
Moritz Münchmeyer

Physics 361 - Machine Learning in
Physics

Lecture 9 – Convolutional Neural
Networks

Feb. 19th 2025

Final project
• You will write a paper on an application of machine learning to physics of your choice. Your paper needs to

contain a computational analysis, which generally will mean applying a machine learning method to some data

set.

• You can work alone or in groups of up to four people. For larger groups we will expect a little bit more total

effort.

• The paper should be 5 to 10 pages and contain the following:

• A short review of at least one research paper related to your topic. This is to encourage you to learn how to

browse the literature.

• A description of the data set you will be working with and its properties.

• A brief description of the machine learning method you will use. Don’t re-explain basics such as how CNNs

work, rather describe the detailed properties of your approach.

• Train the model and put the results in your paper. Explore some variations such as different hyper parameters.

• Describe successes and problems in your analysis.

• If you are already doing research in physics or a related field, you can write the paper on this topic if you wish.

Final project
• You can use machine learning methods either from the lecture or ones that we have not

covered. Major topics which we have not yet covered but will be covering in the next weeks are
Generative models (GANs, Diffusion, Normalizing Flows), Simulation Based Inferences (which
includes the important topic of assigning error bars to neural network estimates), and Transformers
and LLMs.

• The project should take you a few days of work, spread over the rest of the semester. 

• We will have an intermediate check-in. Format TBA.

• Your paper will be due on Sunday May 4th at midnight.

• We want to know your topic by March 11th. You can discuss your topic ideas with Yurii or with
me, after the lecture, or during office hours.

• We will have a brief ~1 slide presentation of your results in the lecture on April 29th.

Some sources of data
• Kaggle competitions

• https://www.kaggle.com/search?q=physics

• https://www.kaggle.com/search?q=physics+in%3Adatasets

• https://www.kaggle.com/search?q=physics+in%3Acompetitions

• https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice  

• Shared Data and Algorithms for Deep Learning in Fundamental Physics 
https://github.com/erum-data-idt/pd4ml  

• https://astronn.readthedocs.io/en/latest/galaxy10.html

• Many others. Please look in the domain you are interested in.

https://www.kaggle.com/search?q=physics
https://www.kaggle.com/search?q=physics+in%3Adatasets
https://www.kaggle.com/search?q=physics+in%3Acompetitions
https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice
https://github.com/erum-data-idt/pd4ml
https://astronn.readthedocs.io/en/latest/galaxy10.html

Some sources of models
• Scikit learn: https://scikit-learn.org/stable/index.html (basics, but important)

• https://pytorch.org/tutorials/ (includes things like GANs)

• https://docs.pyro.ai/en/stable/ (probabilistic machine learning framework)

• https://sbi-dev.github.io/sbi/ (library for simulation-based inference)

• Many git repositories associated with papers

• I would perform a web search on machine learning papers on a physics topic that you are
interested in and get inspired by their data and model. Of course you need to simplify your
approach substantially compared to a research paper.

https://scikit-learn.org/stable/index.html
https://pytorch.org/tutorials/
https://docs.pyro.ai/en/stable/
https://sbi-dev.github.io/sbi/

Unit 3: Convolutional NN

Introduction
Resources:

- Based on:

- https://udlbook.github.io/udlbook/ (Simon Prince - Understanding Deep Learning)

- Deeplearningbook.com

https://udlbook.github.io/udlbook/

Application: Image classification

Application: Object detection

Application: Image segmentation

Application: Field-to-Field translation
• Example from cosmology

https://arxiv.org/pdf/2010.00619

Matter density Gas temperature

CNN

Why not use an MLP?
• Problems with fully-connected networks

1. Size
• 224x224 RGB image = 150,528 dimensions
• Hidden layers generally larger than inputs
• One hidden layer = 150,520x150,528 weights -- 22 billion

2. Nearby pixels statistically related (there is a notion of distance that the MLP
does not include).

3. Should be stable under transformations
• Don’t want to re-learn appearance at different parts of image

Convolutional NN

• Convolutional networks (LeCun, 1989), also known as convolutional neural
networks or CNNs, are a specialized kind of neural network for processing
data that has a known, grid-like topology. Examples include time-series data,
and image data
• Convolutional networks have been tremendously successful in practical

applications. The name “convolutional neural network” indicates that the
network employs a mathematical operation called convolution.
• Convolution is a specialized kind of linear operation. Convolutional networks

are simply neural networks that use convolution in place of general matrix
multiplication in at least one of their layers.
• Parameters only look at local image patches
• Share parameters across image

Invariance
• A function f[x] is invariant to a transformation t[] if:

i.e., the function output is the same even after the transformation is
applied

e.g., Image classification
• Image has been translated, but we want our classifier to give the same result

Equivariance
• A function f[x] is equivariant to a transformation t[] if:

i.e., the output is transformed in the same way as the input
e.g., Image segmentation
• Image has been translated and we want segmentation to translate with it

Convolutional Neural
Networks

Convolutions

Convolutions in 1d
• Input vector x:

• Output is weighted sum of neighbors:

• Convolutional kernel or filter:

Kernel size = 3

Convolutions in 1d

Equivariant to translation of input

• The convolutional operation adds the weighted inputs
• Plus passes through activation (e.g. ReLU) function

What to do at the boundary? “Zero padding”

What to do at the boundary? “Valid” convolutions

Only process positions where kernel falls in image (smaller output).

Parameters of convolutions

• Stride = shift by k positions for each output
• Decreases size of output relative to input

• Kernel size = weight a different number of inputs for each output
• Combine information from a larger area
• But kernel size 5 uses 5 parameters

• Dilated or atrous convolutions = intersperse kernel values with zeros
• Combine information from a larger area
• Fewer parameters

Examples

Fully connected network:

Convolutional network:

CNN vs fully connected layer

3 weights, 1 bias

 weights, D biases𝐷2

CNN vs fully connected layer

Channels

• The convolutional operation averages together the inputs
• Plus passes through ReLU function
• Has to lose information.
• Solution:
• apply several convolutions and stack them in channels
• Sometimes also called feature maps

How many parameters?

• If there are input channels and kernel size K

• If there are input channels and output channels

 𝐶𝑖

 𝐶𝑖 𝐶𝑜

Convolutional Neural
Networks

Receptive fields in CNN

Convolutional Neural
Networks

2d Convolutions

2d Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

a b c d

e f g h

i j k l

w x

y z

aw + bx +

ey + fz
aw + bx +

ey + fz
bw + cx +

fy + gz
bw + cx +

fy + gz
cw + dx +

gy + hz
cw + dx +

gy + hz

ew + fx +

iy + jz
ew + fx +

iy + jz
fw + gx +

jy + kz
fw + gx +

jy + kz
gw + hx +

ky + lz
gw + hx +

ky + lz

Input
Kernel

Output

Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.

334

• Convolution in 2D
• Weighted sum over a K x K region
• K x K weights

• Build into a convolutional layer by adding bias and passing through
activation function
• Example for a 2d convolutional layer with 3x3 kernel K:

2D Convolution

With zero-padding, positions beyond the image’s edge are considered to be zero.

Channels in 2D convolutions: Example of RGB image

2D convolution applied to an image. The image is treated as a 2D input with three channels corresponding to
the red, green, and blue components. With a 3×3 kernel, each pre-activation in the first hidden layer is
computed by pointwise multiplying the 3×3×3 kernel weights with the 3×3 RGB image patch centered at the
same position, summing, and adding the bias. To calculate all the pre-activations in the hidden layer, we “slide”
the kernel over the image in both horizontal and vertical directions. The output is a 2D layer of hidden units. To
create multiple output channels, we would repeat this process with multiple kernels, resulting in a 3D tensor of
hidden units at hidden layer H 1.

How many parameters?

• If there are input channels and kernel size K x K

• If there are input channels and output channels

 𝐶𝑖

 𝐶𝑖 𝐶𝑜

Guide to different types of 2d convolutions
https://github.com/vdumoulin/conv_arithmetic

Famous animated guide

Kernel size, stride, dilation all
work as you would expect from
the 1d case.

https://github.com/vdumoulin/conv_arithmetic

Convolutional Neural
Networks
Downsampling and
Upsampling

Changing tensor resolution
• CNNs often include steps that can scale the dimension of the tensor (e.g. the

2d image) up or down.
• Downsampling is useful for example for image classification, where we want

the stream of information to converge to a single label.
• Upsampling is useful for image-to-image learning.
• There is also a method to change the number of channels, which is useful to

reduce computation load.

Downsampling

Sample every
other position
(equivalent to

stride two)

Max pooling
(partial

invariance to
translation)

Mean pooling

Upsampling

Duplicate Max-upsampling Bilinear
interpolation

Transposed convolutions

Kernel size 3, Stride 2 convolution Transposed convolution

Transposed convolution in 1D. a) Downsampling with kernel size three, stride two, and zero-padding.
Each output is a weighted sum of three inputs (arrows indicate weights). b) This can be expressed by a
weight matrix (same color indicates shared weight). c) In transposed convolution, each input contributes
three values to the output layer, which has twice as many outputs as inputs. d) The associated weight
matrix is the transpose of that in panel (b).

1x1 convolution to change channel number

• Mixes channels
• Can change number of channels
• Equivalent to running same fully connected network at each position

Convolutional Neural
Networks
Application to image
classification

Simple example architecture

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 61

Fig. 42. Architecture of a Convolutional Neural Network (CNN). The neurons in a CNN are arranged in three dimensions: height (H), width (W),
and depth (D). For the input layer, the depth corresponds to the number of channels (in this case 3 for RGB images). Neurons in the convolutional
layers calculate the convolution of the image with a local spatial filter (e.g. 3 ⇥ 3 pixel grid, times 3 channels for first layer) at a given location in
the spatial (W ,H)-plane. The depth D of the convolutional layer corresponds to the number of filters used in the convolutional layer. Neurons at
the same depth correspond to the same filter. Neurons in the convolutional layer mix inputs at different depths but preserve the spatial location.
Pooling layers perform a spatial coarse graining (pooling step) at each depth to give a smaller height and width while preserving the depth. The
convolutional and pooling layers are followed by a fully connected layer and classifier (not shown).

10. Convolutional Neural Networks (CNNS)

One of the core lessons of physics is that we should exploit symmetries and invariances when analyzing physical
systems. Properties such as locality and translational invariance are often built directly into the physical laws. Our
statistical physics models often directly incorporate everything we know about the physical system being analyzed. For
example, we know that in many cases it is sufficient to consider only local couplings in our Hamiltonians, or work
directly in momentum space if the system is translationally invariant. This basic idea, tailoring our analysis to exploit
additional structure, is a key feature of modern physical theories from general relativity, through gauge theories, to critical
phenomena.

Like physical systems, many datasets and supervised learning tasks also possess additional symmetries and structure.
For instance, consider a supervised learning task where we want to label images from some dataset as being pictures of
cats or not. Our statistical procedure must first learn features associated with cats. Because a cat is a physical object, we
know that these features are likely to be local (groups of neighboring pixels in the two-dimensional image corresponding
to whiskers, tails, eyes, etc.). We also know that the cat can be anywhere in the image. Thus, it does not really matter
where in the picture these features occur (though relative positions of features likely do matter). This is a manifestation of
translational invariance that is built into our supervised learning task. This example makes clear that, like many physical
systems, many ML tasks (especially in the context of computer vision and image processing) also possess additional
structure, such as locality and translation invariance.

The all-to-all coupled neural networks in the previous section fail to exploit this additional structure. For example,
consider the image of the digit ‘four’ from the MNIST dataset shown in Fig. 26. In the all-to-all coupled neural networks
used there, the 28 ⇥ 28 image was considered a one-dimensional vector of size 282 = 796. This clearly throws away lots of
the spatial information contained in the image. Not surprisingly, the neural networks community realized these problems
and designed a class of neural network architectures, convolutional neural networks or CNNs, that take advantage of this
additional structure (locality and translational invariance) (LeCun et al., 1995). Furthermore, what is especially interesting
from a physics perspective is the recent finding that these CNN architectures are intimately related to models such as
tensor networks (Stoudenmire, 2018; Stoudenmire and Schwab, 2016) and, in particular, MERA-like architectures that
are commonly used in physical models for quantum condensed matter systems (Levine et al., 2017).

10.1. The structure of convolutional neural networks

A convolutional neural network is a translationally invariant neural network that respects locality of the input data.
CNNs are the backbone of many modern deep learning applications and here we just give a high-level overview of CNNs
that should allow the reader to delve directly into the specialized literature. The reader is also strongly encouraged to
consult the excellent, succinct notes for the Stanford CS231n Convolutional Neural Networks class developed by Andrej
Karpathy and Fei-Fei Li (https://cs231n.github.io/). We have drawn heavily on the pedagogical style of these notes in
crafting this section.

There are two kinds of basic layers that make up a CNN: a convolution layer that computes the convolution of the input
with a bank of filters (as a mathematical operation, see this practical guide to image kernels: http://setosa.io/ev/image-
kernels/), and pooling layers that coarse-grain the input while maintaining locality and spatial structure, see Fig. 42. For
two-dimensional data, a layer l is characterized by three numbers: height Hl, width Wl, and depth Dl.12 The height and

12 The depth Dl is often called ‘‘number of channels’’, to distinguish it from the depth of the neural network itself, i.e. the total number of layers
(which can be convolutional, pooling or fully-connected), cf. Fig. 42.

D=3 for RGB images
Height (H) and Width (W)
determined by # of pixels

neuron activation state:
convolution with local spatial filter

(e.g., 3 x 3 pixel grid)

pooling layers reduce H, W
while preserving D

Stacking many layers
The intuition is that lower level CNN layers are sensitive to small simple features such as
edges, and higher level layers become sensitive to progressively more abstract features.

https://distill.pub/2017/feature-visualization/

Classic Benchmark Datasets
• MNIST database: images of digits

• ImageNet challenge: Much of the pioneering work on deep learning in computer
vision focused on image classification using the ImageNet dataset (figure 10.15).
This contains 1,281,167 training images, 50,000 validation images, and 100,000 test
images, and every image is labeled as belonging to one of 1000 possible categories.

• Performance of algorithms measured on benchmark datasets.

AlexNet (2012)

Almost all the 60
million parameters
 parameters are in
fully connected
layers

This system achieved a 16.4% top-5 error rate (proportion of times the correct
label is not within the model’s top 5 predicted classes) and a 38.1% top-1 error
rate. At the time, this was an enormous leap forward in performance at a task
considered far beyond the capabilities of contemporary methods. This result
revealed the potential of deep learning and kick-started the modern era of AI
research.

AlexNet: Data augmentation

• Data augmentation a factor of 2048 using (i) spatial transformations
and (ii) modifications of the input intensities.

AlexNet used “Dropout” in fully connected
layers

• Dropout was applied in the fully connected layers. Dropout sets a
random number of weights to zero at training time, to reduce overfitting.

AlexNet: Details of the training

• At test time average results from five different cropped and
mirrored versions of the image

• SGD with a momentum coefficient of 0.9 and batch size of
128.

• L2 (weight decay) regularizer used.

• This system achieved a 16.4% top-5 error rate and a 38.1%
top-1 error rate.

VGG (2015) • 19 hidden layers
• 144 million parameters
• 6.8% top-5 error rate, 23.7% top-1 error rate

ImageNet History

Example: CNNs for Ising Model

• See Notebook 14 in review 1803.08823: Pytorch CNN (Ising).

• Learn to recognize what phase the Ising model is in.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 33

Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = rC(w) =

nX

i=1

⇥
� (xTi w) � yi

⇤
xi, (77)

where we made use of the logistic function identity @z� (s) = � (s)[1 � � (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = �J
X

hiji

SiSj, Sj 2 {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1 +

p
2) ⇡ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40 ⇥ 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

http://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB14_CX-CNN-ising-Pytorch.html

Convolutional Neural
Networks

Residual networks (ResNets)

Going deeper
• Image classification performance improved as the depth of convolutional networks

was extended from eight layers (AlexNet) to nineteen layers (VGG). This led to
experimentation with even deeper networks. However, performance decreased
again when many more layers were added.

• A novel idea to overcome this problem are residual blocks. Here, each network layer
computes an additive change to the current representation instead of transforming it
directly.

• Residual blocks allow much deeper networks to be trained, and these networks
improve performance across a variety of tasks.

CIFAR Image classification for deeper
networks

Regular network:

Residual network (2016):

• Reading for this lecture:
• https://udlbook.github.io/udlbook/ (Simon Prince - Understanding Deep Learning)

• deeplearningbook.com

Course logistics

https://udlbook.github.io/udlbook/
http://deeplearningbook.com

