elements of
the different clusters

d(Xi, Xj) = min
xi2Xi,xj2Xj

||xi � xj||2. (140)

2. Complete linkage: the distance between clusters i and j is defined as the maximum distance between two elements
of the different clusters.

d(Xi, Xj) = max
xi2Xi,xj2Xj

||xi � xj||2 (141)

17 Note that this measure need not be a metric.
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2. Maximization: Given a set of cluster means
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, find the assignments {rnk} which minimizes C. Clearly, this is

achieved by assigning each data point to their nearest cluster-mean:

rnk =

⇢
1 if k = argmink0 (xn � µk0 )2

0 otherwise
(139)

K -means clustering consists in alternating between these two steps until some convergence criterion is met. Practically,
the algorithm should terminate when the change in the objective function from one iteration to another becomes smaller
than a pre-specified threshold. A simple example of K -means is presented in Fig. 55.

A nice property of the K -means algorithm is that it is guaranteed to converge. To see this, one can verify explicitly
(by taking second-order derivatives) that the expectation step always decreases C. This is also true for the assignment
step. Thus, since C is bounded from below, the two-step iteration of K -means always converges to a local minimum of
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variances are assumed to be the same. This highlights a common drawback of K -means: if the true clusters have very
different variances (spreads), K -means can lead to spurious results since the underlying assumption is that the latent
model has uniform variances.

13.1.2. Hierarchical clustering: Agglomerative methods
Agglomerative clustering is a bottom up approach that starts from small initial clusters which are then progressively

merged to form larger clusters. The merging process generates a hierarchy of clusters that can be visualized in the form of
a dendrogram (see Fig. 56). This hierarchy can be useful to analyze the relation between clusters and the subcomponents
of individual clusters. Agglomerative methods are usually specified by defining a distance measure between clusters.17 We
denote the distance between clusters X and Y by d(X, Y ) 2 R. Different choices of distance result in different clustering
algorithms. At each step, the two clusters that are the closest with respect to the distance measure are merged until a
single cluster is left.

Agglomerative clustering algorithm. Agglomerative clustering algorithms can thus be summarized as follows:

1. Initialize each point to its own cluster.
2. Given a set of K clusters X1, X2, . . . , XK , merge clusters until one cluster is left (K = 1):

(1) Find the closest pair of clusters (Xi, Xj): (i, j) = argmin(i0,j0) d(Xi0 , Xj0 )
(2) Merge the pair. Update: K  K � 1

Here we list a few of the most popular distances used in agglomerative methods, often called linkage methods in the
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Fig. 55. K -means with K = 3 applied to an artificial two-dimensional dataset. The cluster means at each iteration are indicated by cyan star markers.
t indicates the iteration number and C the value of the objective function. (a) The algorithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)–(c) For well separated clusters, the algorithm converges rapidly to the true clusters. (d) The objective
function as a function of the iteration. C converges after t = 18 iterations for this choice of random seed (for center initialization).

clustering methods beyond those discussed in this section.16 The methods we discuss were chosen for their pedagogical
value and/or their applicability to problems in physics.

In Section 13.2 we discuss Gaussian mixture models and the formulation of clustering through latent variable models.
This section introduces many of the methods we will encounter when discussing other unsupervised learning methods
later in the review. Finally, in Section 13.3 we discuss the problem of clustering in high-dimensional data and possible
ways to tackle this difficult problem. The reader is also urged to experiment with various clustering methods using
Notebook 15.

13.1. Practical clustering methods

Throughout this section we focus on the Euclidean distance as a similarity measure. Other measures may be better
suited for specific problems. We refer the enthusiast reader to (Rokach and Maimon, 2005) for a more in-depth discussion
of the different possible similarity measures.

13.1.1. K-Means
We begin our discussion with K -means clustering since this method is simple to implement and understand, and

covers the core concepts of clustering. Consider a set of N unlabeled observations {xn}Nn=1 where xn 2 Rp and where p is
the number of features. Also consider a set of K cluster centers called the cluster means:

�
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k=1, with µk 2 Rp, which

we will compute ‘‘empirically" in the clustering procedure. The cluster means can be thought of as the representatives
of each cluster, to which data points are assigned (see Fig. 55). K -means clustering can be formulated as follows: given a
fixed integer K , find the cluster means {µ} and the data point assignments in order to minimize the following objective
function:

C({x, µ}) =

KX

k=1

NX

n=1

rnk(xn � µk)
2, (137)

where rnk 2 {0, 1} is a binary variable called the assignment. The assignment rnk is 1 if xn is assigned to cluster k and
0 otherwise. Notice that

P
k rnk = 1 8 n and

P
n rnk ⌘ Nk, where Nk the number of points assigned to cluster k. The

minimization of this objective function can be understood as trying to find the best cluster means such that the variance

16 Our complementary Python notebook introduces some of these other methods.
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Fig. 55. K -means with K = 3 applied to an artificial two-dimensional dataset. The cluster means at each iteration are indicated by cyan star markers.
t indicates the iteration number and C the value of the objective function. (a) The algorithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)–(c) For well separated clusters, the algorithm converges rapidly to the true clusters. (d) The objective
function as a function of the iteration. C converges after t = 18 iterations for this choice of random seed (for center initialization).

clustering methods beyond those discussed in this section.16 The methods we discuss were chosen for their pedagogical
value and/or their applicability to problems in physics.

In Section 13.2 we discuss Gaussian mixture models and the formulation of clustering through latent variable models.
This section introduces many of the methods we will encounter when discussing other unsupervised learning methods
later in the review. Finally, in Section 13.3 we discuss the problem of clustering in high-dimensional data and possible
ways to tackle this difficult problem. The reader is also urged to experiment with various clustering methods using
Notebook 15.

13.1. Practical clustering methods

Throughout this section we focus on the Euclidean distance as a similarity measure. Other measures may be better
suited for specific problems. We refer the enthusiast reader to (Rokach and Maimon, 2005) for a more in-depth discussion
of the different possible similarity measures.

13.1.1. K-Means
We begin our discussion with K -means clustering since this method is simple to implement and understand, and

covers the core concepts of clustering. Consider a set of N unlabeled observations {xn}Nn=1 where xn 2 Rp and where p is
the number of features. Also consider a set of K cluster centers called the cluster means:

�
µk

 K
k=1, with µk 2 Rp, which

we will compute ‘‘empirically" in the clustering procedure. The cluster means can be thought of as the representatives
of each cluster, to which data points are assigned (see Fig. 55). K -means clustering can be formulated as follows: given a
fixed integer K , find the cluster means {µ} and the data point assignments in order to minimize the following objective
function:

C({x, µ}) =

KX

k=1

NX

n=1

rnk(xn � µk)
2, (137)

where rnk 2 {0, 1} is a binary variable called the assignment. The assignment rnk is 1 if xn is assigned to cluster k and
0 otherwise. Notice that

P
k rnk = 1 8 n and

P
n rnk ⌘ Nk, where Nk the number of points assigned to cluster k. The

minimization of this objective function can be understood as trying to find the best cluster means such that the variance

16 Our complementary Python notebook introduces some of these other methods.



Agglomerative Method

• Start from small initial clusters, then 
progressively merged to form larger 
clusters. 

• Hierarchy of cluster can be visualized 
in the form of a dendrogram.

• Define a distance measure 
between clusters  and .

• Two distances that are closest with 
respect to  are merged until a 
single cluster is left.

d(X, Y )
X Y

d(X, Y )
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Fig. 56. Hierarchical clustering example with single linkage. (a) The data points are successively grouped as denoted by the colored dotted lines.
(b) Dendrogram representation of the hierarchical decomposition. Each node of the tree represents a cluster. One has to specify a scale cut-off for
the distance measure d(X, Y ) (corresponding to a horizontal cut in the dendrogram) in order to obtain a set of clusters.

3. Average linkage: average distance between points of different clusters

d(Xi, Xj) =
1

|Xi| · |Xj|

X

xi2Xi,xj2Xj

||xi � xj||2 (142)

4. Ward’s linkage: This distance measure is analogous to the K -means method as it seeks to minimize the total inertia.
The distance measure is the ‘‘error squared’’ before and after merging which simplifies to:

d(Xi, Xj) =
|Xi||Xj|

|Xi [ Xj|
(µi � µj)

2, (143)

where µj is the center of cluster j.

A common drawback of hierarchical methods is that they do not scale well: at every step, a distance matrix
between all clusters must be updated/computed. Efficient implementations achieve a typical computational complexity
of O(N2) (Müllner, 2011), making the method suitable for small to medium-size datasets. A simple but major speed-up
for the method is to initialize the clusters with K -means using a large K (but still a small fraction of N) and then proceed
with hierarchical clustering. This has the advantage of preserving the large-scale structure of the hierarchy while making
use of the linear scaling of K -means. In this way, hierarchical clustering may be applied to very large datasets.

13.1.3. Density-based (DB) clustering
Density clustering makes the intuitive assumption that clusters are defined by regions of space with higher density

of data points. Data points that constitute noise or that are outliers are expected to form regions of low density. Density
clustering has the advantage of being able to consider clusters of multiple shapes and sizes while identifying outliers. The
method is also suitable for large-scale applications.

The core assumption of DB clustering is that a relative local density estimation of the data is possible. In other words,
it is possible to order points according to their densities. Density estimates are usually accurate for low-dimensional data
but become unreliable for high-dimensional data due to large sampling noise. Here, for brevity, we confine our discussion
to one of the most widely used density clustering algorithms, DBSCAN. We have also had great success with another



Agglomerative Clustering Algorithm

• Initialize each point to its own cluster.

• Given a set of  clusters , merge clusters until one 
cluster is left ( ): 

• Find the closest pair of clusters 

• Merge the pair. Update .

• Different linkage methods (distances)                                          
result in different algorithms.

K X1, X2, …, XK
K = 1

(Xi, Xj) : (i, j) = argmin(i′￼,j′￼)d(Xi′￼, Xj′￼)

K ← K − 1
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Fig. 56. Hierarchical clustering example with single linkage. (a) The data points are successively grouped as denoted by the colored dotted lines.
(b) Dendrogram representation of the hierarchical decomposition. Each node of the tree represents a cluster. One has to specify a scale cut-off for
the distance measure d(X, Y ) (corresponding to a horizontal cut in the dendrogram) in order to obtain a set of clusters.

3. Average linkage: average distance between points of different clusters

d(Xi, Xj) =
1

|Xi| · |Xj|

X

xi2Xi,xj2Xj

||xi � xj||2 (142)

4. Ward’s linkage: This distance measure is analogous to the K -means method as it seeks to minimize the total inertia.
The distance measure is the ‘‘error squared’’ before and after merging which simplifies to:

d(Xi, Xj) =
|Xi||Xj|

|Xi [ Xj|
(µi � µj)

2, (143)

where µj is the center of cluster j.

A common drawback of hierarchical methods is that they do not scale well: at every step, a distance matrix
between all clusters must be updated/computed. Efficient implementations achieve a typical computational complexity
of O(N2) (Müllner, 2011), making the method suitable for small to medium-size datasets. A simple but major speed-up
for the method is to initialize the clusters with K -means using a large K (but still a small fraction of N) and then proceed
with hierarchical clustering. This has the advantage of preserving the large-scale structure of the hierarchy while making
use of the linear scaling of K -means. In this way, hierarchical clustering may be applied to very large datasets.

13.1.3. Density-based (DB) clustering
Density clustering makes the intuitive assumption that clusters are defined by regions of space with higher density

of data points. Data points that constitute noise or that are outliers are expected to form regions of low density. Density
clustering has the advantage of being able to consider clusters of multiple shapes and sizes while identifying outliers. The
method is also suitable for large-scale applications.

The core assumption of DB clustering is that a relative local density estimation of the data is possible. In other words,
it is possible to order points according to their densities. Density estimates are usually accurate for low-dimensional data
but become unreliable for high-dimensional data due to large sampling noise. Here, for brevity, we confine our discussion
to one of the most widely used density clustering algorithms, DBSCAN. We have also had great success with another



Density-based (DB) Clustering

• Clusters are defined by regions with high density of data points.

• Noise or outliers are expected to form regions of low density.

• Unlike a distance-based approach, DB clustering considers 
clusters of multiple shapes and sizes while identifying outliers.

• Assumption: relative local density estimation is possible 
(becomes difficult for very high-dimensional data due to large 
sampling noise). 

• Widely used algorithm: DBSCAN



DBScan Algorithm
• Density-based spatial clustering of applications with noise (Ester et al, 

1996).

• Crude estimate of local density is the -neighborhood of point :

•  is a core-point if at least minPts are in its -neighborhood. A point  is 
density-reachable if it’s in a core-point’s -neighborhood. 

• The DBSCAN algorithm uses the following steps:

• Find the points in the ε (eps) neighborhood of every point, and identify the core 
points with more than minPts neighbors.

• Find the connected components of core points on the neighbor graph, ignoring 
all non-core points.

• Assign each non-core point to a nearby cluster if the cluster is an ε (eps) 
neighbor, otherwise assign it to noise.

ϵ xn

xn ϵ xi
ϵ
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Fig. 57. (a) Illustration of DBSCAN algorithm with minPts= 4. Two "-neighborhoods are represented as dashed circles of radius ". Red points are the
core points and blue points are density-reachable point that are not core points. Outliers are gray colored. (b) Application of DBSCAN (minPts=40)
to a noisy dataset with two non-convex clusters. Density profile is shown for clarity. Outliers are indicated by black crosses.

recently introduced variant of DB clustering (Rodriguez and Laio, 2014) that is similar in spirit which the reader is urged
to consult. One of the authors (A. D.) has also created a Python package, https://pypi.org/project/fdc/, which makes use
of accurate density estimates via kernel methods combined with agglomerative clustering to produce fast and accurate
density clustering (see also GitHub repository).

DBSCAN algorithm. Here we describe the most prominent DB clustering algorithm: DBSCAN, or density-based spatial
clustering of applications with noise (Ester et al., 1996). Consider once again a set of N data points X ⌘ {xn}Nn=1.

We start by defining the "-neighborhood of point xn as follows:

N"(xn) = {x 2 X |d(x, xn) < "} . (144)

N"(xn) are the data points that are at a distance smaller than " from xn. As before, we consider d(·, ·) to be the Euclidean
metric (which yields spherical neighborhoods, see Fig. 57) but other metrics may be better suited depending on the specific
data. N"(xn) can be seen as a crude estimate of local density. xn is considered to be a core-point if at least minPts are in
its "-neighborhood. minPts is a free parameter of the algorithm that sets the scale of the size of the smallest cluster one
should expect. Finally, a point xi is said to be density-reachable if it is in the "-neighborhood of a core-point. From these
definitions, the algorithm can be simply formulated (see also Fig. 57):

! Until all points in X have been visited; do

� Pick a point xi that has not been visited
� Mark xi as a visited point
� If xi is a core point; then

· Find the set C of all points that are density reachable from xi.
· C now forms a cluster. Mark all points within that cluster as being visited.



DBScan Algorithm

• Do not need to specify # clusters 
but only the hyperparameters  and 
minPts.

• Scalable to large datasets as 
computational cost .

• Note cluster with different shapes 
and sizes.

• Crosses are outliers.

ϵ

∼ 𝒪(N log N)
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Fig. 57. (a) Illustration of DBSCAN algorithm with minPts= 4. Two "-neighborhoods are represented as dashed circles of radius ". Red points are the
core points and blue points are density-reachable point that are not core points. Outliers are gray colored. (b) Application of DBSCAN (minPts=40)
to a noisy dataset with two non-convex clusters. Density profile is shown for clarity. Outliers are indicated by black crosses.

recently introduced variant of DB clustering (Rodriguez and Laio, 2014) that is similar in spirit which the reader is urged
to consult. One of the authors (A. D.) has also created a Python package, https://pypi.org/project/fdc/, which makes use
of accurate density estimates via kernel methods combined with agglomerative clustering to produce fast and accurate
density clustering (see also GitHub repository).

DBSCAN algorithm. Here we describe the most prominent DB clustering algorithm: DBSCAN, or density-based spatial
clustering of applications with noise (Ester et al., 1996). Consider once again a set of N data points X ⌘ {xn}Nn=1.

We start by defining the "-neighborhood of point xn as follows:

N"(xn) = {x 2 X |d(x, xn) < "} . (144)

N"(xn) are the data points that are at a distance smaller than " from xn. As before, we consider d(·, ·) to be the Euclidean
metric (which yields spherical neighborhoods, see Fig. 57) but other metrics may be better suited depending on the specific
data. N"(xn) can be seen as a crude estimate of local density. xn is considered to be a core-point if at least minPts are in
its "-neighborhood. minPts is a free parameter of the algorithm that sets the scale of the size of the smallest cluster one
should expect. Finally, a point xi is said to be density-reachable if it is in the "-neighborhood of a core-point. From these
definitions, the algorithm can be simply formulated (see also Fig. 57):

! Until all points in X have been visited; do

� Pick a point xi that has not been visited
� Mark xi as a visited point
� If xi is a core point; then

· Find the set C of all points that are density reachable from xi.
· C now forms a cluster. Mark all points within that cluster as being visited.

nice visualization: https://www.youtube.com/watch?
v=RDZUdRSDOok&t=180s&ab_channel=StatQuestwithJoshStarmer 

https://www.youtube.com/watch?v=RDZUdRSDOok&t=180s&ab_channel=StatQuestwithJoshStarmer
https://www.youtube.com/watch?v=RDZUdRSDOok&t=180s&ab_channel=StatQuestwithJoshStarmer


Application in physics: Stellar streams
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• Reading for this lecture: 
• This lecture was mostly based on arxiv:1803.08823
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