Physics 361 - Machine Learning in
Physics

Lecture 9 - Convolutional Neural
Networks

Feb. 19th 2025

Moritz Munchmeyer

Final project

* You will write a paper on an application of machine learning to physics of your choice. Your paper needs to
contain a computational analysis, which generally will mean applying a machine learning method to some data
set.

* You can work alone or in groups of up to four people. For larger groups we will expect a little bit more total
effort.

* The paper should be 5 to 10 pages and contain the following:

» A short review of at least one research paper related to your topic. This is to encourage you to learn how to
browse the literature.

» A description of the data set you will be working with and its properties.

A brief description of the machine learning method you will use. Don’t re-explain basics such as how CNNs
work, rather describe the detailed properties of your approach.

 Train the model and put the results in your paper. Explore some variations such as different hyper parameters.

» Describe successes and problems in your analysis.

* If you are already doing research in physics or a related field, you can write the paper on this topic if you wish.

Final project

* You can use machine learning methods either from the lecture or ones that we have not
covered. Major topics which we have not yet covered but will be covering in the next weeks are
Generative models (GANSs, Diffusion, Normalizing Flows), Simulation Based Inferences (which
includes the important topic of assigning error bars to neural network estimates), and Transformers
and LLMs.

* The project should take you a few days of work, spread over the rest of the semester.

* We will have an intermediate check-in. Format TBA.

* Your paper will be due on Sunday May 4th at midnight.

* We want to know your topic by March 11th. You can discuss your topic ideas with Yurii or with
me, after the lecture, or during office hours.

 We will have a brief ~1 slide presentation of your results in the lecture on April 29th.

Some sources of data

Kaggle competitions

 https://www.kaggle.com/search?qg=physics

» https://www.kaggle.com/search?g=physics+in%3Adatasets

 https://www.kaggle.com/search?qg=physics+in%3Acompetitions

 https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice

Shared Data and Algorithms for Deep Learning in Fundamental Physics
https://github.com/erum-data-idt/pd4ml

https://astronn.readthedocs.io/en/latest/galaxy10.html

Many others. Please look in the domain you are interested in.

https://www.kaggle.com/search?q=physics
https://www.kaggle.com/search?q=physics+in%3Adatasets
https://www.kaggle.com/search?q=physics+in%3Acompetitions
https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice
https://github.com/erum-data-idt/pd4ml
https://astronn.readthedocs.io/en/latest/galaxy10.html

Some sources of models

Scikit learn: https://scikit-learn.org/stable/index.html (basics, but important)

» https://pytorch.org/tutorials/ (includes things like GANS)

» https://docs.pyro.ai/en/stable/ (probabilistic machine learning framework)

» https://sbi-dev.qgithub.io/sbi/ (library for simulation-based inference)

* Many git repositories associated with papers

* | would perform a web search on machine learning papers on a physics topic that you are
interested in and get inspired by their data and model. Of course you need to simplify your
approach substantially compared to a research paper.

https://scikit-learn.org/stable/index.html
https://pytorch.org/tutorials/
https://docs.pyro.ai/en/stable/
https://sbi-dev.github.io/sbi/

Unit 3: Convolutional NN

Introduction

Resources:

- Based on:
- https://udlbook.github.io/udlbook/ (Simon Prince - Understanding Deep Learning)
- Deeplearningbook.com

https://udlbook.github.io/udlbook/

Application: Image classification

Real world input

Model
Input

(124]
140
156

142
157

Model

128 >

Supervised learning
model

Model
output

0.89

Real world output

Bicycle

Application: Object detection

Real world input

== ’.';;‘,g‘ =i
= % g ’ ’ e . ,,‘..-g'i.\'
S :‘,4 .t >
et .‘_.'-'I "e

Model

Input
183]

204
231
185
204
232

Application: Image segmentation

Model

Deep Iearnihg
model

Model
output

Real world output

Application: Field-to-Field translation

 Example from cosmology

Matter density Gas temperature

https://arxiv.org/pdf/2010.00619

Why not use an MLP?

e Problems with fully-connected networks

1. Size

o 224x224 RGB image = 150,528 dimensions
« Hidden layers generally larger than inputs
e One hidden layer = 150,520x150,528 weights -- 22 billion

2. Nearby pixels statistically related (there is a notion of distance that the MLP
does not include).

3. Should be stable under transformations
« Don’t want to re-learn appearance at different parts of image

Convolutional NN

e Convolutional networks (LeCun, 1989), also known as convolutional neural
networks or CNNs, are a specialized kind of neural network for processing
data that has a known, grid-like topology. Examples include time-series data,
and image data

« Convolutional networks have been tremendously successful in practical
applications. The name “convolutional neural network” indicates that the
network employs a mathematical operation called convolution.

« Convolution is a specialized kind of linear operation. Convolutional networks
are simply neural networks that use convolution in place of general matrix
multiplication in at least one of their layers.

« Parameters only look at local image patches

« Share parameters across image

Invariance

e A function f[x] is invariant to a transformation t[] if:

i.e., the function output is the same even after the transformation is
applied

e.g., Image classification

« Image has been translated, but we want our classifier to give the same result

Equivariance

« A function f[x] is equivariant to a transformation t[] if:

i.e., the output is transformed in the same way as the input
e.g., Image segmentation

« Image has been translated and we want segmentation to translate with it

Convolutional Neural
Networks

Convolutions

Convolutions in 1d

e Input vector x:

X = [CE17$27°°°7$I}
e Output is weighted sum of neighbors:
Zi = W1Ti—1 T Woli + W3TLj41

e Convolutional or

W = [wh W2, wS]T

Convolutions in 1d

o

d

&
N\
D

OOOO®®®
000090 *
000600

e The convolutional operation adds the weighted inputs

e Plus passes through activation (e.g. ReLU) function

What to do at the boundary? “Zero padding”

HOOOOO

™

w_ COEEOE
OOEOOE
 QOOOEE

OHOOOG

. COOEEE

What to do at the boundary? “Valid”’ convolutions

@[

@@
@ sl =
23
@ 2

Only process positions where kernel falls in image (smaller output).

Parameters of convolutions

= shift by k positions for each output
Decreases size of output relative to input

= weight a different number of inputs for each output

Combine information from a larger area
But kernel size 5 uses 5 parameters

or convolutions = intersperse kernel values with zeros

Combine information from a larger area
Fewer parameters

Examples

@@@0@0@0

®

~

mw

e

()

— 2_
™M
IS
L O
O T -~
N erm
o e A
S -+ 1
1O |
g
O O
O T -~
N oerm 2
o A
n £ —
@ ‘ N o
o | -
3 v 3.2
N erm +2
o=~
S +~ —
r % &
@ @ N —
() I |
| o m
O T -~
N e 2
o = A
S +~ —
% &

i A

HEOOO®®

CNN vs fully connected layer

Convolutional network:

kernel weights w1, w2, w3
bias

activation function ale]

h; =al|6+wir;_ 1+ wor; + w3x;i1]

Fully connected network:

h;

3
B+ ijil?iﬂ'—z

a

g=1

3 weights, 1 bias

D? weights, D biases

CNN vs fully connected layer

Fully connected network

666666

L6

1 o Ty Ty Ty Tg

Convolution, size 3, stride 1,
dilation 1, zero padding

L1 o Tz T4 Ty Tg

h1
ho
hs

Convolution, size 3, stride 2,
dilation 1, zero padding

Channels

e The convolutional operation averages together the inputs

 Plus passes through RelLU function

e Has to lose information.

 Solution:
« apply several convolutions and stack them in

« Sometimes also called

()t

000090

()
() (h)
(2
(b))
(h)ln)

OO

0g000e

@6§@@@
OOG

B

96
G6

S
&

D

©

OO
DO

EOE®E®

How many parameters?
* If there are ¢, input channels and kernel size K

Q) c RUixK BeR

* If there are ¢, input channels and ¢, output channels

0 GRCz’XCoXK QERCO

Convolutional Neural
Networks

Receptive fields in CNN

Q
N—"

OOOCCOSBBOOO

x Hidden
1ayel’7 H1

ju—
-

o
=
—+

OO0
OO0

OO0 Q

00000 PBEBO

Input, x Hidden Hidden
layer, H; layer, Ho

@ 000 0000
e B000
////OOOO Qc R4X5X M
O
O
O
O

o/0/0 o RviiNNe'e/0/0'e
O000Q === 00000
0000
0000
OO00

Input, x Hidden Hidden Hidden

layer, H; layer, Ho layer, Hj

| 000000
000000

00000 a € R33N

Hidden Hidden
layer, Hs layer, Hy

Convolutional Neural
Networks

2d Convolutions

2d Convolution

Kernel
c d
w x
g h
Y z
J k l
v Output
aw + br + bw + cx + cw + dxr +
ey + [z fv + gz gy + hz
ew + fx + fw + gxr + gw + hx +
W + gz jy + kz ky + Iz

2D Convolution

e Convolutionin 2D
e Weighted sum over a K x K region
e Kx K weights

 Build into a convolutional layer by adding bias and passing through
activation function

« Example for a 2d convolutional layer with 3x3 kernel K:

hz’,j — a ﬁ_l_ E E Wm,nLi+m—2,7+n—2

m=1n=1

Hidden layer, H;

) g
M T
@ & @@ (10
Weights, (2 @@ @
TCoT
oiE

Hidden layer, H;

O U

) (110 (116) 0
(119 (19 e
@@ 0 — e
Wil =]
(@) (125 (v32) — s
1 w2
@ (,JZQ/
@@ e
(1) | s e

39 =
@ @@ @@ Weights, €2 16
Input, X Wlw/ﬁé D @ @@ Input, X @ @@ h
e @@@@@@ @@@@@ :
—
Weights, (2 gg@@@@ gg@@@ 46
Hidden layer, H; Hidden layer, H;

With zero-padding, positions beyond the image’s edge are considered to be zero.

Channels in 2D convolutions: Example of RGB image

3 x 3 pixels Weights, €2

RGB input, X

Hidden layer, H;

2D convolution applied to an image. The image is treated as a 2D input with three channels corresponding to
the red, green, and blue components. With a 3x3 kernel, each pre-activation in the first hidden layer is
computed by pointwise multiplying the 3x3x3 kernel weights with the 3x3 RGB image patch centered at the
same position, summing, and adding the bias. To calculate all the pre-activations in the hidden layer, we “slide”
the kernel over the image in both horizontal and vertical directions. The output is a 2D layer of hidden units. To
create multiple output channels, we would repeat this process with multiple kernels, resulting in a 3D tensor of
hidden units at hidden layer H 1.

How many parameters?

* If there are ¢; input channels and kernel size K x K

wERCixKxK ,BGR

* If there are ¢, input channels and ¢, output channels

W ERCixCOxKxK ,BERCO

Guide to different types of 2d convolutions

https://github.com/vdumoulin/conv_arithmetic
Famous animated guide

Kernel size, stride, dilation all
work as you would expect from

Convolution animations
the 1d case.

N.B.: Blue maps are inputs, and cyan maps are outputs.

-‘
"' \ -‘. . \
{ Vo \
} g o \ U
. ~ [\
’n" o A PR “‘.\ \
/ Y LK T Lo § .
, LRI L ™
e Y _e% > BN
) - o0 7%, ,;' s Yo O
et N %y N
oL P “e” .‘.,
’
.
«

No padding, no strides Arbitrary padding, no strides Half padding, no strides Full padding, no strides

{ ‘._‘ ‘, L
/ P PR
l' .".". a ."
! ¢ .
f
b

No padding, strides Padding, strides Padding, strides (odd)

https://github.com/vdumoulin/conv_arithmetic

Convolutional Neural
Networks

Downsampling and
Upsampling

Changing tensor resolution

e CNNs often include steps that can scale the dimension of the tensor (e.g. the
2d image) up or down.

« Downsampling is useful for example for image classification, where we want
the stream of information to converge to a single label.

« Upsampling is useful for image-to-image learning.

e There is also a method to change the number of channels, which is useful to
reduce computation load.

Downsampling

a) |

OEE® :
OO | DG
QDL @
OEO®

Sample every

other position

(equivalent to
stride two)

Max pooling Mean pooling
(partial
invariance to

translation)

Upsampling

o~ PR P

.
lllllllllllllll

Bilinear
interpolation

Max-upsampling

Duplicate

Transposed convolutions

a) b) c)

L1 o2 g g4 X5 g 7 XY

2

X1 T2 X3 T4

Kernel size 3, Stride 2 convolution Transposed convolution

Transposed convolution in 1D. a) Downsampling with kernel size three, stride two, and zero-padding.
Each output is a weighted sum of three inputs (arrows indicate weights). b) This can be expressed by a
weight matrix (same color indicates shared weight). c) In transposed convolution, each input contributes
three values to the output layer, which has twice as many outputs as inputs. d) The associated weight
matrix is the transpose of that in panel (b).

1x1 convolution to change channel number

7\ \ / \

| w S + 4

\ /" \/ \ J
v v/ \ /

Weights, 2

ut layer, H Output layer, H’

In

=

e Mixes channels
« Can change number of channels

e Equivalent to running same fully connected network at each position

Convolutional Neural
Networks

Application to image
classification

Simple example architecture

[1]

‘>< Fully
= Connected
Layer

Convolution Coarse-grainin

(pooling)

Convolution Coarse-graining
(pooling)

D=3 for RGB images
Height (H) and Width (W)
determined by # of pixels

pooling layers reduce H, W
while preserving D

neuron activation state:
convolution with local spatial filter
(e.g., 3 x 3 pixel grid)

Stacking many layers

The intuition is that lower level CNN layers are sensitive to small simple features such as
edges, and higher level layers become sensitive to progressively more abstract features.

Feature Visualization

How neural networks build up their understanding of images

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c)

Feature visualization allows us to see how GooglLeNet (1], trained on the ImageNet [2] dataset, builds up its
understanding of images over many layers. Visualizations of all channels are available in the appendix.

https://distill.pub/2017/feature-visualization/

Classic Benchmark Datasets

 MNIST database: images of digits

e ImageNet challenge: Much of the pioneering work on deep learning in computer
vision focused on image classification using the ImageNet dataset (figure 10.15).
This contains 1,281,167 training images, 50,000 validation images, and 100,000 test
images, and every image is labeled as belonging to one of 1000 possible categories.

e Performance of algorithms measured on benchmark datasets.

of instances Clutter Size in image Texture Distinct color Distinct shape

.

:

.
~

-

\
|
.

- * -

Figure 10.15 Example ImageNet classification images. The model aims to assign
an input image to one of 1000 classes. This task is challenging because the
images vary widely along different attributes (columns). These include rigidity
(monkey < canoe), number of instances in image (lizard < strawberry), clutter
(compass < steel drum), size (candle <spiderweb), texture (screwdriver <leopard),
distinctiveness of color (mug < red wine), and distinctiveness of shape (headland
< bell). Adapted from Russakovsky et al. (2015).

AlexNet (2012)

Figure 10.16 AlexNet (Krizhevsky et al.,

2012). The network maps a 224 x 224
color image to a 1000-dimensional vec-
tor representing class probabilities. The
network first convolves with 11x11 ker-
nels and stride 4 to create 96 channels.
It decreases the resolution again using a
max pool operation and applies a 5x5
convolutional layer. Another max pool-
ing layer follows, and three 3x3 convo-
lutional layers are applied. After a fi-
nal max pooling operation, the result
is vectorized and passed through three

fully connected (FC) layers and finally

the softmax layer.

This system achieved a 16.4% top-5 error rate (proportion of times the correct
label is not within the model’s top 5 predicted classes) and a 38.1% top-1 error
rate. At the time, this was an enormous leap forward in performance at a task
considered far beyond the capabilities of contemporary methods. This result
revealed the potential of deep learning and kick-started the modern era of Al
research.

WP°
. ’\QQQ\QQQ
o> 1L
AD
X(b+\/\c)a€'36 ” -
~
I UL
- 7
QQ QO QC){&(’{&"
&0

Almost all the 60
million parameters
parameters are in
fully connected
layers

AlexNet: Data augmentation

d) Vertical stretch

e)

h) Pincushion

« Data augmentation a factor of 2048 using (i) spatial transformations
and (ii) modifications of the input intensities.

AlexNet used “Dropout” in fully connected
layers

e Dropout was applied in the fully connected layers. Dropout sets a
random number of weights to zero at training time, to reduce overfitting.

AlexNet: Details of the training

e At test time average results from five different cropped and
mirrored versions of the image

e« SGD with a momentum coefficient of 0.9 and batch size of
128.

e L2 (weight decay) regularizer used.

e This system achieved a 16.4% top-5 error rate and a 38.1%
top-1 error rate.

VGG (2015) « 19 hidden layers

e 144 million parameters
e 6.8% top-5 error rate, 23.7% top-1 error rate

5 0
+°
it
Qﬂ*h cﬁ}x
- 6 oo
SN

I TR)
<%+~aﬁg°2%tﬂgoo qq’+ oF «
o W o> co® W co®

ImageNet History

50
@)
e
9 8 ImageGPT
X ® o
S AlexN o0
Pl exNet
o VGG -0 'c.)
DenseNet
Resnet 200
VIiT ,
SWIN DaViT
2012 2014 2016 2018 2020 2022 2024

Year

Example: CNNs for Ising Model

e See Notebook 14 in review 1803.08823: Pytorch CNN (Ising).

e [earn to recognize what phase the Ising model is in.

10

20

30

ordered phase critical region disordered phase

20

10 '- l‘.ﬁ: -:!-'r

e
20, = " .
30 . 30 | .

Y SR -
0 20

http://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB14_CX-CNN-ising-Pytorch.html

Convolutional Neural
Networks

Residual networks (ResNets)

Going deeper

e Image classification performance improved as the depth of convolutional networks
was extended from eight layers (AlexNet) to nineteen layers (VGG). This led to
experimentation with even deeper networks. However, performance decreased
again when many more layers were added.

« A novel idea to overcome this problem are residual blocks. Here, each network layer
computes an additive change to the current representation instead of transforming it
directly.

« Residual blocks allow much deeper networks to be trained, and these networks
improve performance across a variety of tasks.

CIFAR Image classification for deeper
networks

a)

N
o
O
N
N
o

Yo Test error
% Training error

o
1 1 1 1 1 1 1 1 1

0 ' Training step 60000 0 Training step 60000

Regular network:

h, =[x, ¢]

hy; = f3[hy, ¢,

h; = f3|hs, ¢;]
y = f4|h3, @,

Residual network (2016):

hl = X + fl [Xa ¢1]
hy = h; + f3|hy, ¢
hs = hy + f3]hs, ¢4

y = hs + f4|hs, ¢,

x LR

Course logistics

e Reading for this lecture:

e https://udlbook.qgithub.io/udlbook/ (Simon Prince - Understanding Deep Learning)

» deeplearningbook.com

https://udlbook.github.io/udlbook/
http://deeplearningbook.com

