Physics 361 - Machine Learning In
Physics

Lecture 8 — Unsupervised methods

Feb. 13th 2025

Moritz Minchmeyer (with slides from Gary Shiu)

Colab notebook

We first want to tie up some lose ends from the last lecture on decision trees.

() & Photoz_RandomForests.ipynb

PRO IFiIe Edit View Insert Runtime Tools Help]AIIchangcssavcd

M X + Code + Text

= Files
Q C B X
v Random Forests and Photo-zs
) [-
» [sample_data In this notebook, we use Random Forests to estimate photometric redshifts starting from observations of galaxy magnitudes in six different
G . DEEP2_uniq_Terapix_Subaru_v... photometric bands (u, g, 1, i, z, y). It accompanies Chapter 6 of the book (1 of 4).
o Copyright: Viviana Acquaviva (2023); see also other data credits below.

License: BSD-3-clause

Essentially, we try to reproduce/improve upon the results of this paper, for which the data are public and available here. Additionally, we are very
grateful to Jeff Newman for his expert advice.

¥ [1] import numpy as np
- import pandas as pd
import matplotlib
import matplotlib.pyplot as plt

pd.set_option('display.max_columns', 100)
pd.set_option('display.max_rows', 100)
pd.set_option('display.max_colwidth', 100)

font = {'size' : 16}

matplotlib.rc('font', #xfont)

matplotlib.rc('xtick', labelsize=14)
matplotlib.rc('ytick', labelsize=14)
matplotlib.rcParams.update({'figure.autolayout': False})
matplotlib.rcParams|['figure.dpi'] = 300

Y [2] from sklearn import metrics

' from sklearn.model_selection import cross_validate, KFold, cross_val_predict, GridSearchCV
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor

v [3] import astropy
from astropy.io import fits

#fits stands for Flexible Image Transport System; it's a format that allows one to store images and summary data

Decision tree ensembles

4.Detalls of the training
process

In our decision tree training notebook we will encounter a few concepts
which we have not yet discussed in the lecture.

These are not specific to decision trees, but let’'s cover them here. In
particular we need to know about

- R2-score

- Cross-Validation

- Hyperparameter optimization

R2-score

* The tree-regressor in scikit learn does not report the MSE loss, but rather the R2 score. How
does it measure the quality of a regression?

e The R2 score also known as the coefficient of determination, is a statistical measure that
iIndicates how well a regression model explains the variance in the dependent variable. It is
defined as.

* We can attempt to measure the fraction of observed variance of the target variable
(‘outcome”) that can be explained by the features ("predictors”):

N N

SStot = Z(yz — @)2; SSreS — Z(yz — :&i)zv

1=1 1=1

* where y; = true values, i is the index of the training example.
* the bar denotes the mean, and the hat denotes the prediction.

e SSit = Sum of Total Squares
* SSres = Sum of Squares due to Residuals

R2-score

How “strong” is relationship between predictors & outcome?

S Stes
S S tot

R’ =1

where:
SSres = sum of squares due to residuals
SSiot = total sum of squares

1 indicates perfect correlation, and O indicates no relationship (a model that predicts the mean of true
values will have R2 = 0).

R2 can be negative on the test set (e.g., the predictions can be arbitrarily bad, worse than the mean!)

R2—1_ > (yi—1i)”

RZ-SCOre SSres

R*=1
SStot

e Example: If R2 has a value of 0.6, this means 60% of the variation in the dependent variable (y) is

explained by your regression model. The remaining 40% is unexplained.

e |n terms of optimization, minimizing MSE and maximizing R2 are equivalent because the model

weights only influence the residual sum of squares SSyes.

e Interpretation:

The higher the value of R2, the better the model fits the data.

R2 is dimensionless.

When it is used in a machine learning setting (i.e. we look at R2 for predictions, on test set), it is a
useful tool to compare models.

If features and targets are the same, a model with higher R2 score on the predicted values is
better.

But we can’t distinguish between a poor R2 that comes from bad modeling, and a poor R2 that

comes from noisy data.

Cross-Validation

* We have not yet explained an important practice of supervised training, of particular importance
when the data set is small: Cross-Validation

e The idea is to split the data set in multiple ways into training and test data. Then we train the model
K times, and evaluate its average performance.

e This is a good idea because:
 We want to use all the data for training (and not “lose” the test data)
e We avoid the risk of under/overestimating performance because of a non-typical performance of
a particular training/test split.
e We get an estimate of how much scores fluctuate because of variance in the data.

e K-fold cross validation looks like this (for K=5)

e Disadvantage: We need to train the model K times, which takes more computation time.

e |f we used cross-validation to pick hyper parameters we can then train a new model on the entire
dataset using the same hyperparameters that performed best on average across the folds, using
the full data set.

Hyperparameter tuning

 The most common procedure to optimize hyperparameters is a cross-validated Grid Search of the
hyperparameter space.

e As areminder, we do this to pick optimal hyperparameters, but the test scores we obtain are still optimistic
(there is leakage of information between the optimization and the test scores).

e The correct procedure involves a 3-tiered structure: train/validation/test set

e Like with any parameter space search, the grid method can be inefficient, or too time-consuming.
Alternatives are varying parameters one at a time (ignores correlations), Random Search (often good
enough), Bayesian parameter search.

e There are elaborate hyper parameter optimization algorithms. Libraries specifically designed for this
purpose include:
e RayTune https://docs.ray.io/en/latest/tune/index.html
* HyperOpt https://github.com/hyperopt/hyperopt
e These libraries include several hyperparameter tuning algorithms. Rather than just performing a grid
search, these algorithms optimize the hyper parameters by approximating the gradient of the
optimization target (e.g. MSE) with respect to the hyper parameters.

https://docs.ray.io/en/latest/tune/index.html
https://github.com/hyperopt/hyperopt

Hyperparameter tuning with scikit-learn

* |t is recommended to search the hyper-parameter space for the best cross validation score.

¢ A search consists of:
e an estimator (regressor or classifier such as sklearn.tree.DecisionTreeRegressor);
* a parameter space;
e a method for searching or sampling candidates;
e a cross-validation scheme; and
e a score function (e.g. R2 score).

* Two generic approaches to parameter search are provided in scikit-learn: for given values,
 GridSearchCV exhaustively considers all parameter combinations while
e RandomizedSearchCV can sample a given number of candidates from a parameter space
with a specified distribution.

e We use GridSearchCV in the notebook. It systematically works through multiple combinations
of parameter tunes, cross-validating as it goes to determine which tune gives the best
performance based on a specified score.

e https://scikit-learn.org/stable/modules/grid_search.html#grid-search

https://scikit-learn.org/stable/modules/grid_search.html#grid-search

Classic Unsupervised
ML Methods

Classic Unsupervised
ML Methods

Overview

Unsupervised Methods

* After discussing two classic and important supervised methods
(Feed Forward Neural Networks and Random Forrests), we now
want to discuss some basic unsupervised methods.

 Unsupervised machine learning is a type of machine learning where
the model learns patterns and structures from unlabeled data—

meaning there are no predefined outputs or labels. It is mainly
used for

e clustering
 dimensionality reduction
« anomaly detection

* In addition, generative models are usually trained unsupervised, but
we will talk about them in a later unit. E.g. (variational) Auto-
encoders, Diffusion models, normalizing flows etc.

Classic Unsupervised
ML Methods

Dimensionality reduction -
PCA

References: 1803.08823, Deep Learning Book

Dimensionality Reduction and Latent Space

Discovering structure in unlabelled data

Need to dimensionally reduce data. Raw data is often impractical
for data analysis or modeling.

We call the dimensionally reduced space latent space.

By dimensional reduction we often loose information. This is not
necessarily bad. Some of the information might be noise or
irrelevant. By loosing only irrelevant information, we can find good
representations.

Challenges of High-dimensional Data

 Real-world data is usually not random or uniformly distributed
(data lives in a lower-dim. space compared with original space).

 “Blessing of non-uniformity”: Data will typically be locally smooth
(local variation will not incur a large change in the target variable).

 Objective: preserve relative pairwise distances between data
points when going to latent space.

Challenges of High-dimensional Data

* Intrinsic dimensionality and the crowding problem:

b)
IR LR o % 4 . . .
3,.-?‘.,{-},,1-:;:",'{@ In this example a two-dimensional
;{g"..,{"i space is sufficient to capture
o of ..f.,&.,‘-f.g." .
almost the entirety of the
; information in the data.
RS TS - NPT :
b THe b e Intrinsic dim = min. # parameters
o ’:\..’, > S oo, .
S A to parametrize the data.
i.:. '0:. :...;:.:.‘.0 :‘o'..‘?"
A 9D D Attempts to represent data in a

space
with dim < intrinsic dimensionality
lead to a “crowding” problem.
all mapped data points collapse to
the center of the map.

Principal Component Analysis

* A ubiquitous method for dimensional reduction, data visualization
and analysis is Principal Component Analysis (PCA). It is based
on linear algebra.

* The goal of PCA is to perform an orthogonal transformation of the
data in order to find high-variance directions.

e PCA s inspired by the observation that in many cases, the relevant
information in a signal is contained in the directions with largest
variance. Directions with small variance are ascribed to “noise” and
can potentially be removed or ignored.

Principal Component Analysis (PCA)

 Perform an orthogonal transformation of the data to find the
high variance directions & minimizing the error in projection.

o
P 4

0 Qi ®
, @y’ signal

[
®

FIG. 50 PCA seeks to find the set of orthogonal directions
with largest variance. This can be seen as “fitting” an ellipse
to the data with the major axis corresponding to the first
principal component (direction of largest variance). PCA as-
sumes that directions with large variance correspond to the
true signal in the data while directions with low variance cor-
respond to noise.

PCA — Maximizing Variance

« The covariance matrix of data (design) matrix X is defined as:

1
Y(X) = ﬁXTX

« 2(X);; corresponds to the variance of the j-th feature while 2(X),;
measures the covariance (correlation) between feature i & feature J.

* We want to find a new basis that emphasizes highly variable
directions while reducing redundancy between basis vectors. Perform
singular value decomposition (SVD):

X = USV'

Recall SVD

Singular Value Decomposition (SVD) is a factorization of a matrix that expresses it as the product of

three matrices:

A=UxVT

where:

Ais an m X n matrix.

e U isanm X m orthogonal (or unitary) matrix containing the left singular vectors.

e Y isanm X n diagonal matrix containing the singular values (which are non-negative and

ordered from largest to smallest).

e Vlisann xn orthogonal (or unitary) matrix containing the right singular vectors.

Key Properties

1.

2.

Singular values (o; in 2) represent the importance (variance) of each singular vector.
Left singular vectors (U) span the column space of A.
Right singular vectors (V') span the row space of A.

Dimensionality reduction: The first few singular values capture most of the important structure

in A, allowing approximations:
Ay = UpSi ViE

where k is the rank of the reduced approximation.

If A is symmetric (AT = A), then SVD reduces to

eigendecomposition:
A=UAUT

where:
o U contains orthonormal eigenvectors.

o A is a diagonal matrix of eigenvalues.

PCA — Maximizing Variance
 Back to the PCA: Using singular value decomposition (SVD):

PCA is traditionally computed by finding the eigenvectors of the

covariance matrix:

1

X — USVT’ Cov(Xc):EXCTXC

which leads to solving:
XXV =VA

However, computing SVD of X, directly provides both eigenvectors (V'

We g et) and singular values (22), making it numerically more stable and

practical.

. 1 T T
B(X) = ——VSUTUSV

52
—v|I—|v!
N —1

= VAV,

« The eigenvalues 4; of A are given by 4, = Siz/(N — 1).

PCA — Maximizing Variance

To reduce the dimensionality of data from 7 to [, construct the
n X [projection matrix V, by selecting the singular components with
the [largest singular values. The projection is then

The singular vector with the largest singular value (largest variance)
IS the first principal component; the singular vector with the second
largest variance is the second principal component, etc.

Common in data visualization is to project on the first few principal
components (as long as a large part of the variance is explained in
those components, e.g., Ising Model).

Low explained variance may imply that the intrinsic dimensionality of
the data is high, or it cannot be captured by a linear representation.

Example of PCA in physics: Ising Model

From 1803.08823

The Ising dataset we use throughout the review was
generated using the standard Metropolis algorithm to
generate a Markov Chain. The full dataset consist of
16 x 10000 samples of 40 x 40 spin configurations (i.e.
the design matrix has 160000 samples and 1600 features)
drawn at temperatures 0.25,0.5,---4.0. The samples
are drawn for the Boltzmann distribution of the two-
dimensional ferromagnetic Ising model on a 40 x40 square
lattice with periodic boundary conditions.

ordered phase critical region disordered phase
0
10
20
30
0 20

FIG. 20 Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (7'/J = 0.75,
left), the critical region (7'/J = 2.25, middle) and the disordered phase (7/J = 4.0, right). The linear system dimension is
L = 40 sites.

Example of PCA in physics: Ising model

4.0
a)
10 3.5
3.0
)
S
= 2.5
I
N Y 2.0 5
S
E 1.5

-15 -10 -0, 0.0 0.5 1.0 1.5

PCA-1 = 0.516
! b) FIG. 51 (a) The first 2 principal component of the Ising
dataset with temperature indicated by the coloring. PCA
= was performed on a joined dataset of 1000 samples taken at
) each temperatures 7' = 0.25,0.5, - - - ,4.0. Almost all the vari-
§ ance is explained in the first component which corresponds
g to the magnetization order parameter (linear combination of
ks the features with weights all roughly equal). The paramag-
= 6 netic phase corresponds to the middle cluster and the left and
o .
i right clusters correspond to the symmetry-related ferromag-
s netic phases (b) Log of the spectrum of the covariance matrix
= =8 versus rank ordering. Only one dimension has high-variance.
—10
0 250 200 750 1000 1250 1500

Rank

Example of PCA in cosmology

JOURNAL ARTICLE

Reionization constraints using principal
component analysis @

Sourav Mitra %, T. Roy Choudhury ™, Andrea Ferrara

Monthly Notices of the Royal Astronomical Society, Volume 413, Issue 3, May 2011, Pages
1569-1580, https://doi.org/10.1111/j.1365-2966.2011.18234.x
Published: 11 May 2011 Article history v

PDF Nl SplitView ¢¢ Cite A Permissions «§ Share v

Abstract

Using a semi-analytical model developed by Choudhury & Ferrara we study the
observational constraints on reionization via a principal component analysis
(PCA). Assuming that reionization at z > 6 is primarily driven by stellar sources,
we decompose the unknown function Nj,,(z), representing the number of
photons in the intergalactic medium per baryon in collapsed objects, into its
principal components and constrain the latter using the photoionization rate,
I'py, obtained from Lya forest Gunn—Peterson optical depth, the 7 yr Wilkinson
Microwave Anisotropy Probe (WMAP7) electron scattering optical depth t,; and
the redshift distribution of Lyman-limit systems dNjy ; /dz at z~ 3.5. The main
findings of our analysis are as follows. (i) It is sufficient to model Nj,,(z) over
the redshift range 2 < z < 14 using five parameters to extract the maximum
information contained within the data. (ii) All quantities related to reionization
can be severely constrained for z < 6 because of a large number of data points
whereas constraints at z > 6 are relatively loose. (iii) The weak constraints on
Njon(z) at z > 6 do not allow to disentangle different feedback models with
present data. There is a clear indication that Nj,,(z) must increase at z > 6, thus
ruling out reionization by a single stellar population with non-evolving initial
mass function, and/or star-forming efficiency, and/or photon escape fraction.
The data allow for non-monotonic Nj,,(z) which may contain sharp features
around z-~ 7. (iv) The PCA implies that reionization must be 99 per cent
completed between 5.8 < z < 10.3 (95 per cent confidence level) and is expected
to be 50 per cent complete at z= 9.5—12. With future data sets, like those
obtained by Planck, the z > 6 constraints will be significantly improved.

Non-linear generalizations of PCA

e there are several nonlinear generalizations of PCA designed to

handle data
subspace.

e Here are so

that lies on a nonlinear manifold rather than a linear

me of the most important ones:

e Kernel PCA (KkPCA)

 Autoencoders (Neural Network-based PCA). See later!

e t-SNE (t-

Distributed Stochastic Neighbor Embedding)

» UMAP (L

niform Manifold Approximation and Projection)

Classic Unsupervised
ML Methods

Dimensionality reduction -
t-SNE

t-SNE

e t-SNE is a nonlinear dimensionality

reduction technique used primarily for .|
visualizing high-dimensional data in
2D or 3D while preserving local

structure.

e [t works by converting high-
dimensional distances into probabilities -
and minimizing the divergence

etween probability distributions in the
high- and low-dimensional spaces.

e Similar points in high-dimensional
space stay close together in lower
dimensions.

0.0 1

0.0 0.2 0.4 0.6 0.8

Summary of how t-SNE works

Overview of the approach, before looking into the math
 Measure Similarities in High-Dimensional Space
* It calculates how similar each data point is to others based on distances.
* Instead of raw distances, it converts distances into probabilities.
 Measure Similarities in Low-Dimensional Space

It maps the data into a lower-dimensional space (e.g., 2D) and tries to preserve the same
probability-based relationships.

 Instead of using Gaussian distributions, it uses a Student’s t-distribution (which prevents
crowding).

 Match the Two Representations

« t-SNE minimizes the difference between the high-dimensional and low-dimensional probability
distributions.

* It does this using an optimization method called gradient descent, which fine-tunes the
positions of points in lower dimensions.

By converting distances into probabilities, t-SNE ensures that the notion of "closeness" is

meaningful regardless of the absolute scale of distances.

t-SNE math

Step 1: Compute Pairwise Similarities in High-Dimensional Space

For each data point z;, we define the probability that x; is its neighbor using a Gaussian kernel:

_exp(=|lzi — z;*/207)
2 s €xP(— ||z — i [?/207)

DPj|i

where:
e 0; is alocal perplexity-controlled bandwidth (adaptive for different densities),

* Dj|i represents the probability that x; is chosen as a neighbor of z;.

To ensure symmetry, the final pairwise similarity measure is:

Pjli T Di)j
Dij = ON

where IV is the number of data points.

t-SNE math

Step 2: Compute Pairwise Similarities in Low-Dimensional Space

We now embed points into a lower-dimensional space (e.g., 2D) and define a similar probability

distribution.

Instead of Gaussians, t-SNE uses a Student’s t-distribution (with 1 degree of freedom, i.e., a Cauchy

distribution) to compute similarities:

G — (T + llys —ysl1*) "
T ka A+ k= wl?)

where:
e y; and y; are the low-dimensional representations of x; and x,

e The t-distribution has fatter tails, preventing crowding in the lower-dimensional space.

t-SNE math

Step 3: Minimize the KL Divergence Between Distributions

The goal is to make g;; as close as possible to p;;. This is done by minimizing the Kullback-Leibler

(KL) divergence:

p..
C =) pilog q_zy
i3 "

« K L(p||q) measures how different the distributions p;; and g;; are.

e Gradient descent is used to iteratively update the low-dimensional coordinates ;.

The goal of t-SNE is to find a set of points y;, Yo, ..., Yy in 2D or 3D that best preserves the

local structure of the high-dimensional data.

Performance

PCA-2 = 0.091
t-SNE 2

Y Ty

-2 0 2 20 0 20
PCA-1 = 0.097 t-SNE 1

Fig. 53. Different visualizations of a Gaussian mixture formed of K = 30 mixtures in a D = 40 dimensional space. The Gaussians have the same
covariance but have means drawn uniformly at random in the space [—10, 10]%°. (a) Plot of the first two coordinates. The labels of the different
Gaussian are indicated by the different colors. Note that in a realistic setting, label information is of course not available, thus making it very hard to
distinguish the different clusters. (b) Random projection of the data onto a 2 dimensional space. (c) Projection onto the first 2 principal components.
Only a small fraction of the variance is explained by those components (the ratio is indicated along the axis). (d) t-SNE embedding (perplexity =
60, # iteration = 1000) in a 2 dimensional latent space. t-SNE captures correctly the local structure of the data.

Performance

1500 a) . 0 40 e 0
1 . 1
1000 5 R
o 3 20 . 3
5 500 1 I S
? 5 €a) . 5
o 0 61F & .« 6
C<§ /| of 7
A —500 8 o 8
9 —920 . 9
—1000
—Latl) 0 2000 =y 0 2% 50
PCA-1=0.097 t-SNE 1

Fig. 54. Visualization of the MNIST handwritten digits training dataset (here N = 60 000). (a) First two principal components. (b) t-SNE applied
with a perplexity of 30, a Barnes—Hut angle of 0.5 and 1000 gradient descent iterations. In order to reduce the noise and speed-up computation, PCA
was first applied to the dataset to project it down to 40 dimensions. We used an open-source implementation to produce the results (Linderman
et al.,, 2017), see https://github.com/KlugerLab/FIt-SNE.

Issue

Article Number
Number of page(s)
Section

DOI

Published online

A&A 619, A125 (2018)

Dissecting stellar chemical abundance space with t-SNE

(® F. Anders'2, C. Chiappini'2, B. X. Santiago32, G. Matijevi¢!, A. B. Queiroz32, M. Steinmetz! and

Guiglion?

Application in physics: Stars

ARA

Volume 619, November 2018

A125

11

Galactic structure, stellar clusters and populations
https://doi.org/10.1051/0004-6361/201833099

14 November 2018

Received: 25 March 2018 Accepted: 28 August 2018

Abstract

t-SNE Y dimension

In the era of large-scale Galactic astronomy and multi-object spectroscopic stellar surveys, the

sample sizes and the number of available stellar chemical abundances have reached dimensions in

which it has become difficult to process all the available information in an effective manner. In

this paper we demonstrate the use of a dimensionality-reduction technique (t-distributed

stochastic neighbour embedding; t-SNE) for analysing the stellar abundance-space distribution.

10 4

—10 A

O Transition group

PS O Young local disc

o s & <> [s/Fe]-enhanced

.‘. 0:.. ’ .. ’ Debris candidate

o L) ’ [e] (0] Extreme-Ti star

sc IV Yo
Inner E,’ﬁlzl cl ®e ... ‘.. 4 ..’ ® B Low-|Mg/Fel star
**Y%' ® e ...‘ ® High-[Al/Mg] star
® Y J
g@* e 000 Q’ Y o h
o o] .
Xog ¢ ['hin Disc

§ o .0 O o . .
Y AR }'..‘ ¢ °°f Ihug(Disc 1411
3 < tﬁ o« © 9 2,
oo °°° $:
Inner Disc 8 s o !.. 'A
%: <Y e® . 8o 0: %ég
o ° [|
o4 % - %
Inner Disc II*‘ .\:0}" '.': 5 ad

Inner Disc | ’f

"

Outer Disc

—20 -10 0

t-SNE X dimension

10 20

Classic Unsupervised
ML Methods

Clustering Methods

Clustering

e Clustering is a way to look for hidden structure in high dimensions
(coarse features or high-level structures in unlabelled data).

e Points to take into account when choosing a particular method:

e Distribution of clusters (overlapping/noisy clusters vs. well-separated
clusters)

e Geometry of the data (flat vs. non-flat)
e Cluster size distribution (multiple vs. uniform sizes)
e Dimensionality of the data (low-dimensional vs. high-dimensional)

e Computational efficiency of desired method

Clustering and Latent Variables

Central to unsupervised learning is the idea of a latent or hidden
variable (not directly observable; yet influence visible
structure).

Example: The cluster identity of each datapoint is a latent
variable. We cannot observe the label directly, but points in the
same cluster are “close”.

In this abstract language, clustering is an algorithm to learn the
most probably value of a latent variable associated with each
datapoint.

Need to make assumption about the structure of data (common to
unsupervised learning), e.g., underlying probability distribution from
which the data was generated.

K-means Clustering

Divide data set into K different clusters of data points which are
near each-other.

Consider a set of NV unlabeled data points {Xn}f;'=1 where X, € R?.
K cluster centers called the cluster means: {; }5_, with y1, € R?.

M|n|m|ze the COSt {X IL}) — ernk Il’k)

=1 n=1

One-hot encoding: r,;, = 1 if X, € cluster k and 0 otherwise;

Zk rnk — 1 V n and Zn rle — Nkv

Find the best cluster means (center of mass) such that variance
(moment of inertia) is minimized.

K-means Algorithm

Expectation: Given {r,;}, minimize C with respect to y;:

1
My = N_k Xn: 'nkXn.

Maximization: Given {y, }, find {r,;} which minimizes C:

o if k = argming (X, — py)
"~ 1o otherwise

Alternative between the above two steps until some convergence criterion is
met (e.g., change in C is smaller than a threshold).

Guaranteed to converge to local minimum. Complexity O(kN).

Hard-assignment limit of the Gaussian mixture model (introduce later), where
all cluster variances are assumed to be the same.

If the true clusters have very different variances (spreads), K-means can lead
to spurious results since the underlying assumption is that the latent
model has uniform variances.

K-means Algorithm

C=105,1=1 &,) [C=881t=10 & b)
2y ¥ S 7w
%%’% s’%‘.‘?:

..‘.u.z ..‘. 3
o"”o%. oo o"wo.'. e
.3;?,;8}.. 0% 0@ e, o:‘é&&}:.. N X o,
o; : ® ® "‘1: (4 o;“: ® o""“' @
w2 YT 8 T L oy 2 0298’0 B8
e o P’ 00:0‘0: 0020 o pchgPe .72000:
N ':..:o. .": ..: .o ® ':.“o. of : ..: .o
W wT

C=8.0,t=20 &, ¢ 105° d)
oq°® cetlile
.:?:.300 ::0.0 10.0
-.‘-'.3: 05
.o\}'? 1

o%e .-O'o
0 20298 3o° e® 0 0 9.0 .o.
ST il oo,
ARG LS AN °
R 1 ¢ C
oo o..::’ 2.0 ®eccccccee
A3 0 10 20
® t

Fig. 55. K-means with K = 3 applied to an artificial two-dimensional dataset. The cluster means at each iteration are indicated by cyan star markers.
t indicates the iteration number and C the value of the objective function. (a) The algorithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)-(c) For well separated clusters, the algorithm converges rapidly to the true clusters. (d) The objective
function as a function of the iteration. ¢ converges after t = 18 iterations for this choice of random seed (for center initialization).

Agglomerative Method

Start from small initial clusters, then
progressively merged to form larger
clusters.

Hierarchy of cluster can be visualized
in the form of a dendrogram.

Define a distance measure d(X, Y)
between clusters X and Y.

Two distances that are closest with
respect to d(X, Y) are merged until a
single cluster is left.

0.9

0.6
0.51

0.41

0.301
0.25 1
0.20 1
< (.15
=
0.10 1

0.051

0.00

"
0.81 v
. v,
’
]

0.71 ..

~
~ao
~

-
-

- -

~

0.4 0.6 0.8

0

1 4 5 2 3
Leaf label

Agglomerative Clustering Algorithm

* |nitialize each point to its own cluster.

o Given a set of K clusters X, X,, ..., Xk, merge clusters until one
cluster is left (K = 1):

o Find the closest pair of clusters (X;, X)) : (i,j) = argmin;, d(X;, X)

R
e Merge the pair. Update K «— K — 1. @y T X
. . . RN N
* Different linkage methods (distances) 7] .. ; :
result in different algorithms. " @
0.5 . ‘
0.4 ‘.Q

0.4 0.6 0.8

Density-based (DB) Clustering

Clusters are defined by regions with high density of data points.
Noise or outliers are expected to form regions of low density.

Unlike a distance-based approach, DB clustering considers
clusters of multiple shapes and sizes while identifying outliers.

Assumption: relative local density estimation is possible
(becomes difficult for very high-dimensional data due to large
sampling noise).

Widely used algorithm: DBSCAN

DBScan Algorithm

Density-based spatial clustering of applications with noise (Ester et al,
1996).

Crude estimate of local density is the e-neighborhood of point X, :

Ne(Xp) = 1X € X|d(X, X;) < ¢}

X, is a core-point if at least minPts are in its ¢-neighborhood. A point X; is
density-reachable if it’s in a core-point’s €-neighborhood.

The DBSCAN algorithm uses the following steps:

* Find the points in the € (eps) neighborhood of every point, and identify the core
points with more than minPts neighbors.

* Find the connected components of core points on the neighbor graph, ignoring
all non-core points.

e Assign each non-core point to a nearby cluster if the cluster is an € (eps)
neighbor, otherwise assign it to noise.

DBScan Algorithm

‘ a)
* Do not need to specity # clusters O ._k'
but only the hyperparameters ¢ and | =~ ~e O
minPts.
O
O
e Scalable to large datasets as S ©

computational cost ~ O(N log N).

Hig]

* Note cluster with different shapes |
and sizes.

* Crosses are outliers. a
_-Low

nice visualization: https://www.youtube.com/watch?
v=RDZUdRSDOok&t=180s&ab channel=StatQuestwithJoshStarmer

https://www.youtube.com/watch?v=RDZUdRSDOok&t=180s&ab_channel=StatQuestwithJoshStarmer
https://www.youtube.com/watch?v=RDZUdRSDOok&t=180s&ab_channel=StatQuestwithJoshStarmer

Application in physics: Stellar streams

JOURNAL ARTICLE
Identifying stellar streams in Gaia DR2 with data

mining techniques @
Nicholas W Borsato ™=, Sarah L Martell, Jeffrey D Simpson

Monthly Notices of the Royal Astronomical Society, Volume 492, Issue 1, February 2020,
Pages 1370-1384, https://doi.org/10.1093/mnras/stz3479
Published: 19 December2019 Article history v

PDF Nl SplitView ¢ Cite /A Permissions g Share v

ABSTRACT

Streams of stars from captured dwarf galaxies and dissolved globular clusters
are identifiable through the similarity of their orbital parameters, a fact that
remains true long after the streams have dispersed spatially. We calculate the
integrals of motion for 31234 stars, to a distance of 4 kpc from the Sun, which
have full and accurate 6D phase space positions in the Gaia DR2 catalogue. We
then apply a novel combination of data mining, numerical, and statistical
techniques to search for stellar streams. This process returns five high
confidence streams (including one which was previously undiscovered), all of
which display tight clustering in the integral of motion space. Colour—
magnitude diagrams indicate that these streams are relatively simple, old,
metal-poor populations. One of these resolved streams shares very similar
kinematics and metallicity characteristics with the Gaia-Enceladus dwarf
galaxy remnant, but with a slightly younger age. The success of this project
demonstrates the usefulness of data mining techniques in exploring large data
sets.

Discovery of new stellar groups in the Orion complex

Towards a robust unsupervised approach’

Boquan Chen'23, Elena D’Onghia24, Jodo Alves>57 and Angela Adamo®
Received: 24 May 2019 Accepted: 16 June 2020

Abstract

We test the ability of two unsupervised machine learning algorithms, EnLink and Shared Nearest
Neighbor (SNN), to identify stellar groupings in the Orion star-forming complex as an
application to the 5D astrometric data from Gaia DR2. The algorithms represent two distinct
approaches to limiting user bias when selecting parameter values and evaluating the relative
weights among astrometric parameters. EnLink adopts a locally adaptive distance metric and
eliminates the need for parameter tuning through automation. The original SNN relies only on
human input for parameter tuning so we modified SNN to run in two stages. We first ran the
original SNN 7000 times, each with a randomly generated sample according to within-source co-
variance matrices provided in Gaia DR2 and random parameter values within reasonable ranges.
During the second stage, we modified SNN to identify the most repeating stellar groups from the
25 798 we obtained in the first stage. We recovered 22 spatially and kinematically coherent groups
in the Orion complex, 12 of which were previously unknown. The groups show a wide
distribution of distances extending as far as about 150 pc in front of the star-forming Orion
molecular clouds, to about 50 pc beyond them, where we, unexpectedly, find several groups. Our
results reveal the wealth of sub-structure in the OB association, within and beyond the classical
Blaauw Orion OBI sub-groups. A full characterization of the new groups is essential as it offers
the potential to unveil how star formation proceeds globally in large complexes such as Orion.

UW Madison Astronomy Dept.

Course logistics

e Reading for this lecture:
 This lecture was mostly based on arxiv:1803.08823

